103 research outputs found

    Imaging changes associated with cognitive abnormalities in Parkinson's disease

    Get PDF
    The current study investigates both gray and white matter changes in non-demented Parkinson's disease (PD) patients with varying degrees of mild cognitive deficits and elucidates the relationships between the structural changes and clinical sequelae of PD. Twenty-six PD patients and 15 healthy controls (HCs) were enrolled in the study. Participants underwent T1-weighted and diffusion tensor imaging (DTI) scans. Their cognition was assessed using a neuropsychological battery. Compared with HCs, PD patients showed significant cortical thinning in sensorimotor (left pre- and postcentral gyri) and cognitive (left dorsolateral superior frontal gyrus [DLSFG]) regions. The DLSFG cortical thinning correlated with executive and global cognitive impairment in PD patients. PD patients showed white matter abnormalities as well, primarily in bilateral frontal and temporal regions, which also correlated with executive and global cognitive impairment. These results seem to suggest that both gray and white matter changes in the frontal regions may constitute an early pathological substrate of cognitive impairment of PD providing a sensitive biomarker for brain changes in PD

    Identifying Electroencephalography Biomarkers in Individuals at Clinical High Risk for Psychosis in an International Multi-Site Study

    Full text link
    Background: The clinical high-risk for psychosis (CHR-P) paradigm was introduced to detect individuals at risk of developing psychosis and to establish preventive strategies. While current prediction of outcomes in the CHR-P state is based mostly on the clinical assessment of presenting features, several emerging biomarkers have been investigated in an attempt to stratify CHR-P individuals according to their individual trajectories and refine the diagnostic process. However, heterogeneity across subgroups is a key challenge that has limited the impact of the CHR-P prediction strategies, as the clinical validity of the current research is limited by a lack of external validation across sites and modalities. Despite these challenges, electroencephalography (EEG) biomarkers have been studied in this field and evidence suggests that EEG used in combination with clinical assessments may be a key measure for improving diagnostic and prognostic accuracy in the CHR-P state. The PSYSCAN EEG study is an international, multi-site, multimodal longitudinal project that aims to advance knowledge in this field. Methods: Participants at 6 international sites take part in an EEG protocol including EEG recording, cognitive and clinical assessments. CHR-P participants will be followed up after 2 years and subcategorised depending on their illness progression regarding transition to psychosis. Differences will be sought between CHR-P individuals and healthy controls and between CHR-P individuals who transition and those who do not transition to psychosis using data driven computational analyses. Discussion: This protocol addresses the challenges faced by previous studies of this kind to enable valid identification of predictive EEG biomarkers which will be combined with other biomarkers across sites to develop a prognostic tool in CHR-P. The PSYSCAN EEG study aims to pave the way for incorporating EEG biomarkers in the assessment of CHR-P individuals, to refine the diagnostic process and help to stratify CHR-P subjects according to risk of transition. This may improve our understanding of the CHR-P state and therefore aid the development of more personalized treatment strategies. Keywords: CHR-P; EEG; biomarkers; multi-site; psychosis predictio

    EXAFS and DFT study of the cadmium and lead adsorption on modified silica nanoparticles

    Get PDF
    Silica nanoparticles of 7 nm diameter were modified with (3-aminopropyl) triethoxysilane (APTES) and characterized by CP-MAS 13C and 29Si NMR, FTIR, zeta potential measurements, and thermogravimetry. The particles were shown to sorb successfully divalent lead and cadmium ions from aqueous solution. Lead complexation with these silica nanoparticles was clearly confirmed by EXAFS (Extended X-ray Absorption Fine Structure) with synchrotron light measurements. Predicted Pb–N and Pb–C distances obtained from quantum-chemical calculations are in very good agreement with the EXAFS determinations. The calculations also support the higher APTES affinity for Pb2+ compared to Cd2+.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasCentro de Investigaciones ÓpticasCentro de Investigación y Desarrollo en Fermentaciones Industriale

    PsyCog:A computerised mini battery for assessing cognition in psychosis

    Get PDF
    Despite the functional impact of cognitive deficit in people with psychosis, objective cognitive assessment is not typically part of routine clinical care. This is partly due to the length of traditional assessments and the need for a highly trained administrator. Brief, automated computerised assessments could help to address this issue. We present data from an evaluation of PsyCog, a computerised, non-verbal, mini battery of cognitive tests. Healthy Control (HC) ( N = 135), Clinical High Risk (CHR) ( N = 233), and First Episode Psychosis (FEP) ( N = 301) participants from a multi-centre prospective study were assessed at baseline, 6 months, and 12 months. PsyCog was used to assess cognitive performance at baseline and at up to two follow-up timepoints. Mean total testing time was 35.95 min (SD = 2.87). Relative to HCs, effect sizes of performance impairments were medium to large in FEP patients (composite score G = 1.21, subtest range = 0.52-0.88) and small to medium in CHR patients (composite score G = 0.59, subtest range = 0.18-0.49). Site effects were minimal, and test-retest reliability of the PsyCog composite was good (ICC = 0.82-0.89), though some practice effects and differences in data completion between groups were found. The present implementation of PsyCog shows it to be a useful tool for assessing cognitive function in people with psychosis. Computerised cognitive assessments have the potential to facilitate the evaluation of cognition in psychosis in both research and in clinical care, though caution should still be taken in terms of implementation and study design. </p

    Using brain structural neuroimaging measures to predict psychosis onset for individuals at clinical high-risk

    Get PDF
    Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification, although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed psychosis later (CHR-PS+) from healthy controls (HCs) that can differentiate each other. We also evaluated whether we could distinguish CHR-PS+ individuals from those who did not develop psychosis later (CHR-PS-) and those with uncertain follow-up status (CHR-UNK). T1-weighted structural brain MRI scans from 1165 individuals at CHR (CHR-PS+, n = 144; CHR-PS-, n = 793; and CHR-UNK, n = 228), and 1029 HCs, were obtained from 21 sites. We used ComBat to harmonize measures of subcortical volume, cortical thickness and surface area data and corrected for non-linear effects of age and sex using a general additive model. CHR-PS+ (n = 120) and HC (n = 799) data from 20 sites served as a training dataset, which we used to build a classifier. The remaining samples were used external validation datasets to evaluate classifier performance (test, independent confirmatory, and independent group [CHR-PS- and CHR-UNK] datasets). The accuracy of the classifier on the training and independent confirmatory datasets was 85% and 73% respectively. Regional cortical surface area measures-including those from the right superior frontal, right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS+ from HC. CHR-PS- and CHR-UNK individuals were more likely to be classified as HC compared to CHR-PS+ (classification rate to HC: CHR-PS+, 30%; CHR-PS-, 73%; CHR-UNK, 80%). We used multisite sMRI to train a classifier to predict psychosis onset in CHR individuals, and it showed promise predicting CHR-PS+ in an independent sample. The results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be helpful to identify their prognosis. Future prospective studies are required about whether the classifier could be actually helpful in the clinical settings.</p

    Country-level gender inequality is associated with structural differences in the brains of women and men

    Get PDF
    男女間の不平等と脳の性差 --男女間の不平等は脳構造の性差と関連する--. 京都大学プレスリリース. 2023-05-10.Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women’s worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7, 876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women’s brains and provide initial evidence for neuroscience-informed policies for gender equality

    Neuroanatomical heterogeneity and homogeneity in individuals at clinical high risk for psychosis.

    Get PDF
    Individuals at Clinical High Risk for Psychosis (CHR-P) demonstrate heterogeneity in clinical profiles and outcome features. However, the extent of neuroanatomical heterogeneity in the CHR-P state is largely undetermined. We aimed to quantify the neuroanatomical heterogeneity in structural magnetic resonance imaging measures of cortical surface area (SA), cortical thickness (CT), subcortical volume (SV), and intracranial volume (ICV) in CHR-P individuals compared with healthy controls (HC), and in relation to subsequent transition to a first episode of psychosis. The ENIGMA CHR-P consortium applied a harmonised analysis to neuroimaging data across 29 international sites, including 1579 CHR-P individuals and 1243 HC, offering the largest pooled CHR-P neuroimaging dataset to date. Regional heterogeneity was indexed with the Variability Ratio (VR) and Coefficient of Variation (CV) ratio applied at the group level. Personalised estimates of heterogeneity of SA, CT and SV brain profiles were indexed with the novel Person-Based Similarity Index (PBSI), with two complementary applications. First, to assess the extent of within-diagnosis similarity or divergence of neuroanatomical profiles between individuals. Second, using a normative modelling approach, to assess the 'normativeness' of neuroanatomical profiles in individuals at CHR-P. CHR-P individuals demonstrated no greater regional heterogeneity after applying FDR corrections. However, PBSI scores indicated significantly greater neuroanatomical divergence in global SA, CT and SV profiles in CHR-P individuals compared with HC. Normative PBSI analysis identified 11 CHR-P individuals (0.70%) with marked deviation (>1.5 SD) in SA, 118 (7.47%) in CT and 161 (10.20%) in SV. Psychosis transition was not significantly associated with any measure of heterogeneity. Overall, our examination of neuroanatomical heterogeneity within the CHR-P state indicated greater divergence in neuroanatomical profiles at an individual level, irrespective of psychosis conversion. Further large-scale investigations are required of those who demonstrate marked deviation

    Country-level gender inequality is associated with structural differences in the brains of women and men

    Full text link
    Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women's worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7,876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women's brains and provide initial evidence for neuroscience-informed policies for gender equality

    Neuroanatomical heterogeneity and homogeneity in individuals at clinical high risk for psychosis

    Get PDF
    Individuals at Clinical High Risk for Psychosis (CHR-P) demonstrate heterogeneity in clinical profiles and outcome features. However, the extent of neuroanatomical heterogeneity in the CHR-P state is largely undetermined. We aimed to quantify the neuroanatomical heterogeneity in structural magnetic resonance imaging measures of cortical surface area (SA), cortical thickness (CT), subcortical volume (SV), and intracranial volume (ICV) in CHR-P individuals compared with healthy controls (HC), and in relation to subsequent transition to a first episode of psychosis. The ENIGMA CHR-P consortium applied a harmonised analysis to neuroimaging data across 29 international sites, including 1579 CHR-P individuals and 1243 HC, offering the largest pooled CHR-P neuroimaging dataset to date. Regional heterogeneity was indexed with the Variability Ratio (VR) and Coefficient of Variation (CV) ratio applied at the group level. Personalised estimates of heterogeneity of SA, CT and SV brain profiles were indexed with the novel Person-Based Similarity Index (PBSI), with two complementary applications. First, to assess the extent of within-diagnosis similarity or divergence of neuroanatomical profiles between individuals. Second, using a normative modelling approach, to assess the ‘normativeness’ of neuroanatomical profiles in individuals at CHR-P. CHR-P individuals demonstrated no greater regional heterogeneity after applying FDR corrections. However, PBSI scores indicated significantly greater neuroanatomical divergence in global SA, CT and SV profiles in CHR-P individuals compared with HC. Normative PBSI analysis identified 11 CHR-P individuals (0.70%) with marked deviation (>1.5 SD) in SA, 118 (7.47%) in CT and 161 (10.20%) in SV. Psychosis transition was not significantly associated with any measure of heterogeneity. Overall, our examination of neuroanatomical heterogeneity within the CHR-P state indicated greater divergence in neuroanatomical profiles at an individual level, irrespective of psychosis conversion. Further large-scale investigations are required of those who demonstrate marked deviation.publishedVersio
    corecore