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ARTICLE OPEN

Using brain structural neuroimaging measures to predict
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Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification,
although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed
psychosis later (CHR-PS+) from healthy controls (HCs) that can differentiate each other. We also evaluated whether we could
distinguish CHR-PS+ individuals from those who did not develop psychosis later (CHR-PS-) and those with uncertain follow-up
status (CHR-UNK). T1-weighted structural brain MRI scans from 1165 individuals at CHR (CHR-PS+, n= 144; CHR-PS-, n= 793;
and CHR-UNK, n= 228), and 1029 HCs, were obtained from 21 sites. We used ComBat to harmonize measures of subcortical
volume, cortical thickness and surface area data and corrected for non-linear effects of age and sex using a general additive model.
CHR-PS+ (n= 120) and HC (n= 799) data from 20 sites served as a training dataset, which we used to build a classifier. The
remaining samples were used external validation datasets to evaluate classifier performance (test, independent confirmatory, and
independent group [CHR-PS- and CHR-UNK] datasets). The accuracy of the classifier on the training and independent confirmatory
datasets was 85% and 73% respectively. Regional cortical surface area measures-including those from the right superior frontal,
right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS+ from HC. CHR-PS- and CHR-UNK
individuals were more likely to be classified as HC compared to CHR-PS+ (classification rate to HC: CHR-PS+, 30%; CHR-PS-, 73%;
CHR-UNK, 80%). We used multisite sMRI to train a classifier to predict psychosis onset in CHR individuals, and it showed promise
predicting CHR-PS+ in an independent sample. The results suggest that when considering adolescent brain development, baseline
MRI scans for CHR individuals may be helpful to identify their prognosis. Future prospective studies are required about whether the
classifier could be actually helpful in the clinical settings.

Molecular Psychiatry; https://doi.org/10.1038/s41380-024-02426-7

INTRODUCTION
The clinical high risk (CHR) paradigm is widely used with the goal
of improving early detection of and prevention of psychotic
disorders [1]. Individuals are considered at CHR for psychosis if
they meet criteria for attenuated positive symptom syndrome
(APSS), brief intermittent (limited) psychotic syndrome (BLIPS),
and/or genetic risk and deterioration syndrome (GRDS) based on
semistructured interviews [2–5]. The CHR state is present in 1.7%
of the general population and 19.2% of clinical samples [6]. CHR
individuals have a higher risk of developing psychosis (0.15 at 1
year) comparing to healthy controls, the transition risk increased

from 0.09 at half years to 0.27 at 4 years [7]. However, most CHR
subjects who do not transition to psychosis will continue to meet
CHR criteria or experience attenuated psychosis symptoms at
follow-up and only 33% will eventually remit [7, 8].
The CHR state, is also associated with alterations in proxy

measures of brain structure [9–15]. Previous structural magnetic
resonance imaging (MRI) studies reported a progressive decrease
in gray matter volume in the medial and superior temporal and
medial frontal cortex during the transition period among CHR
individuals [14–17]. Gray matter volume continued to decrease
several years after disease onset [15, 16, 18]. Cortical surface area
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(SA) and cortical thickness (CT), which can be extracted using
FreeSurfer software [19–21], are also crucial predictors of
important life outcome [22] and associated with neurological,
psychological, and behavioral traits [23]. SA is strongly correlated
with grey matter volume compared to CT, suggesting SA and CT
are unique structural features in the grey matter cortex [24, 25].
Recent study indicated that the multivariate architectures with
respect to the makeup of the genetic factors were distinct across
cortical surface area and thickness [22]. This is in line with the
radial unit hypothesis [26] that the expansion of cortical surface
area is driven by the proliferation of neural progenitor cells,
whereas numbers of neurogenetic division of these cells for
thickness [23]. Widespread lower CT has also been identified in
cross-sectional MRI data in individuals at CHR in a large-scale
pooled analysis of the Enhancing Neuro Imaging Genetics through
Meta-Analysis (ENIGMA) CHR Working Group [27]. Among these
widespread alterations, frontal cortical and temporal regions (e.g.,
fusiform, superior temporal, and paracentral) have been relatively
consistently associated with CHR status [9–11, 28–30], with these
regions also exhibiting lower CT in individuals with established
schizophrenia [29]. In addition to regional changes, individuals
with CHR, have showed greater neuroanatomical variability in
global SA, CT, and subcortical volume compared to HC [31].
Furthermore, longitudinal studies have shown reductions of
cortical thickness in the paracentral, superior temporal, and
fusiform gyrus have been reported to be associated with
psychosis conversion in those at CHR [13, 14, 32]. Recent work
has indicated that whole-brain sMRI patterns of schizophrenia
forecasted 2-year psychosocial impairments in individuals with
CHR [33], suggesting that alterations in brain structure may predict
real-life outcomes.
Adolescent development is a crucial time window that is

associated with brain-wide changes, including reductions in
cortical thickness and volume [34, 35]. Cortical characteristics
such as gray matter volume, cortical surface area, and cortical
thickness decline by about 10% during adolescence [36]. On the
other hand, white matter volume was reported peaking in young
adulthood [36]. Since the period from adolescence to early
adulthood is a high risk time window for psychosis onset [32], age-
related anatomical deviations from typically-occuring declines
may hold valuable information to predict later psychosis conver-
sion, especially in frontal and temporal regions that have been
implicated in CHR [27, 32, 37–39] and schizophrenia [40–45].
Further, greater brain age deviations were found to be associated
with a higher risk for psychosis over time [11, 38]. Importantly,
these results suggest that the adolescent brain development
pattern of CHR individuals may differ from that of HCs. Indeed, the
ENIGMA CHR Working Group has reported that CHR compared to
HC participants exhibit altered non-linear age associations with
cortical thickness [27], suggesting that cross-sectional between-
group differences in sMRI metrics may involve altered adolescent
development, trait characteristics associated with psychosis
liability, and/or progressive brain pathology around the onset of
psychosis [32, 39, 46].
An increasing number of studies have attempted to use (cross-

sectional) sMRI data to predict outcome or case-control status.
These prior studies show that machine learning approaches are
informative for differentiating individuals with schizophrenia from
HCs [47–52]. Similar findings were observed in different clinical
stages of psychosis, including first episode schizophrenia and CHR
individuals [48, 49]. A major limitation, however, is the need for
large and diverse sample sizes to establish a well-tuned classifier
that also provides generalized predictive performance [12, 53].
Since single sites cannot typically provide the necessary sample
sizes [49, 54, 55], multisite consortia data may be advantageous if
site effects are adequately accounted for (e.g., via cross-site
harmonization procedures) [49, 54, 56]. For example, without
harmonization, a prior study failed to build a useful model with

multi site data [38]. In the current study, we aimed to investigate
whether cross-sectional sMRI data can be used to build a classifier
to differentiate the neuroanatomical developmental patterns of
HCs relative to participants who later developed a psychotic
disorder (CHR-PS+) as biomarkers for future psychosis conversion.
As altered developmental processes are implicated in psychosis
risk, we considered the potential non-linear effects of age and sex
to gain optimal predictive accuracy of trained classifiers.
Here, we combined data from 21 sites harmonized through the

ENIGMA CHR Working Group using ComBat [57] to minimize
differences related to site-, scanner- and scanning protocols using
an Empirical Bayes method. Second, to model non-linear age
effects, we fitted generalized additive models (GAMs) [58, 59] to
the HC data, and then applied the fitted GAMs to obtain non-
linear age- and sex-corrected features for the entire sample [60].
More specifically, we estimated the model in HCs and applied it to
individuals at CHR to capture deviations from the expected
patterns of physiological aging. As for patients with early-onset
psychosis [61] and schizophrenia [41] have been reported to have
abnormally low estimated intracranial volume (ICV), all procedures
were performed after adjusting the MRI features for effects of ICV.
Third, we developed an XGBoost [62] classifier using only HCs and
CHR-PS+ to determine deviation in neuroanatomical develop-
mental patterns as potential predictors of future psychosis
conversion. Finally, we tested the predictive performance of the
classifier with the left-out site data, to avoid the potential for
information leakage between the training and test data.
We hypothesized that CHR-PS+ individuals would be distin-

guishable from HCs based on features derived from structural MRI
features, based on the assumption that those CHR individuals who
are most likely to convert to psychosis would show the greatest
baseline anatomical alterations. Second, we expected our classifier
to label individuals at CHR who had not developed a psychotic
disorder (CHR-PS-) at follow-up, and individuals at CHR who did
not complete follow-up visits, resulting in missing information
about their transition status (CHR-UNK), as HCs. Third, we expected
the classifiers to perform similarly in independent confirmatory
datasets, and expected to find associations between classifications
and symptom severity.

METHODS
Participants
We included data from a total of 1165 CHR individuals (144 CHR-PS+, 793
CHR-PS−, and 228 CHR-UNK individuals) and 1029 healthy controls (HCs)
from 21 ENIGMA Clinical High Risk for Psychosis Working Group sites
(Table 1). As previous study showed that using CHR psychometric
instruments to assess the CHR state in clinical samples is associated with
an excellent overall prognostic performance [63], we combined two
assessments directly as previous studies [27, 31, 64]. CHR status was
assessed using the full version of the Comprehensive Assessment of At-
Risk Mental States (CAARMS [65]; n= 650) or the Structured Interview for
Prodromal Syndromes (SIPS [66, 67]; n= 799). Site-specific inclusion and
exclusion criteria, the available scale scores in premorbid IQ, symptom
severity, global functioning, and antipsychotic use at scan are the same as
in a prior publication (Supplementary Table S1) [27]. All sites obtained local
institutional review board approval prior to data collection. Written
informed consent was obtained from every participant, or from the
participant’s guardian for participants younger than 18 years. All studies
were conducted in accordance with the Declaration of Helsinki [68].
We applied a two-step approach [49] to evaluate the performance of the

models by dividing the data into four datasets: training, test, independent
confirmatory, and independent group datasets (Fig. 1). Test and independent
confirmatory datasets were used as external validation datasets. First, the
training and test datasets comprised the data from CHR-PS+ and HC from 20
sites except for Toyama, which was used as the independent confirmatory
dataset. We chose this dataset because the Toyama site contributed the
largest HC sample and excluding this dataset reduced sample imbalance
between groups in building a machine learning classifier. Ninety percent of
the data were randomly sorted as the training dataset, and the remaining
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10% as the test dataset. A Kolmogorov–Smirnov test did not show any
significant differences between training and test datasets in any structural
features. The independent confirmatory dataset comprised the data fromHCs
and CHRs at the Toyama site; this data was completely excluded from the
training partition, and was used to perform an independent first-step
evaluation without site information leakage. To evaluate the classifier on
unseen new data, we defined the CHR-PS− and CHR-UNK individuals in all
sites as the independent group dataset to perform the second step.

MRI data acquisition and preprocessing
Image acquisition and Processing. Participating sites contributed to T1-
weighted MRI brain scans from 31 MRI scanners, including 29 3-T scanners
and 2 1.5-T scanners (Supplementary Table S2). Detailed scan protocols and
the number of scans for each protocol are described in the Supplementary
Materials. After processing the data using FreeSurfer analysis software at
each site [19–21], we extracted structural features from 153 regions of
interest (ROI) including 68 regional measures of cortical thickness, 68 surface
area (SA), 16 subcortical volume, and one intracranial volume according to
the Desikan-Killiany atlas [69]. We implemented the ENIGMA consortium
quality assessment pipeline [40, 41, 70–73] and 8 samples were excluded for
lacking 20% of the ROIs data. Remaining missing values (1.20%) were
imputed using a k-Nearest Neighbor (k= 3) approach.

ComBat harmonization
ComBat [57] is a harmonization method used to remove scanner and
protocol effects based on an adjusted general linear model harmonization
method. Based on recent work demonstrating that neuroComBat
harmonization increases statistical power within a mega-analytic frame-
work, primary analyses were conducted within a mega-analysis framework
using data that were corrected for site and scanner associations using
neuroComBat harmonization [74]. Further analyses were conducted using
Python version 3.7.12. We applied the extracted cortical thickness, surface
area, subcortical volume, and intracranial volume measures with partici-
pants’ age and sex as covariates, along with protocol and site effects. To
confirm that group status had no significant influence on the ComBat
harmonization steps, we also conducted ComBat harmonization using the
training dataset only (see Supplementary Materials).

Features engineering
First, we fitted a general linear model to regress out effects of intracranial
volume. Next, we fitted GAMs to only the HC data to estimate non-linear
effects of age and sex for every structural feature; then we applied the
fitted GAMs to obtain non-linear age- and sex-corrected features. To verify
the absence of information leakage and the stability of the GAMs, we also
repeated this procedure 1000 times on randomly sub-sampled HC data to
estimate the GAMs (see Supplementary Materials and Fig. S1).

XGBoost
XGBoost is a scalable tree boosting algorithm [62]. We applied standardiza-
tion for the structural features to building a classifier. The use of input data
standardization, optimization of the hyperparameters of the classifier (eta,
min_child_weight, max_depth, subsample, colsample_bytree) were tuned
using GridSearchCV implemented in the ‘scikit-learn’ module (version 1.0.2)
in Python (https://scikit-learn.org/stable/auto_examples/release_highlights/
plot_release_highlights_1_0_0.html) [75]. We plotted the weights of the
classifier to determine the importance of the features for generalization. The
classifier was optimized using a tenfold cross-validated grid search over a
defined parameter grid. Data from the HC group were randomly down-
sampled to the same sample size as the CHR-PS+ group in each fold. To
reduce downsampling bias, downsampling and grid search were repeated
1000 times and stratified tenfold for the training data. Then, we applied
tenfold cross-validation and 1000 permutations to evaluate the significance
of the cross-validation scores of the model with the best hyperparameters for
the training dataset. The best cross-validation accuracy score was averaged
across 1000 repeats. Permutation tests were conducted by shuffling the
labels in the training data, and the permutation-based p-value was calculated
[76]. The final model with the best hyperparameters was trained using the
entire training dataset. Finally, the trained classifier was applied to the test
set and the independent confirmatory dataset with the best parameters
tuned by grid search. The predict probability was calculated by the trained
classifier for each sample. Predict probability ranges from 0 to 1, with smaller
values indicating more likely classification as CHR-PS+. The cut-off point for
the predictive performance was set to 0.5.Ta
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The predictive performance of the classifier was evaluated using an
independent group dataset (CHR-PS− and CHR-UNK). We compared the
classifiers built from four different feature sets: (i) only cortical thickness
values, (ii) only surface area values, (iii) only subcortical volumes only, and
(iv) all features. The classifier with the best predictive performance for the
independent confirmatory dataset was used for subsequent analysis.

Statistical analysis
Evaluation metrics. First, the classifier was evaluated using the test,
independent confirmatory, and independent group datasets by the given

scores of the tuned classifier. We calculated the confusion matrix, macro,
and weighted average accuracies to evaluate the classifier because the
data used were imbalanced (see Supplementary Materials) [49].

Predictive performance of the classifier. The predictive performance of the
classifier was defined as its performance on unseen data (in the independent
confirmatory/group datasets) and was assessed using standard evaluation
metrics. Chi-squared tests were applied to the classified labels of the test,
independent confirmatory, and independent group datasets. Since we
conducted a total of 6 comparisons, a Bonferroni’s correction was applied to

Fig. 1 Diagram employed for the processing and analysis. HC healthy control, CHR clinical high risk for psychosis, CHR-PS+ individuals at
CHR who developed psychosis later, CHR-PS- individuals at CHR who did not develop psychosis later, CHR-UNK individuals at CHR who could
not follow up, SD standard deviation.
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adjust for the multiple statistical comparisons (p < 0.05/6= 0.008). Predict
probabilities generated by the XGBoost classifier were also tested using a
nonparametric analysis of variance for all samples. To confirm little difference
in the predictive performance between the assessments of CHR state, we
tested the difference of predict probabilities including SIPS or CAARMS as a
covariate. We also tested the difference in the rates of individuals predicted
as CHR-PS+ that were assessed by either SIPS or CAARMS using a Chi-
squared test. A GAM was used to assess non-linear relationships between
age and the predictive performance of the classifier. Moreover, we
conducted 4 comparisons (HCs vs. CHR-PS+, CHR-PS+ vs. CHR-PS-, CHR-PS
+ vs. CHR-UNK and CHR-PS+ vs. CHR-PS- and CHR-UNK) of the decision
curve analysis [77–79] using ‘dcurves’ package (version 0.4.0) in R software to
estimate the classifier as well. Net benefit was calculated across a range of
threshold probabilities [80] in comparison to getting MRI measurements to
get a prediction for all patients or no patients. As threshold probabilities were
set up to 50% (i.e., chance level), net benefit= sensitivity × prevalence – (1 –
specificity) × (1 – prevalence) × 50%.

Relationship between predict probability and demographic and clinical
characteristics. We tested the difference in the predictive performance
with respect to sex and the existence of APSS, BLIPS, and GRDS using t tests
(p < 0.05/3= 0.016). Pearson’s correlation analyses were also conducted
between standardized IQ and the predict probability. Bonferroni’s correction
was applied to the subscores (p < 0.05/4= 0.0125). To determine the
relationship between the predict probability and symptom severity,
Pearson’s correlation analyses were performed using the SIPS and CAARMS
subscores for CHR-PS+, CHR-PS-, and CHR-UNK groups. We tested z-score
normalized positive, negative and general subscores of the SIPS and
CAARMS using Pearson’s correlation coefficients. Bonferroni’s correction was
applied to the SIPS or CAARMS subscores (for SIPS: positive, negative,
disorganization and general symptoms, p < 0.05/4= 0.0125; for CAARMS:
positive symptoms, cognitive change, emotional disturbance, negative
symptoms, behavioral change, motor/physical changes, p < 0.05/6= 0.0083).
To determine the potential effect of antipsychotic medication on the
classification, we also tested the difference in predict probabilities between
those with and without medication use for each CHR subgroup using a t-test.

RESULTS
Model evaluation
A non-linear effect of age, sex, and age x sex interaction on SA was
found in HCs, as shown in Fig. 2. The classifier using only non-linear
fitted SA features (i.e., fit to HCs, applied to all) obtained the best
performance in differentiating HC and CHR-PS+ groups (Supple-
mentary Table S3). For the SA model, the best cross-validation
accuracy within the training dataset was 85% (± 0.00008). The
permutation test showed that the classifier performed significantly
better than chance level (50%, p < 0.001). The accuracies with the
best estimator for the test and independent confirmatory datasets
were 68% and 73% (Fig. 3B), respectively. Regions with the top ten
largest features weights were the superior temporal, insula, superior
frontal, superior parietal, fusiform, isthmus of cingulate, parahippo-
campal gyri, and postcentral gyri to differentiate HC from CHR-PS+
groups (Fig. 3A, Supplementary Table S3). For SA in the right
superior temporal gyrus, which was the strongest contributing
feature of the classifier, the ComBat harmonized feature showed no
significant difference among the groups (p > 0.05), while ComBat
harmonized and non-linear age- and sex-adjusted feature revealed
a difference between CHR-PS+ and CHR-PS- (t= 2.137, p= 0.0327),
and CHR-PS+ and CHR-UNK (t= 2.140, p= 0.0325; Fig. 4).
For a confirmatory analysis, machine learning classifiers using 152

sMRI raw brain characteristics showed poorer performance com-
pared to the corresponding age- and sex-adjusted machine learning
classifiers (Supplementary Materials). We also tried to build classifiers
to differentiate CHR from HCs or CHR-PS+ from CHR-PS-, however,
those ones only showed approximate chance level (50%) accuracies.

Predictive performance of the classifier for the test,
independent confirmatory, and independent group datasets
A chi-squared test showed a significant difference in the classified
labels for the independent confirmatory, and independent group

datasets, respectively (X2(1, n= 151)= 6.34, p= 0.012 and X2(1,
n= 1021)= 4.39, p= 0.036). Further residual analysis showed that
the HC group was significantly more likely to be classified as HCs
than the CHR-PS+ group (73% vs. 30%, corrected p= 0.004,
Fig. 3B). For the independent group dataset, no difference
between CHR-PS- and CHR-UNK groups was found (73% vs.
80%, corrected p= 0.029).
For the overall sample, a chi-square test showed a significant

difference in the classified labels between the four groups (X2(3,
1172)= 15.12, p= 0.002). Further residual analysis showed a
significant difference in the classified labels between CHR-PS+ and
the other three groups (Bonferroni corrected p’s < 0.05; Fig. 3B). For
the predict probability, an Kruskal-Wallis test showed a significant
difference between the four groups (H= 278.86, p < 0.001). Post-hoc
comparisons showed that CHR-PS+ group was different from all
other groups and that the CHR-PS- group was in between CHR-PS+
and HC groups (HC > CHR-PS- > CHR-PS+), while the predict
probability did not differ between CHR-UNK and HCs (CHR-UNK >
CHR-PS- > CHR-PS+; Bonferroni corrected p’s < 0.05; Fig. 3C). The
difference changed little after controlling the methods of the CHR
assessments as a covariate (CHR group: F(2, 1161)= 192.25,
p < 0.001; Assessment method: F(1, 1161)= 0.00, p > 0.05), and
CHR individuals predicted as CHR-PS+ did not differ between
participants assessed with SIPS versus CAARMS, X2(1, 1449)= 2.59,
p > 0.05; (Supplementary Table S4). Although the classifier was built
according to the features after controlling for non-linear age effect, a
GAM analysis demonstrated that the predict probability was
associated with age (F= 11.33, p= 0.003), and differed between
CHR-PS+ and HC (t= 20.72, p < 0.001), CHR-PS+ and CHR-PS-
(t= 17.83, p < 0.001), and CHR-PS+ and CHR-UNK (t= 17.64,
p < 0.001; Fig. 3D). No significant age × group interaction was found
in the predict probability.
The estimated decision curve for all comparisons (HCs vs. CHR-

PS+, CHR-PS+ vs. CHR-PS-, CHR-PS+ vs. CHR-UNK and CHR-PS+
vs. CHR-PS- and CHR-UNK) showed that in clinical setting,
compared to MRI measurement for all patients or no MRIs at all,
getting a prediction from current classifier/model leads to higher
net benefit to discoverer transition of CHR (Fig. 3E).

Relationship between predict probability and demographic
and clinical characteristics
We observed no effects of sex or APSS, BLIPS, or GRDS status, on
the predict probability (p > 0.05). No significant correlations were
found between standardized IQ and the predict probability for
each group. No significant correlation was found between
symptom severity scores and predict probability. No significant
difference was found for the antipsychotics use was found among
each CHR group (p > 0.05).

DISCUSSION
To the best of our knowledge, the current study is the one of a few
to apply a machine learning approach to discriminate HC and
CHR-PS+ groups in a large multisite sample [12]. To evaluate the
classifier, we employed a two-step approach using an indepen-
dent confirmatory dataset, obtained at a different site and using a
different protocol from the ones used to build the classifier; we
also used an independent group dataset including CHR-PS- and
CHR-UNK groups. Although previous study reported 94% accuracy
[12], we have achieved 85% accuracy in the 2-class classification in
the training dataset using non-linear adjustment of SA features for
age and sex. The patterns of neuroanatomical alterations were
also useful in identifying CHR-PS- individuals. Specially, of the CHR
groups, the CHR-UNK group was the most likely to be classified as
HC by the classifier, than those in other CHR groups, showing no
difference in the predict probability from HC.
In this study, we were able to differentiate HC from CHR-PS+

group with 85% and 68% accuracy in the training and test sets,
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Fig. 2 Non-linear age associations of the surface area in healthy controls. Each graph shows a partial effect of the best fit in GAMs. Shading
around the line indicates the standard error. The bar underneath the age plots reflects the derivative of the slope.
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respectively. The performance accuracy achieved by the classifier
on the independent confirmatory dataset was 73%. In contrast to
prior studies [12, 38, 53], we successfully built a model with
promising predictive performance for new data. Our findings
suggest that ComBat is not only useful to increase statistical
power [55, 57, 74] but also crucial for improving the accuracy in
building a machine learning model out of multisite data. As
expected, the majority of CHR-PS- and CHR-UNK individuals were
classified as HCs. Moreover, no significant associations were found
between the predict probability and sex or IQ, or antipsychotics
use for each CHR group. We suggest that a machine learning
classifier trained to identify differences between CHR-PS+ and

healthy controls may be helpful to identify UHR individuals at risk
for conversion.
In line with prior studies of cortical alterations in CHR

[11, 37–39, 43], we found that the pattern of SA features,
including the superior temporal, insula, superior frontal, superior
parietal, fusiform, isthmus of cingulate, and parahippocampal gyri,
contributed to identifying CHR-PS+ from HCs (Fig. 2A, Fig. 4).
These findings align with previous work reporting (right) superior
temporal gyrus functional alterations may underlie deficits in
(non-)emotional multisensory integration in schizophrenia
patients [81] and working memory-related dysfunction in CHR
[82]. CHR individuals who converted or presented with greater

Fig. 3 Surface area feature contributions and predictive performance comparisons of the XGBoost classifier. A Weighted surface area
features of XGBoost classification in Desikan-Killiany atlas. B Predictive performance of HC and CHR-PS+ groups was evaluated using the
independent confirmatory dataset, and CHR-PS- and CHR-UNK groups using the independent group dataset. C Box and scatter plot of predict
probabilities of XGBoost. P-values of post hoc comparisons were corrected using a Bonferroni method (***p < 0.001, **p < 0.01, *p < 0.05).
D Best fit for the association of age with the predict probability in a GAM. Shading around the line indicates the standard error. E Decision
curve analysis showed the benefits of XGBoost predicting the risk of psychosis conversion according to MRI scan.
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clinical symptom within a 2-year follow-up exhibited smaller SA in
the rostral anterior cingulate, lateral and medial prefrontal regions,
and parahippocampal gyrus [11]. SA is more closely related to
volume than cortical thickness [24], and the volume of the isthmus
of cingulate gyrus has been reported to be different in resilient
and non-resilient CHR individuals [39]. The neuroanatomical
alteration/ deviance pattern of SA found in the current study
between HCs and CHR-PS+ groups are consistent with findings
from other studies, which implicate the volume of superior
temporal, frontal and fusiform regions in CHR transitions [27, 38]
and schizophrenia [29, 41, 42]. Our initial ENIGMA CHR study
showed the differences mainly in CT, and for two regions (i.e., the
paracentral lobule and fusiform gyrus), the non-linear pattern of
the age trajectory differed between HC and CHR [27, 83]. However,
the former study was focused on the statistical significance, and
the current study is focused on predictive performance. As
traditional significance approaches do not capture predictive
variable sets [84], resulting in SA serving better building a
predictive model. It is possible that the current study engineered
the features that made the differences in SA more prominent, by
using GAM to estimate the brain age gap in a non-linear manner.
Moreover, as the result of GAM eliminating the non-linear
adolescent development of SA in differentiating HCs and CHR-
PS+, our classifier achieved promising generalization of predictive
performance.
Although we did not find any difference in predict probability

between APSS, BLIPS, or GRDS status, it is important to note that
previous studies demonstrated CHR subgroup-specific changes in
sMRI metrics [85], such as subcortical volume reductions in left
anterior frontal, right caudate, right hippocampus, and amygdala
in CHR with a genetic risk, while CHR with attenuated psychotic
symptoms exhibited right middle temporal cortical reduction [86].
Moreover, studies have shown that transition rates may differ
between CHR subgroups [87]. These findings underscore the
importance of using adequate sampling of CHR participants across
subgroups and different clinical stages. Such efforts may result in
more accurate predictive models in the future.
The predict probability given by the classifier based on the

neuroanatomical deviance showed significant differences among
the HC or CHR-UNK, CHR-PS-, and CHR-PS+ groups at baseline

(HC, CHR-UNK > CHR-PS- > CHR-PS+; Fig. 3C). The results suggest
that predict probability is a useful index allowing us to better
understand how neuroanatomical deviance is associated with
psychosis conversion. This further implies that the neuroanatomi-
cal deviance was already observed at baseline in CHR-PS+ group.
Moreover, in contrast to previous working reporting a positive
association between age conversion rates [83], our observed
association between predict probability and age (Fig. 3D) could
suggest that the likelihood of a HC prediction increases with age.
One possibility for this finding is the distribution of age across
groups. Specifically, participants older than 30 years old were
sparsely distributed in all groups in the current study, which may
result in spurious associations between age and predict prob-
ability. To understand the exact nature of the association between
age and predict probability, more data of CHR participants of older
ages is necessary. These results suggest that psychosis-related
brain characteristics may decrease according to brain develop-
ment which may effect on the onset of psychosis.
Our study has several limitations. First, to harmonize site effects,

ComBat was applied to both HC and CHR subjects which by
assuming a common covariate model (that is typically preserved
by ComBat) might potentially lead to an information leak [88].
However, without traveling subject harmonization, ComBat was
considered the most appropriate method for testing a classifier on
individual samples from multi-site datasets [41–43]. Second, we
could not test the effect of psychosis-by-age interaction on the
predict probability as longitudinal MRI data were not available.
Longitudinally tracking neuroanatomical changes around the
onset of psychosis would offer more detailed information to
understand the progressive brain pathology. Third, substance use
of cannabis or alcohol was not available for the current study
which is reported associated with increased risk of developing
depression in young adulthood [89]. Fourth, while we note that a
classifier that can distinguish between CHR-PS+ and CHR-PS-
status is clinically useful, we did not explicitly train our classifier to
distinguish between CHR-PS+ and CHR-PS-. Previous work
suggests that the magnitude of differences in MRI metrics
between CHR-PS+ and CHR-PS- are small. Although there exist
no well-validated methods to decide on the minimal sample size
to create a reliable classifier, considering these subtle differences,

Fig. 4 Age association of the surface area in the right superior temporal gyrus. Each graph shows a GAM fit of age, group, and age by
group interaction. Shading around the line indicates the standard error.
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the sample size of CHR-PS+ may likely be insufficient. Increased
availability of CHR data may enable the development of such a
classifier in the future.
In conclusion, we successfully trained a 2-class XGBoost

classifier (HC versus CHR-PS+) and showed promising predictive
performance on a multi-site dataset after considering age and sex
differences. This classifier successfully identified 73% of CHR-PS-
individuals as HC, and further 80% of CHR individuals who were
not follow-up for the onset. These results suggest that when
considering adolescent brain development, baseline MRI scans for
CHR individuals may be helpful to identify their prognosis.
Especially, the superior temporal, insula, superior frontal areas
contributed most in differentiating CHR-PS+ from HCs. In light
previous work reporting that alterations in these regions have
implicated in psychosis onset, these areas could be informative in
improving understanding of pathophysiology linked to psychosis
onset. Future prospective studies are required about what and
how the psychosis-related brain characteristics change according
to the adolescent development, and whether the classifier could
be helpful in the clinical settings.

CODE AVAILABILITY
The Python code used to build the classifier is openly available on GitHub: https://
github.com/yh-zhu/MolPsy_2024_ENIGMA.git.
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