105 research outputs found

    Deformation behaviour of ion-irradiated FeCr : A nanoindentation study

    Get PDF
    Understanding the mechanisms of plasticity in structural steels is essential for the operation of next-generation fusion reactors. This work on the deformation behaviour of FeCr, focusses on distinguishing the nucleation of dislocations to initiate plasticity, from their propagation through the material. Fe3Cr, Fe5Cr, and Fel OCr were irradiated with 20 MeV Fe3+ ions at room temperature to doses of 0.008 dpa and 0.08 dpa. Nanoindentation was then carried out with Berkovich and spherical indenter tips. Our results show that the nucleation of dislocations is mainly from pre-existing sources, which are not significantly affected by the presence of irradiation defects or Cr%. Yield strength, an indicator of dislocation mobility, increases with irradiation damage and Cr content, while work hardening capacity decreases mainly due to irradiation defects. The synergistic effects of Cr and irradiation damage in FeCr appear to be more important for the propagation of dislocations than for their nucleation.Peer reviewe

    Two-step implantation of gold into graphene

    Get PDF
    As a one-atom thick, mechanically strong, and chemically stable material with unique electronic properties, graphene can serve as the basis for a large number of applications. One way to tailor its properties is the controlled introduction of covalently bound heteroatoms into the lattice. In this study, we demonstrate efficient implantation of individual gold atoms into graphene up to a concentration of 1.7 x 10(11) atoms cm(-2) via a two-step low-energy ion implantation technique that overcomes the limitation posed by momentum conservation on the mass of the implanted species. Atomic resolution scanning transmission electron microscopy imaging and electron energy-loss spectroscopy reveal gold atoms occupying double vacancy sites in the graphene lattice. The covalently bound gold atoms can sustain intense electron irradiation at 60 kV during the microscopy experiments. At best, only limited indication of plasmonic enhancement is observed. The method demonstrated here can be used to introduce a controlled concentration of gold atoms into graphene, and should also work for other heavier elements with similar electronic structure.Peer reviewe

    Direct observation of mono-vacancy and self-interstitial recovery in tungsten

    Get PDF
    Reliable and accurate knowledge of the physical properties of elementary point defects is crucial for predictive modeling of the evolution of radiation damage in materials employed in harsh conditions. We have applied positron annihilation spectroscopy to directly detect mono-vacancy defects created in tungsten through particle irradiation at cryogenic temperatures, as well as their recovery kinetics. We find that efficient self-healing of the primary damage takes place through Frenkel pair recombination already at 35 K, in line with an upper bound of 0.1 eV for the migration barrier of self-interstitials. Further self-interstitial migration is observed above 50 K with activation energies in the range of 0.12-0.42 eV through the release of the self-interstitial atoms from impurities and structural defects and following recombination with mono-vacancies. Mono-vacancy migration is activated at around 550 K with a migration barrier of E-m(V) = 1.85 +/- 0.05 eV. (C) 2019 Author(s).Peer reviewe

    Low-Temperature Plasma-Enhanced Atomic Layer Deposition of SiO2 Using Carbon Dioxide

    Get PDF
    In this work, we report the successful growth of high-quality SiO2 films by low-temperature plasma-enhanced atomic layer deposition using an oxidant which is compatible with moisture/oxygen sensitive materials. The SiO2 films were grown at 90 degrees C using CO2 and Bis(tertiary-butylamino)silane as process precursors. Growth, chemical composition, density, optical properties, and residual stress of SiO2 films were investigated. SiO2 films having a saturated growth-per-cycle of similar to 1.15 angstrom/cycle showed a density of similar to 2.1g/cm(3), a refractive index of similar to 1.46 at a wavelength of 632nm, and a low tensile residual stress of similar to 30MPa. Furthermore, the films showed low impurity levels with bulk concentrations of similar to 2.4 and similar to 0.17at. % for hydrogen and nitrogen, respectively, whereas the carbon content was found to be below the measurement limit of time-of-flight elastic recoil detection analysis. These results demonstrate that CO2 is a promising oxidizing precursor for moisture/oxygen sensitive materials related plasma-enhanced atomic layer deposition processes.Peer reviewe

    Characterising Ion-Irradiated FeCr : Hardness, Thermal Diffusivity and Lattice Strain

    Get PDF
    Ion-irradiated FeCr alloys are useful for understanding and predicting neutron damage in the structural steels of future nuclear reactors. Previous studies have largely focused on the structure of irradiation induced defects, probed by transmission electron microscopy (TEM), as well as changes in mechanical properties. Across these studies, a wide range of irradiation conditions has been employed on samples with different processing histories, which complicates the analysis of the relationship between defect structures and material properties. Furthermore, key properties, such as irradiation-induced changes in thermal transport and lattice strain, are little explored. Here we present a systematic study of Fe3Cr, Fe5Cr and Fe10Cr binary alloys implanted with 20 MeV Fe3+ ions to nominal doses of 0.01 dpa and 0.1 dpa at room temperature. Nanoindentation, transient grating spectroscopy (TGS) and X-ray micro-beam Laue diffraction were used to study the changes in hardness, thermal diffusivity and strain in the material as a function of damage and Cr content. Our results suggest that Cr leads to an increased retention of irradiation-induced defects, causing substantial changes in hardness and lattice strain. However, thermal diffusivity varies little with increasing damage and instead degrades significantly with increasing Cr content in the material. We find significant lattice strains even in samples exposed to a nominal displacement damage of 0.01 dpa. The defect density predicted from the lattice strain measurements is significantly higher than that observed in previous TEM studies, suggesting that TEM may not fully capture the irradiation-induced defect population. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    Microstructural and material property changes in severely deformed Eurofer-97

    Full text link
    Severe plastic deformation changes the microstructure and properties of steels, which may be favourable for their use in structural components of nuclear reactors. In this study, high-pressure torsion (HPT) was used to refine the grain structure of Eurofer-97, a ferritic/ martensitic steel. Electron microscopy and X-ray diffraction were used to characterise the microstructural changes. Following HPT, the average grain size reduced by a factor of \sim 30, with a marked increase in high-angle grain boundaries. Dislocation density also increased by more than one order of magnitude. The thermal stability of the deformed material was investigated via in-situ annealing during synchrotron X-ray diffraction. This revealed substantial recovery between 450 K - 800 K. Irradiation with 20 MeV Fe-ions to \sim 0.1 dpa caused a 20% reduction in dislocation density compared to the as-deformed material. However, HPT deformation prior to irradiation did not have a significant effect in mitigating the irradiation-induced reductions in thermal diffusivity and surface acoustic wave velocity of the material. These results provide a multi-faceted understanding of the changes in ferritic/martensitic steels due to severe plastic deformation, and how these changes can be used to alter material properties.Comment: 59 pages, 19 figure

    Dose and compositional dependence of irradiation-induced property change in FeCr

    Full text link
    Ferritic/martensitic steels will be used as structural components in next generation nuclear reactors. Their successful operation relies on an understanding of irradiation-induced defect behaviour in the material. In this study, Fe and FeCr alloys (3-12%Cr) were irradiated with 20 MeV Fe-ions at 313 K to doses ranging between 0.00008 dpa to 6.0 dpa. This dose range covers six orders of magnitude, spanning low, transition and high dose regimes. Lattice strain and hardness in the irradiated material were characterised with micro-beam Laue X-ray diffraction and nanoindentation, respectively. Irradiation hardening was observed even at very low doses (0.00008 dpa) and showed a monotonic increase with dose up to 6.0 dpa. Lattice strain measurements of samples at 0.0008 dpa allow the calculation of equivalent Frenkel pair densities and corrections to the Norgett-Robinson-Torrens (NRT) model for Fe and FeCr alloys at low dose. NRT efficiency for FeCr is 0.2, which agrees with literature values for high irradiation energy. Lattice strain increases up to 0.8 dpa and then decreases when the damage dose is further increased. The strains measured in this study are lower and peak at a larger dose than predicted by atomistic simulations. This difference can be explained by taking temperature and impurities into account.Comment: 49 pages, 9 figures, 3 table

    Hydroxyethyl cellulose matrix applied to serial crystallography

    Get PDF
    Serial femtosecond crystallography (SFX) allows structures of proteins to be determined at room temperature with minimal radiation damage. A highly viscous matrix acts as a crystal carrier for serial sample loading at a low flow rate that enables the determination of the structure, while requiring consumption of less than 1 mg of the sample. However, a reliable and versatile carrier matrix for a wide variety of protein samples is still elusive. Here we introduce a hydroxyethyl cellulose-matrix carrier, to determine the structure of three proteins. The de novo structure determination of proteinase K from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of the praseodymium atom was demonstrated using 3,000 diffraction images. ? 2017 The Author(s).113Ysciescopu

    Intercalation of Lithium Ions from Gaseous Precursors into beta-MnO2 Thin Films Deposited by Atomic Layer Deposition

    Get PDF
    LiMn2O4 is a promising candidate for a cathode material in lithium-ion batteries because of its ability to intercalate lithium ions reversibly through its three-dimensional manganese oxide network. One of the promising techniques for depositing LiMn2O4 thin-film cathodes is atomic layer deposition (ALD). Because of its unparalleled film thickness control and film conformality, ALD helps to fulfill the industry demands for smaller devices, nanostructured electrodes, and all-solid-state batteries. In this work, the intercalation mechanism of Li+ ions into an ALD-grown beta-MnO2 thin film was studied. Samples were prepared by pulsing (LiOBu)-Bu-t and H2O for different cycle numbers onto about 100 nm thick MnO2 films at 225 degrees C and characterized with X-ray absorption spectroscopy, X-ray diffraction, X-ray reflectivity, time-of-flight elastic recoil detection analysis, and residual stress measurements. It is proposed that forPeer reviewe

    Comparative study of deuterium retention and vacancy content of self-ion irradiated tungsten

    Get PDF
    Self-ion irradiation of pure tungsten with 2 MeV W ions provides a way of simulating microstructures generated by neutron irradiation in tungsten components of a fusion reactor. Transmission electron microscopy (TEM) has been used to characterize defects formed in tungsten samples by ion irradiation. It was found that tungsten irradiated to 0.85 dpa at relatively low temperatures develops a characteristic microstructure dominated by dislocation loops and black dots. The density and size distribution of these defects were estimated. Some of the samples exposed to self-ion irradiation were then implanted with deuterium. Thermal Desorption Spectrometry (TDS) analysis was performed to estimate the deuterium inventory as a function of irradiation damage and deuterium release as a function of temperature. Increase of inventory with increasing irradiation dose followed by slight decrease above 0.1 dpa was found. Application of Positron Annihilation Spectroscopy (PAS) to self-irradiated but not deuterium implanted samples enabled an assessment of the density of irradiation defects as a function of exposure to highenergy ions. The PAS results show that the density of defects saturates at doses in the interval from 0.085 to 0.425 displacements per atom (dpa). These results are discussed in the context of recent theoretical simulations exhibiting the saturation of defect microstructure in the high irradiation exposure limit. The saturation of damage found in PAS agrees with the simulation data described in the paper. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )Peer reviewe
    corecore