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Graphical Abstract

Abstract

Ion-irradiated FeCr alloys are useful for understanding and predicting neutron-damage

in the structural steels of future nuclear reactors. Previous studies have largely focused on

the structure of irradiation-induced defects, probed by transmission electron microscopy

(TEM), as well as changes in mechanical properties. Across these studies, a wide range

of irradiation conditions has been employed on samples with different processing histories,

which complicates the analysis of the relationship between defect structures and material

properties. Furthermore, key properties, such as irradiation-induced changes in thermal

transport and lattice strain, are little explored.
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Here we present a systematic study of Fe3Cr, Fe5Cr and Fe10Cr binary alloys im-

planted with 20 MeV Fe3+ ions to nominal doses of 0.01 dpa and 0.1 dpa at room temper-

ature. Nanoindentation, transient grating spectroscopy (TGS) and X-ray micro-beam Laue

diffraction were used to study the changes in hardness, thermal diffusivity and strain in the

material as a function of damage and Cr content. Our results suggest that Cr leads to an

increased retention of irradiation-induced defects, causing substantial changes in hardness

and lattice strain. However, thermal diffusivity varies little with increasing damage and

instead degrades significantly with increasing Cr content in the material. We find signifi-

cant lattice strains even in samples exposed to a nominal displacement damage of 0.01 dpa.

The defect density predicted from the lattice strain measurements is significantly higher

than that observed in previous TEM studies, suggesting that TEM may not fully capture the

irradiation-induced defect population.

Keywords: FeCr alloys, ion-irradiation, nanoindentation, thermal diffusivity, lattice strain

Introduction

In next-generation fusion and fission reactors, reduced activation ferritic/martensitic (RAFM)

steels are likely to be used as the main structural material [1]. They are chosen for their high

thermal conductivity and resistance to swelling compared to austenitic steels [2]. In service,

the steel components will be exposed to temperatures up to 550◦C and intense irradiation by 14

MeV fusion neutrons [3]. For the optimisation of steel composition and operational safety, it is

important to understand the defects formed and the microstructural changes due to irradiation,

and the associated changes in thermomechanical properties.

To gain fundamental insight into the damage and defect population in steels due to irradi-

ation, the study of iron-chromium (FeCr) binary alloys is useful, as it eliminates microstruc-

tural complications from other alloying elements. Ion implantation has become a widely used

method to mimic neutron damage without the time and activation disadvantages of using neu-

trons in fission reactors [4, 5, 6]. Several past studies [7, 8, 9, 10] have shown the effective use

of such ion-irradiated binary alloys with a range of Cr content to simulate the neutron irradiation

conditions at various stages of component lifetime on differently composed steels.

There have been a number of transmission electron microscopy (TEM) investigations con-

ducted on ion-irradiated FeCr alloys to directly image irradiation-induced defects. Ion- implan-

tation causes defects mainly in the form of dislocation loops, of both vacancy and interstitial

types [8, 11, 12]. Many studies have found that a ‘threshold dose’ of around 0.01 dpa is re-

quired before visible defects appear [11, 13, 14]. This has been attributed to the need for an
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overlap of damage cascades before they form visible defect loops [8, 15]. However, a more

recent study has found visible damage in TEM from damage as low as 0.0015 dpa [16]. Higher

damage results in the coalescence of loops as well as loop aggregation to form more complex

microstructures such as loop strings [12]. Cr has been observed to reduce loop mobility, leading

to a higher number density of observable defects with smaller sizes compared to the case of pure

Fe [9, 12]. Irradiation temperature has also been observed to affect defect accumulation, with

irradiation at 500◦C resulting in larger loops of only b = 1
2
〈100〉 whereas 300◦C irradiation, at

the same dose, produced smaller loops mostly with b = 1
2
〈111〉 [8].

The effects of irradiation-induced defects on the mechanical properties of FeCr alloys have

been studied with nanoindentation. Irradiation hardening has been observed in FeCr, and the

amount of hardening increases with Cr content following irradiation at room temperature [17].

It has also been reported that the hardening effect saturates at damage above 2 dpa for Cr con-

tent greater than 5% [10]. Another study found that hardness saturates at 1 dpa and above for

Cr content > 9% [17]. Both of these studies were conducted with an irradiation temperature

of 300◦C. It has also been found that hardening actually decreases with increasing dose rate,

between 3 × 10−5 to 6 × 10−4 dpa/s, for FeCr alloys, which has been attributed to the clus-

tering of Cr into precipitates [18]. However, many of the existing TEM and nanoindentation

studies on ion-irradiated FeCr were conducted on samples with different composition and pro-

cessing history, as well as under different nominal irradiation conditions (total damage, dose

rate and implantation temperature). As such, it is currently unclear how well these results can

be compared and correlated with each other.

There are other important material properties that have not been extensively studied for

ion-implanted FeCr. For example, it is crucial to study the effect of irradiation on the thermal

diffusivity of FeCr as this will give a more accurate prediction of the temperatures expected for

different reactor structural components and the amount of cooling required for safe operation.

Little is currently known about the effects of irradiation on the thermal properties of Fe-based

alloys, with one study finding negligible changes to the thermal conductivity of ASTM A533

grade B class 1 steel (ferritic) after neutron irradiation with 2.4 ×1023 n/m2 (∼ 0.036 dpa) [19].

However, in tungsten, another BCC metal commonly studied under fusion-relevant conditions,

self-ion irradiation to damage levels as low as 0.1 dpa has resulted in a 55% degradation in

thermal diffusivity [20]. The degradation in thermal properties results from irradiation defects

in the material lattice acting as electron scattering sites [21]. An interesting observation is

that the defects observed with TEM do not account for all the measured changes to thermal
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diffusivity in tungsten, suggesting that small defects that TEM is not sufficiently sensitive to

probe, have a significant effect on thermal and material properties following irradiation [22].

Irradiation-induced lattice swelling, and the associated stresses and strains, must also be

considered for the design of structural reactor components [23, 24]. Previous experiments

conducted on helium-implanted tungsten found large irradiation-induced strains and suggested

higher defect retention per injected ion at lower doses [25]. This shows that not only is lattice

strain important to consider for reactor materials, but also that the effect of dose and dam-

age history can significantly alter the damage response of a material. There has been many

studies conducted on neutron and ion-irradiation induced void swelling in steels and FeCr

[26, 27, 28, 29, 30]. They have examined macroscopic swelling, often resulting in volumet-

ric changes to the material, caused by the formation of voids and cavities, >10 nm in diameter,

after irradiation damage of tens to hundreds of dpa. This is different from the study of lattice

swelling, which examines the microscopic strain induced by atomic defects [31, 32], and to

date, little is known about the lattice swelling and strains in ion-irradiated FeCr.

Here we address these open questions with a systematic study of FeCr with different Cr

concentrations (3, 5 and 10 wt% Cr) subjected to different irradiation damage levels, from

0.01 dpa to 0.1 dpa, at room temperature. Experimental characterisation of hardness, thermal

diffusivity and lattice strain are conducted and the resultant trends discussed in terms of the

underlying damage microstructure.

Methods and materials

Materials and preparation

High purity polycrystalline samples of FeCr containing 3, 5 and 10 wt% Cr respectively were

produced under the European Fusion Development Agreement (EFDA) programme (contract

no. EFDA-06-1901) [33, 34]. The alloys were prepared by induction melting under a pure

argon atmosphere, then forging at 1150◦C. This was followed by a cold reduction of 70% and

heat treatment for 1 hour at 750◦C for Fe3Cr and Fe5Cr, and at 800◦C for Fe10Cr. The materials

were then air cooled and delivered in the recrystallised state. The impurity content of the alloys

is included in Appendix A. The alloy bars were sectioned with a diamond saw into samples

∼ 5× 5× 0.7 mm3 in size.

The sample surfaces were mechanically ground with SiC paper, diamond suspension, then

colloidal silica (0.04 µm). The final polishing step was electropolishing with 5% perchloric acid
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in ethanol at -40◦C, using a voltage of 28 V and current of 0.3 A. The polishing time was on the

order of 3 - 4 minutes, depending on the composition, until the surface deformation accumulated

from the previous polishing steps had been removed. This was determined by visual assessment

under optical microscopy. An unimplanted reference sample was retained for each Cr content,

and ion implantation was performed for the remaining samples.

Ion implantation

The samples were implanted with 20 MeV Fe3+ ions at room temperature using a 5 MV tandem

accelerator at the Helsinki Accelerator Laboratory. The beam size was approximately 5 mm and

was rastered over a sample area of 10 × 10 mm2 to achieve uniform implantation across the

surface. The implantation chamber was held under vacuum at 8× 10−7 mbar.

Figure 1 shows the damage profile calculated using the Stopping and Range of Ions in Matter

(SRIM) code [35] using the Quick K-P calculation model with Fe ions and pure Fe as the target,

with a displacement energy of 30 eV [36]. Cr has a similar displacement energy and density

to Fe and molecular dynamics simulations have shown that there are no significant differences

between the threshold displacement energies in FeCr and pure Fe [37]. Therefore the same

damage profile is assumed for all samples of the same irradiation condition.

Two different fluences, 5.3× 1013 cm−2 and 5.3× 1014 cm−2 were used to achieve an aver-

age damage level of 0.01 dpa and 0.1 dpa, respectively, in the first 2 µm below the surface. This

depth was chosen to calculate the nominal damage as it is before the sharp increase in damage

level at the end of the implantation range (see Figure 1). These will be referred to as the ‘nomi-

nal damage level’ from here onwards. The samples of different Cr composition were implanted

at the same time for each nominal damage level at a dose rate of 2× 10−5 dpa s−1. We took ad-

vantage of the graduated damage profile when using depth-resolved techniques (discussed later

in Micro-beam Laue Diffraction), allowing for a range of damage levels between 0 to 1 dpa to

be probed. The damage level for a specific depth will be referred to as the ‘damage-at-depth’.

Nanoindentation

Nanoindentation was performed on a MTS Nano Indenter XP with a Berkovich tip calibrated

on fused silica with a known elastic modulus of 72 GPa. Continuous stiffness measurements

(CSM) were made to a depth of 1 µm below the surface. Indents were made at a strain rate of

0.05 s−1, a CSM frequency of 45 Hz and harmonic amplitude of 2 nm. At least 7 indents were
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Figure 1: Damage profiles (solid lines) predicted by SRIM for the two nominal damage levels

of 0.01 dpa (red) and 0.1 dpa (black), which is the average damage in the first 2 µm below

the surface. Also shown are the calculated injected ion concentrations (dashed lines) from the

implantation.

performed on each sample, on grains within 10◦ of {001} out-of-plane orientation, identified

with EBSD before nanoindentation. Indents were spaced at least 50 µm from each other and

grain boundaries.

Transient Grating Spectroscopy

Transient Grating Spectroscopy (TGS) is able to provide rapid and non-destructive measure-

ments of thermal diffusivity in thin surface layers. The technique is described in detail in

[20, 38, 39, 40]. Two short laser pulses (pump beams of 0.5 ns at 532 nm) are directed at

the surface of the sample at a fixed angle forming an interference pattern with a specific wave-

length, λ, on the sample surface. At the positions of constructive interference, the energy of

the lasers is absorbed by the sample and causes local thermal expansion, which creates a spatial

displacement grating on the surface. As the heat diffuses from maxima to minima, and into the

material bulk, the transient thermal grating decays. This response can be measured by diffract-

ing a second laser beam (probe beam, continuous at 559.5 nm) off the ‘transient’ grating on the

sample surface. The decay of the diffracted signal intensity can be interpreted in terms of the

thermal diffusivity of the material. The thickness of the probed layer is approximately λ
π

[40].
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In this study, a grating wavelength of λ = 5.707 ± 0.001 µm was used to obtain a probed

depth of approximately 2 µm, in order to study the irradiated layer. The average pump beam

power was 1.5 mW operating at 1 kHz, and the probe beam power was 22 mW, at 1 kHz with

a 25% duty cycle. The reflectivity of pure Fe for this wavelength is ∼50% [41, 42]. This

corresponds to an approximate absorbed energy of 0.75 mW and 11 mW from the pump and

the probe beams respectively. The pump beam and probe sizes were respectively 140 µm and

90 µm (1/e2 width). 25 spot measurements were made on each sample across an area of 1 mm2.

At each location, 20000 laser pulses, and the corresponding signal traces, were recorded. The

measurements were performed at room temperature under vacuum (∼ 1× 10−3 mbar).

Micro-beam Laue Diffraction

Lattice swelling in the implanted layer of the FeCr samples was measured using micro-beam

Laue diffraction at the 34-ID-E beamline, Advanced Photon Source, Argonne National Labo-

ratory, USA. Using the Differential Aperture X-ray Microscopy (DAXM) technique, described

in [25, 43, 44], depth-resolved lattice strain measurements were made. A thin platinum wire

was scanned across the sample surface during the measurements. The diffraction patterns from

subsequent positions of the wire were compared, with the wire edge positions acting as the ‘dif-

ferential aperture’, allowing for the resolution of signals from different depths. Measurements

were made to allow reconstruction of signals from as deep as 15 µm below the surface along the

beam’s penetration direction (45◦ to the sample surface). The size of the beam on the sample

surface was approximately 400×200 nm2 and the depth resolution was estimated to be ∼1 µm.

On each sample, grains within 10◦ of {001} out-of-plane orientation, previously identified

with EBSD, were measured by diffraction of a monochromatic X-ray beam. At least 2 points

were measured on each sample, except for Fe3Cr 0.1 dpa where only 1 point was measured as

strong material texture restricted the number of grains with the desired orientation. A {00n}

reflection with energy between 12 - 18 keV was selected and scanned across an average photon

energy range of ∼40 eV with a step size of 1 eV. Only the out-of-plane strain was measured

as previous experiments on tungsten found that the in-plane strains from ion implantation are

close to zero [25, 31]. Analysis of the diffraction patterns was performed with the LaueGo [45]

to extract lattice strain as a function of depth in the sample.
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Results and Discussion

Irradiation Hardening
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Figure 2: Hardness of the samples as a function of indented depth from CSM nanoindentation

measurements. a), b) and c) show data grouped by damage level. The arrows in c) indicate

the depths at which the hardness curve of the corresponding Cr content (same colour) changes

slope. d), e) and f) show data grouped by Cr content. The data shown consist of averaged

hardness from all indents taken on each sample, with the error bars representing ± one standard

deviation. Note that the damage layer as predicted by SRIM calculations extends to a depth of

3.5 µm.

From nanoindentation in CSM mode, hardness as a function of indentation depth was ob-

tained for all the samples (Figure 2). The data shown is an average of all the measurements

taken on each sample and the error bars represent ± one standard deviation from each set of

measurements. The indentation size effect [46], resulting in high hardness values measured

in the first 200 nm below the surface, is very clear in all the measurements. Data from the

unimplanted samples is shown in Figure 2a. The hardness changes smoothly as a function of

depth as expected for a homogenous bulk material. Fe10Cr shows the highest hardness, and the
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difference in hardness between the samples of different Cr content is similar at all depths.

Figure 2b shows that even at a low nominal damage level of 0.01 dpa, there is more spread in

the hardness data for all Cr compositions compared to the undamaged reference samples. Figure

2c compares the effect of Cr at 0.1 dpa and it can be seen that Fe5Cr has hardened substantially

more than Fe3Cr, up to 0.3 GPa more at a depth of 300 nm, considering the hardness values of

the corresponding unirradiated samples are the same.

A change in the slope of the hardness plots as a function of indentation depth is observed

after 0.1 dpa of nominal damage for all Cr compositions. This feature is visible in Fe10Cr at

around 750 nm, and Fe5Cr and Fe3Cr at 550 nm and 570 nm respectively (see arrows in Figure

2c). The depth at which the slope of the curve changes (hc) is thought to correspond to the

indentation depth at which the plastic zone extends into the unimplanted bulk material, which

is softer [47]. The greater hc is, the shallower the plastic zone ahead of the indenter tip is. The

Johnson model of plastic zone size gives [48]:

c

as
=

(

2E

3σys

)1/3

(1)

where c is the radius of the plastic zone, as is the radius of the indenter imprint, E is the

elastic modulus and σys is the yield stress. This model was originally developed for a spherical

indenter but it has been demonstrated to be valid for a Berkovich indenter if we substitute the

ratio c
as

with
zp
h

where zp is the depth of the plastic zone directly beneath the indenter at an

indentation depth h [49].

For FeCr, the elastic modulus does not change significantly with Cr content for Cr content

< 20% [50, 51] and this is also seen in our measurements in Appendix B. It has also been found

that the yield stress of FeCr is proportional to indentation hardness [17]. The hardness measure-

ments in Figure 2a indicate that yield stress increases with Cr content. Therefore the ratio
zp
h

is

expected to decrease with Cr content, which agrees with the current observations. Furthermore,

upon substituting the experimental values into Equation 1, both sides of the equation agree to

within a factor of 3 (raw data included in Appendix C). This gives further confidence in the use

of the Johnson model to explain our experimental observations.

Figure 2d, shows quite clearly for Fe3Cr that, due to the change in the hardness slope at

shallow depths (around 550 nm), the hardness values for 0.1 dpa of nominal damage are already

approaching the 0.01 dpa values at 1000 nm. The Fe5Cr samples (Figure 2e) and Fe10Cr

samples (Figure 2) both show greater difference in hardness at all depths between different

levels of damage than Fe3Cr. The difference in hardness at the greatest indentation depth of 1
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µm increases with Cr content.
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Figure 3: The absolute change in hardness (∆H) compared to the undamaged samples of each

composition. The dotted lines indicate the depth at which ∆H is maximum (hc) for samples

with 0.01 dpa of nominal damage (filled circles) and the dashed lines indicate hc for samples

with 0.1 dpa of nominal damage (unfilled diamonds).

Figure 3 shows the change in hardness (∆H), calculated as the difference between the

irradiated samples and their corresponding undamaged counterpart of the same composition,

as a function of indentation depth. For Fe5Cr and Fe10Cr, there is a clear peak in ∆H at hc for

samples of both damage levels. For both Fe5Cr and Fe10Cr, hc is greater at 0.1 dpa of nominal

damage than 0.01 dpa. Considering the 0.1 dpa samples are harder than 0.01 dpa, this suggests

lower yield stress in 0.01 dpa samples [17]. Using the Johnson model [48], lower yield stress

would correspond to larger plastic zone in the indented material, which qualitatively agrees with

the findings of lower hc in the 0.01 dpa samples compared to 0.1 dpa. The ∆H vs. indentation

depth curves of Fe3Cr damaged to 0.01 dpa may exhibit a slightly larger hc value than the 0.1

dpa damaged sample, however, this is harder to discern compared to the case of Fe5Cr and

Fe10Cr. As such, it has not been considered for analysis with the Johnson model.

Figure 4 shows depth-averaged hardness values (300 to 600 nm) for all samples, with the

error bars representing ± one standard deviation. This depth region was selected as it is deeper

than the region dominated by the indentation size effect but below hc, representing the hardness

in the irradiated layer. All samples exhibit irradiation hardening following implantation and the
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Figure 4: Average hardness values for each sample averaged between indentation depths of 300

to 600 nm for Fe3Cr (red), Fe5Cr (blue) and Fe10Cr (black) at each damage level. Error bars

represent ± one standard deviation from the measurements taken on each sample.

hardness value at each damage level increases with Cr content. This is consistent with findings

for up to 1 dpa of damage at room temperature for Fe2.5Cr, Fe9Cr and Fe12Cr [17].

It can be seen that the amount of hardening relative to the undamaged samples of the same

composition is higher for Fe5Cr and Fe10Cr than for Fe3Cr at 0.1 dpa of nominal damage. The

relative hardness increase for Fe3Cr, Fe5Cr and Fe10Cr is respectively 36%, 48% and 46%.

This agrees with previous nanoindentation measurements of 1 dpa damaged samples [17] and

suggests a greater retention of defects at higher Cr content. This is also consistent with TEM

findings of reduced defect mobility and increased number density of defects with increasing Cr

content [9, 12].

We also note that the amount of hardening between 0.01 dpa and 0.1 dpa of nominal damage

is greater for Fe5Cr and Fe10Cr than Fe3Cr. This agrees with findings from previous studies

where hardening increased with Cr content from 2.5%Cr to 12.5%Cr following room tempera-

ture irradiation [17]. Hardie et al. [10] found that hardening increases slightly with Cr content

at low dose (∼2 dpa) but at a higher dose (∼6 dpa), samples with Cr content <7% exhibited

much more irradiation hardening. However, these studies were performed with an irradiation

temperature of 300◦C and at a higher damage level than those in the present study. As such, it
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would be of interest in follow up studies to conduct room temperature irradiation to a higher

damage level in order to compare differences in hardening for different Cr content.
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Figure 5: a) The average thermal diffusivity values for undamaged samples (black circles). The

predictions of thermal diffusivity based on the kinetic theory model (blue dashed line) and the

experimental data from other studies on Fe and FeCr (red markers) are also shown. b) Average

thermal diffusivity values for each sample with error bars representing ± one standard deviation

from the 25 measurement points on each sample.

Figure 5a shows the thermal diffusivity, averaged over 25 measurement points, for the un-

damaged samples of different Cr content measured with TGS. The error bars represent ± one

standard deviation computed from the measurement points. For Fe5Cr, the measured value

agrees very well with the literature [52]. For Fe3Cr, the agreement is good (within 10%), a

discrepancy that may be accounted for by some surface oxidation on our material [53] as low

Cr content may be insufficient to prevent oxidation [54]. For the thermal diffusivity of un-

damaged Fe10Cr, there is limited information in existing literature and comparisons were made

with ASM217 alloy (8-10% Cr, 0.2% C and 1% Si)[55] and a Fe11.5Cr alloy (0.4% C and 0.3%

Mn)[56], giving 15% and 25% agreement, respectively. TGS values of thermal diffusivity have

been validated for a number of other material systems [20, 38, 57, 58], which combined with

the agreement with literature values for FeCr, gives confidence in our measurements.
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A trend of decreasing thermal diffusivity with increasing Cr content is observed. This can

be rationalised by considering Cr acting as ‘impurities’ that scatter electrons, decreasing the

electron scattering time τe [59]. We can further analyse this by considering a kinetic theory

model [38] that focuses on the contribution of electrons as the main heat carrier. Matthiessen’s

rule states that the total electron scattering rate σ = 1
τe

is the sum of the scattering rates from

impurities (in this case Cr), phonons and other electrons, as long as the electron mean free

path is larger than the separation between atoms [60, 61]. Focusing on the contributions of Cr

altering the scattering of electrons from the pure Fe case, the thermal diffusivity, α, is [38]:

α =
Ceνf

2

3ρcp

(

cCr

τe,Cr

+
1− cCr

τe,F e

)−1

(2)

where Ce is the electronic heat capacity, νf is the Fermi velocity, ρ is the density and cp is the

specific heat capacity. cCr is the atomic fraction of Cr, τe,F e is the electron scattering time of

pure Fe and τe,Cr is the scattering time of Cr ‘impurities’, which is fitted from experimental

data. τe,F e is calculated from the thermal conductivity of pure Fe κFe [62], given by [63]:

κFe =
1

3
Ceνf

2τe,F e (3)

The values of Ce, νf , ρ, cp and κFe used for the fit are shown in Appendix D. The contri-

bution of Cr to electron scattering can be fitted from our experimental data as τe,Cr = 0.35 fs

compared to τe,F e = 92 fs. This kinetic theory model gives a good fit to the experimental data

at low Cr content, shown in Figure 5a. This is reasonable as the model assumes a dilute alloy.

Figure 5b shows the thermal diffusivity of all the samples, of different Cr content and dam-

age levels. For Fe3Cr, there is no significant change in the thermal diffusivity following ion

implantation. However, for Fe5Cr and Fe10Cr, there is a significant decrease in thermal dif-

fusivity (∼ 8%) after a nominal damage level of 0.1 dpa. This suggests a higher retention of

defects in Fe5Cr and Fe10Cr, which qualitatively agrees with previous TEM observations of Cr

reducing defect mobility [12] and enhancing defect retention [9].

At 0.01 dpa of nominal damage, both the Fe3Cr and Fe10Cr samples show a slight increase

in thermal diffusivity compared to the respective undamaged samples of the same composition,

though still within the error bars. This increase is surprising and the mechanism behind this

is unclear. The only possible explanation is the clustering of Cr with damage but atom probe

tomography measurements have shown that this only occurs at higher damage levels and irradi-

ation temperature (∼ 0.6 dpa at 300◦C) [10, 64]. It is worth noting that the error bars represent

13



the standard deviation of the 25 spot measurements taken on each sample. Therefore, they are

indicative of the variation in measurements on each sample rather than the absolute accuracy of

the measurements themselves.

TGS measurements on self-ion implanted tungsten have shown a 55% decrease in thermal

diffusivity following irradiation, and the effect saturates at 0.1 dpa of damage [20]. It would be

of interest to investigate this for FeCr by conducting TGS measurements on samples damaged

to higher dpa. Given that the decrease in thermal diffusivity at 0.1 dpa of nominal damage is

quite small, this is potentially good news for future reactors as the changes in thermal diffusivity

due to defects may be too small, compared to the effect from the Cr content, to have an impact

on predicted design purposes. However, the effect of alloying impurities on thermal diffusivity

would need to be carefully considered in material design.

Lattice Swelling
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Figure 6: Measurement of average strain as a function of depth perpendicular to the surface

of each sample for each composition (Fe3Cr - red, Fe5Cr - dark blue and Fe10Cr - black) at

a) 0.01 dpa of nominal damage and b) 0.1 dpa of nominal damage. The error bars represent

± one standard deviation, noting that only one measurement was taken for the Fe3Cr 0.1 dpa

sample due to the lack of available grains with {001} out-of-plane orientation. Also shown in

both plots is the predicted strain from injected ions if they all exist as 〈111〉 interstitials in the

lattice (teal line) [31, 65] and the damage profile (dotted purple line), both obtained from SRIM

calculations.
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Figure 6 shows the out-of-plane strains measured in the samples as a function of depth. The

strains are greatest around 2.5−3 µm depth, the region with the highest damage and injected ion

concentration (as predicted by SRIM). The amount of strain rapidly decreases to zero at depths

greater than 5 µm, suggesting that there is little diffusion of defects from the implanted layer

into the bulk. It can also be seen that the strain contribution calculated from the injected ions

of the implantation, assuming they all exist as 〈111〉 interstitial defects in the lattice [31, 65], is

small compared to the measured strain.
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Figure 7: The average measured strain as a function of damage at depth with the vertical error

bars as ± one standard deviation of all the measurements on each sample. The damage-at-depth

values are converted from the depth of the measurements using the damage profile calculated

using SRIM. The horizontal error bars are calculated from the depth uncertainty in the depth

measurements being ±0.5µm.

At each measured depth below the sample surface, the SRIM calculations shown in Figure 1

provide us with a corresponding dpa value (the damage-at-depth). Using these depth-dependent

dpa values, the strain (shown in Figure 6) can be plotted as a function of the damage-at depth.

The resulting plot is shown in Figure 7 for all damage-at-depth levels considered. Fe5Cr ex-

hibits the highest strain compared to Fe3Cr and Fe10Cr which show similar strain values. The

mechanism behind this is unclear. It has been observed in several studies of neutron and self-

ion irradiated FeCr, that for Cr content < 20%, the greatest amount of macroscopic irradiation

void swelling have been found in Fe9Cr [26, 28, 30] and Fe6Cr [27, 29]. We have found lat-
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Cr (wt %) m (×10−5) c (×10−4)
3 4.3 ± 0.5 4.1 ± 0.3

5 5.3 ± 0.5 6.0 ± 0.4

10 8.1 ± 0.4 5.2 ± 0.3

Table 1: Parameters fitted from experimental data to Equation 4.

tice swelling to be greatest at Fe5Cr in this study, which is close to the findings in literature

for macroscopic swelling. However, the effect of Cr on lattice strain and swelling still requires

further investigation.

The increase in strain with damage shows a consistent trend for all compositions, despite

the measurements of damage-at-depth from 0.005 to 0.04 dpa and 0.05 to 0.4 dpa being taken

on separate samples for each composition. The trends observed are qualitatively similar to

the elastic strains measured in ion-irradiated UO2, cubic-ZrO2, MgO and ZrC [66], where the

strains at low damage levels (< 0.5 dpa) could be fitted to the approximated form:

strain = m ∗ ln(dpa) + c (4)

where m corresponds to the rate of strain increase with damage. The constant c offsets the

fitting strain values trending towards negative infinity at low dpa in this approximated logarithm

form. The values of the fit are shown in Table 1. The rate of strain increase, m, is higher for

larger Cr content suggesting higher defect retention with increasing Cr content, which agrees

with TEM findings [8, 9, 12].

From simulations of BCC Fe at T = 0 K [67], it has been observed at low damage levels

(∼ 0.01 dpa) that Frenkel pairs form, but there is little clustering, leading to a rapid increase in

total defect number density. With increasing damage (up to 0.5 dpa), the interstitials begin to

cluster into loops and the growth in the number density of defects slows down. Then at even

higher levels of damage (> 2.5 dpa), extended dislocation networks are formed, reducing the

number of isolated interstitials. It is likely that our experimental observations span the first two

stages of defect evolution. We observe a rapid increase in strain at lower damage ∼ 0.01 dpa

then a slower strain increase around 0.1 dpa, approximated by the logarithmic increase in strain

with damage. It is also likely that we are observing defect clustering, and hence slower strain

increase, at a lower damage level than in simulations, as small dislocation loops are mobile at

room temperature.

All the strains measured from the samples in this study are positive, corresponding to lattice
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expansion, suggesting that some interstitial defects have been retained after irradiation. We can

use the measured lattice strain to estimate the equivalent Frenkel pair density in the materials.

By considering the relative relaxation volumes (Ωr) of defects in pure Fe [65], the measured

strain can be used to calculate the defect density in the material, by using the following expres-

sion [31]:

ǫzz =
1

3

(1 + ν)

(1− ν)

∑

A

n(A)Ω(A)
r (5)

where ǫzz is the measured out-of-plane strain, ν = 0.3 is the Poisson ratio (for pure Fe [68]),

n(A) and Ω
(A)
r are respectively the number density and relative relaxation volume for each type

of defect (A).

In FeCr, both 〈111〉 and 〈100〉 dislocation loops are observed and their relative proportions

depend on the Cr content [11, 16]. The relative relaxation volume of a single self-interstitial

defect (1 atom) in a 〈111〉 configuration is Ω
〈111〉
r = 1.65 and that of a 〈100〉 interstitial defect

is Ω
〈100〉
r = 1.86 [65]. These values correspond to isolated defects, not defects in clusters. We

assumed that there is no clustering of interstitials, which is reasonable as we are examining

low levels of damage, where large dislocation networks have not yet been formed [67]. If we

were to account for the decrease in relaxation volume, per point defect, due to the clustering of

interstitials [69], our estimated equivalent point defect density would increase.

We will consider both the case of all interstitials being of 〈111〉 nature, and the case of all

〈100〉 interstitials. This will give the range of interstitial densities in the present FeCr samples.

Furthermore, we need to consider the lattice strain due to the presence of vacancy defects,

which have a relative relaxation volume of Ωv
r = −0.22 [65]. At room temperature, vacancies

are almost immobile and do not cluster [70]. The relaxation volume of a Frenkel pair can be

taken as the sum of an interstitial and a vacancy [69]. We also assume that no interstitials have

been lost from the sample and that the number of interstitial atoms to be the same as the number

of vacancies (ni = nv), which is the number of equivalent Frenkel pairs.

From the measured strains at 0.4 dpa of damage-at-depth, the volumetric number density

of equivalent Frenkel pairs is 3.2 − 5.4 × 1025 m−3. The lowest density is observed in Fe3Cr,

assuming all interstitial defects are of 〈100〉 in nature, and the highest is in Fe5Cr, assuming all

interstitial defects are of 〈111〉 in nature. For 0.04 dpa of damage-at-depth, the corresponding

volumetric number density of equivalent Frenkel pairs is between 2.3 − 4.3 × 1025 m−3. Note

that these estimates provide a lower bound on the number of equivalent Frenkel pairs present in

the irradiated material. We have estimated the total number of interstitial atoms (and vacancies)
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in the damaged material, whether they exist as isolated interstitials or in clusters. We did not

account for the reduction in relaxation volume per point defect (Ωr) if interstitials existed in

clusters. In the case of defect clustering, to produce the same strain from dislocation networks as

isolated defects, a higher equivalent Frenkel pair number density would be required. Similarly,

in assuming no loss of interstitials, which provide the positive contributions to the lattice strain,

we have estimated the minimum number of equivalent Frenkel pairs required to produce the

measured strain. Further details of this calculation, and of the TEM comparisons to follow, can

be found in the supplementary file.

Previous TEM studies of FeCr found an areal defect density of around 1 × 1015 m−2 at 0.3

dpa [11]. The average diameter of the loops observed was 2 nm from measurements made in

weak-beam dark field conditions with g = {110}. The thickness of the damaged layer was 19

nm, from irradiation with 100 keV Fe+ ions, as determined by SRIM calculations [11]. We

assume that all imaged loops are of interstitial nature. This can be justified as vacancies have

low mobility and do not cluster significantly at room temperature. In making this assumption,

the following estimates provide an upper bound on the equivalent Frenkel pair density observed

in TEM.

Consider for BCC Fe, the lattice parameter is a0 = 0.287 nm, the (111) and (100) planar

densities are respectively ∼7 atoms nm−2 and ∼12 atoms nm−2. Again, we consider the two

extreme cases of all 〈111〉 loops and all 〈100〉 loops to obtain a range of the possible interstitial

densities. We also account for the loops that are invisible when g · b = 0, which includes 1
2

of

the 〈111〉 loops and 1
3

of the 〈100〉 loops. This gives the volumetric number density of interstitial

atoms, and hence equivalent Frenkel pairs, to be between 2.3 − 3.0 × 1024 m−3. This value is

an order of magnitude lower than the densities obtained from our lattice strain measurements.

At lower doses, we can compare with TEM measurements from a study with damage level

of 0.05 dpa on FeCr which found defect densities of up to 1 × 1023 m−3 [16]. The authors

of that study have already corrected for the cases of g · b = 0. In the irradiated Fe5Cr and

Fe10Cr (which are the same materials as this study), the reported average defect size is 1.1

nm. Using similar calculations as above, this gives the number density of interstitial atoms, and

hence equivalent Frenkel pairs, to be 6.7− 11.4× 1023 m−3. This point defect density obtained

from TEM measurements is over an order of magnitude lower than the values estimated from

our lattice strain measurements.

The discrepancy in defect densities between TEM and lattice strain measurements may be

partially accounted for by the loss of defect loops to the surface of TEM samples. Another fac-
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tor to consider is contributions from defects below the sensitivity limit of TEM [71]. One point

that supports this is that in TEM measurements, the density of defects increases as (dpa)n with

1 ≤ n ≤ 2 [11], whereas the defect density calculated from strain measurements is proportional

to the natural logarithm of damage. This suggests that TEM measurements could be underes-

timating the defect density particularly at lower damage levels where the defects are smaller.

Ab initio calculations have shown that for small clusters of fewer than 51 self-interstitial atoms

in Fe, C15-Laves phase clusters [72] are the most stable configuration but their size (∼ 1.5 nm

diameter) is not accessible to TEM [73]. The presence of these clusters would still impart mea-

surable strain to the material [74] contributing to the discrepancy between the measured strain

from this work and the defect density measured in TEM. The measurement of lattice strain

from damage levels below 0.01 dpa shows that the ‘threshold damage’ derived from TEM stud-

ies [11, 13, 14] likely results from the lack of visibility of small defects in TEM rather than an

inherent ‘threshold’ for damage formation. This is also supported by more recent research [16]

which revealed that the dislocation loops were visible in TEM at 0.0015 dpa for Fe5Cr, Fe10Cr

(both are the same material as used in this study), Fe14Cr and pure Fe. Correlation between

lattice strain and defect contrast in TEM offer a promising way forward for fully describing the

irradiation-induced defect population at low damage levels.

Comparing Trends

The measurements of hardness, thermal diffusivity and lattice strain in this study were con-

ducted on the same set of samples, however different material properties resulting from the

same damage microstructure exhibit different sensitivity to Cr content and irradiation dose. All

three material properties show that the amount of Cr in the material has a significant effect on

the response of the material to irradiation. Fe5Cr and Fe10Cr samples exhibit more change

in hardening, thermal diffusivity and rate of lattice strain increase after irradiation than their

Fe3Cr counterpart. This is attributed to the role of Cr in reducing defect mobility and thus

enhancing total defect retention in the material, which has previously been observed in TEM

measurements [9, 11].

The absolute values of hardness and thermal diffusivity at each damage level vary mono-

tonically with Cr content, however, the absolute value of lattice strain is the greatest for Fe5Cr

regardless of damage level. This non-monotonic variation in the lattice strain with Cr content

could be due to the influence of Cr on the retention of each type of defect (interstitial vs. va-

cancy). Lattice strain is the result of the net contributions of position relaxation volume from
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interstitial defects and negative relaxation volume from vacancies. As such, it is sensitive to the

population of different defect types, as well as extended defect structures [75], rather than the

total defect population [67].

Irradiation hardening and lattice strain are both very sensitive to the presence of irradiation

damage in the material. The effect of damage as low as 0.01 dpa can clearly be quantified in

both these properties. The changes are very significant after 0.1 dpa of nominal damage, with

Fe5Cr and Fe10Cr exhibiting over 46% increase in hardness and lattice strain of up to 5×10−4.

This shows that the presence of the irradiation-induced defects plays a large role in the changes

of these properties. Since defect retention is increased by the presence of Cr atoms, which in

itself also affects hardness and lattice strain, these material properties are hence sensitive to both

Cr content and damage levels.

In contrast, the decrease in thermal diffusivity of FeCr can only be measured after 0.1 dpa of

damage, and even then, the changes are quite small (∼ 8% for Fe5Cr and Fe10Cr). The change

to thermal diffusivity is dominated by the Cr content in the material, as the Cr atoms, as well as

the defects, act as electron scattering sites. The lowest order scattering rate, in the dilute limit,

of a Frenkel pair in Fe is 19 fs−1 (calculations included in Appendix E), which is much higher

than that of a Cr atom at 2.9 fs−1. However, since Cr atoms are also present in much higher

concentration than the defects, this likely explains the greater role of Cr content than damage

level on thermal diffusivity degradation.

Conclusion

We have studied Fe3Cr, Fe5Cr and Fe10Cr implanted with 20 MeV Fe3+ ions to nominal dam-

age levels of 0.01 dpa and 0.1 dpa at room temperature. The hardness, thermal conductivity

and lattice strain were probed with nanoindentation, transient grating spectroscopy and X-ray

micro-beam Laue diffraction respectively. From these findings, we conclude the following:

• All irradiated samples exhibited hardening with measurable changes observed at nominal

damage level as low as 0.01 dpa.

• Fe5Cr and Fe10Cr samples show greater irradiation hardening at each nominal damage

level than Fe3Cr. This is attributed to higher defect retention induced by increasing Cr

content. The shape of the hardness vs. indentation depth curves qualitatively agrees with

an existing plastic zone model.
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• Thermal diffusivity of the materials could be successfully measured by TGS. The values

from unirradiated Fe3Cr and Fe5Cr agree with a kinetic theory model that attributes the

degradation in thermal diffusivity to Cr atoms acting as electron scattering sites.

• The thermal diffusivity of Fe5Cr and Fe10Cr showed an 8% reduction after 0.1 dpa of

nominal damage, while Fe3Cr samples exhibited negligible change after irradiation. After

irradiation to 0.01 dpa, Fe3Cr and Fe10Cr showed small increases in thermal diffusivity.

The reduction of thermal diffusivity after 0.1 dpa is probably due to Cr atoms causing a

greater retention of irradiation-induced defects, which also act as electron scattering sites.

Overall the changes in thermal diffusivity as a function of irradiation damage are small.

• Measurable strain was observed for damage-at-depth levels below 0.01 dpa, and lattice

strain of over 5 × 10−4 is measured in FeCr at a damage level of 0.4 dpa in damage-

at-depth. Although lattice strain showed different dependence on Cr content between

irradiations to 0.01 and 0.1 dpa, the rate of increase in lattice strain is higher for greater

Cr content. This is again attributed to greater defect retention due to Cr atoms.

• The lower bound of defect density in the irradiated FeCr, calculated from the measured

strain, is higher than that previously observed in TEM studies of corresponding damage

levels. This indicates that both lattice strain and TEM measurements are crucial to fully

characterise the irradiation-induced defect population at low doses.

All data, raw and processed, as well as the processing and plotting scripts used in this study

are available online at: https://doi.org/10.5287/bodleian:xvNyeYP0z
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Appendix A - Material Composition

Chemical analysis of the alloys in the as-delivered final metallurgical condition [33].

Alloy C wt (ppm) S wt (ppm) O wt (ppm) N wt (ppm) P wt (ppm) Cr wt%

Fe3Cr 4 3 6 2 - 3.05

Fe5Cr 4 3 6 2 < 5 5.40

Fe10Cr 4 4 4 3 < 5 10.10

Appendix B - Elastic Modulus Data

The data shown in Figure B-1 is the average elastic from all indents taken on each sample, with

the error bars representing ± one standard deviation. It can be seen that for the undamaged sam-

ples and samples with 0.1 dpa of nominal damage, the elastic modulus for Fe3Cr and Fe5Cr do

not show a difference at any indentation depth. Fe10Cr exhibit slightly higher values at depths

greater than 400 nm. However, these relative difference are small compared to the difference in

hardness between samples of different Cr content (Figure 2a). For 0.01 dpa of nominal damage,

the elastic modulus of all samples do not show any significant difference, within experimental

errors.
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Figure B-1: Elastic modulus of the samples as a function of indented depth from CSM nanoin-

dentation measurements. The data is grouped by damage level allowing comparison of the

elastic modulus across different Cr content.

23



Appendix C - Experimental Validation of the Johnson Model

The Johnson model from Equation 1, modified for a Berkovich tip, is:

zp
h

=

(

2E

3σys

)1/3

(C-1)

where zp is the depth of the plastic zone directly beneath the indenter, h is the indentation depth,

E is Young’s modulus and σys is the yield strength. The ratio
zp
h

can be obtained by looking at

hc, which is the indentation depth at which the plastic zone penetrates into the unirradiated bulk

(which is known to be 3.5 µm below the surface from SRIM calculations). Therefore
zp
h
= 3.5

hc

,

where hc is in µm.

The yield strength, σys, was obtained from a study by Matijasevic et al. [76] with similar

Cr content (2.5%, 5% and 9%Cr). The results are below:

Alloy hc
zp
h

σys (MPa) E (GPa)
(

2E
3σys

)1/3

(from 0.1 dpa

samples)

(from [76]) (averaged between

300-600 nm)

Fe3Cr 565 4.31 409 (Fe2.5Cr) 228 7.19

Fe5Cr 525 4.71 462 (Fe5Cr) 218 6.80

Fe10Cr 745 3.03 514 (Fe9Cr) 218 6.56

We can conclude that fitting our experimental data to the Johnson model yields sensible

results that agree within a factor of 2 to 3.

Appendix D - Parameters for Kinetic Theory Model

The parameters used to fit the kinetic theory model, in Equation 2, to the experimental data for

thermal diffusivity.

Symbol Quantity Value Source

Ce/T Electronic Heat Capacity Coefficient of Fe 2.095× 10−9 eV K−2 Å−3 [61]

νf Fermi Velocity of Fe 4.95 Å fs−1 [61]

cp Specific Heat Capacity of Fe 25.14 J mol−1 K−1 [77]

ρ Density of Fe 7850 kg m−3 [77]

κFe Thermal Conductivity of Fe 75.8 W m−1 K−1 [62]
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Appendix E - Calculation of Frenkel Pair Scattering Rate in

Fe

In a similar form to Equation 2, the thermal conductivity, κ, due to scattering from Frenkel pairs

in pure Fe can be written as:

κ =
1

3
Ceνf

2

(

cFP

τe,FP
+

1− cFP

τe,F e

)−1

(E-1)

where Ce is the electronic heat capacity, νf is the Fermi velocity, cFP is the Frenkel pair con-

centration, τe,FP is the electron scattering time from the Frenkel pairs and τe,F e is the scattering

time of pure Fe.

Using the Wiedemann-Franz law, the above equation can be written as:

ρe =
3LT

Ceνf 2

(

cFP

τe,FP

+
1− cFP

τe,F e

)

(E-2)

where ρe is the electrical resistivity, L is the Lorenz number and T is the temperature. Differ-

entiating both sides by cFP , we obtain an expression involving resistivity per Frenkel pair. This

has an experimental value of 20 µΩm [78]. This allows us to solve for τe,FP , which has a value

of 0.052 fs.
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Supplementary File - Defect Density Calculations and Com-

parisons

1. Defect Density From Lattice Strain Measurements

We use the following expression [31] for strain as a function of defect density:

ǫzz =
1

3

(1 + ν)

(1− ν)

∑

A

n(A)Ω(A)
r (S-1)

where ǫzz is the measured out-of-plane strain, ν = 0.3 is the Poisson ratio (for pure Fe [68]),

n(A) and Ω
(A)
r are respectively the number density and relative relaxation volume for each type

of defect (A).

As the lattice strain values measured are all positive, this means some interstitial defects are

present in our material. We then make the following assumptions in our calculations:

• There is no clustering of interstitials. This means the relaxation volume per point defect

is maximised [69].

• There is no loss of interstitial defects, which are much more mobile than vacancies [70],

to the surface of the materials. This means there are equal numbers of interstitial atoms

(ni) and vacancies (nv).

By employing these assumptions, we obtain the lower bound of the equivalent Frenkel pair

density (nFP ). If interstitials did cluster, then the relaxation volume per point defect would

decrease, requiring more Frenkel pairs to be present in order to produce the same amount of

positive strain that was measured (covered by assumption 1). If interstitials were lost to the

surface, again more equivalent Frenkel pairs would need to be present to account for the amount

of positive strain measured (covered by assumption 2).

Rearranging Equation S-1, we get:

nFP =
ǫzz
ΩFP

r

(

3(1− ν)

(1 + ν)

)

(S-2)

The relative relaxation volume, per point defect, of a 〈111〉 interstitial is Ω
〈111〉
r = 1.65 and

that of a 〈100〉 interstitial defect is Ω
〈100〉
r = 1.86 [65]. For a vacancy, the relative relaxation

volume is Ωv
r = −0.22 [65]. In order to obtain the volumetric number density (NFP ) of the
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equivalent Frenkel pairs, we then need to multiply by the atomic density of Fe (ρFe = 8.48 ×

1028 m−3).

An example calculation: At 0.04 dpa of damage-at-depth, the largest strain observed is from

Fe5Cr at 4.491× 10−4 (from Figure S-1). If all the interstitial defects are of 〈111〉 nature, then

Ω
FP,〈111〉
r = 1.65− 0.22 = 1.43. Substituting this into Equation S-2:

NFP,〈111〉,F e5Cr = ρFe × nFP,〈111〉,F e5Cr

= ρFe ×
ǫFe5Cr
zz

Ω
FP,〈111〉
r

×

(

3(1− ν)

(1 + ν)

)

= (8.48× 1028)×

(

4.49× 10−4

1.43

)

×

(

3(1− 0.3)

(1 + 0.3)

)

= 4.29× 1025 m−3

As Fe5Cr has the highest strain, and 〈111〉 defects have the lowest relaxation volume per

defect, this value is the upper range of our equivalent Frenkel pair density estimate at 0.04 dpa

of damage-at-depth. For the lower range, this will come from the calculation using the strain

value of Fe3Cr (ǫFe3Cr
zz = 2.69× 10−4 from Figure S-1) and assuming all interstitial defects are

of 〈100〉 nature (Ω
FP,〈100〉
r = 1.86 − 0.22 = 1.64). Using the same calculation steps as above,

we obtain NFP,〈100〉,F e3Cr = 2.25× 1025 m−3.

For 0.4 dpa of damage-at-depth, we repeat the same calculations, using ǫFe5Cr
zz = 5.69×10−4

and ǫFe3Cr
zz = 3.85 × 10−4 (from Figure S-1). We get the range of equivalent Frenkel pair

volumetric number density 3.22− 5.44× 1025 m−3.

To summarise, from our lattice strain measurements, we estimate equivalent Frenkel pair

volumetric number densities:

• At 0.04 dpa of damage-at-depth: 2.25− 4.29× 1025 m−3

• At 0.4 dpa of damage-at-depth: 3.22− 5.44× 1025 m−3

2. Defect Density from TEM Studies

For calculations of equivalent Frenkel pair density from TEM studies, we make the following

assumption:

• All dislocation loops and defects observed are of interstitial nature.
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Figure S-1: Data from Figure 7 of our work.

TEM studies have found that a majority of the defects observed are interstitials rather than

vacancies [7, 16]. This is generally attributed to the lower mobility of vacancies, leading to less

growth of vacancy loops to sizes observable in TEM. By assuming all observable defects are

of interstitial nature, we calculate the upper bound of the equivalent Frenkel pair density in the

material.

2.1. From Yao et al. - 0.4 dpa

Yao et al. [11] found the following:

• Areal defect density = 1× 1015 m−2 (see Figure S-2).

• Average defect diameter = 2.1 nm (see Figure S-3).

• Damage layer thickness = 19 nm.

For simplicity, only one value of damage level was compared. 0.4 dpa was chosen as it has the

largest difference in damage compared to the other TEM study in reference [16].

The lattice parameter of BCC Fe is a0 = 0.287 nm. The planar density of the (100) plane is
1

a02
= 12.1 atoms nm−2. For the (111) plane, the planar density is 1√

3a02
= 7.0 atoms nm−2. We

also need to take into account the defects that are invisible due to g · b = 0. In the TEM study,

g = {110}, which means only 1
2

of the 〈111〉 defects and 2
3

of the 〈100〉 defects are actually

visible.
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Figure S-2: Data from Figure 2 of [11]. Yao et al. quoted 2×1016 ions m−2 as being equivalent

to 0.01 dpa. The defect density for FeCr at 8× 1017 ions m−2 is then taken to be approximately

1 × 1015 m−2. The red circle was added to indicate the data point from which the value was

taken.

Figure S-3: Data from Figure 6 of [11]. The only reported values for defect sizes in FeCr

were of Fe11Cr. The damage level is equivalent to 0.15 dpa but the authors reported similar

distribution of sizes for damage levels below 0.5 dpa.

The equivalent Frenkel pair volumetric density (NFP ) can be calculated by:

NFP =
areal defect density × defect area × planar density

damage layer thickness × fraction of defects visible
(S-3)
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If all interstitials were of 〈111〉 nature:

NFP,〈111〉 =
(1× 1015)× ((1.05× 10−9)2 × π)× (7.0× 1018)

19× 10−9 × 1
2

= 2.6× 1024 m−3

Similarly, if all interstitials were of 〈100〉 nature:

NFP,〈100〉 =
(1× 1015)× ((1.05× 10−9)2 × π)× (12.1× 1018)

19× 10−9 × 2
3

= 3.3× 1024 m−3

2.2. From Schäublin et al. - 0.05 dpa

Schäublin et al. [16] found the following:

• Volume defect density = 1 × 1023 m−3 (see Figure S-4, corrections for g · b = 0 already

made).

• Average defect diameter = 1.1 nm (see Figure S-5).

Figure S-4: Data from Figure 5 of [16]. At 0.05 dpa (Fe+ irradiation only), the highest defect

density observed in FeCr is 8× 1023 m−3.

The equivalent Frenkel pair volumetric density (nd) can be calculated by:

NFP = volume defect density × defect area × planar density (S-4)
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Figure S-5: Data from Figure 6 of [16]. At 0.05 dpa (Fe+ irradiation only), the average defect

size in FeCr is 1.1 nm.

If all interstitials were of 〈111〉 nature:

NFP,〈111〉 = (1× 1023)× ((0.55× 10−9)2 × π)× (7.0× 1018)

= 6.65× 1023 m−3

Similarly, if all interstitials were of 〈100〉 nature:

NFP,〈100〉 = (1× 1023)× ((0.55× 10−9)2 × π)× (12.1× 1018)

= 1.15× 1024 m−3

3. Comparisons

The following table summarises the equivalent Frenkel pair densities from lattice strain mea-

surements and TEM studies:

Damage (dpa) Lattice Strain Measurements (×1023 m−3) TEM Measurements (×1023 m−3)

0.04 - 0.05 225 - 429 6.7 - 11.5

0.4 322 - 544 26 - 33
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a0 <111> and a0 <100> loops in irradiated Fe(Cr) alloys, Acta Materialia 133 (2017)

427–439. doi:10.1016/j.actamat.2017.02.041.

[17] C. Heintze, F. Bergner, M. Hernández-Mayoral, Ion-irradiation-induced damage in Fe-

Cr alloys characterized by nanoindentation, in: Journal of Nuclear Materials, Vol. 417,

North-Holland, 2011, pp. 980–983. doi:10.1016/j.jnucmat.2010.12.196.

33

https://linkinghub.elsevier.com/retrieve/pii/S0022311512004667
http://dx.doi.org/10.1016/j.jnucmat.2012.09.003
https://linkinghub.elsevier.com/retrieve/pii/S0022311512004667
http://www.tandfonline.com/doi/abs/10.1080/14786430802380469
http://dx.doi.org/10.1080/14786430802380469
http://www.tandfonline.com/doi/abs/10.1080/14786430802380469
http://www.tandfonline.com/doi/abs/10.1080/14786430802380477
http://dx.doi.org/10.1080/14786430802380477
http://www.tandfonline.com/doi/abs/10.1080/14786430802380477
http://dx.doi.org/10.1080/01418617808239220
http://dx.doi.org/10.1016/0022-3115(87)90494-6
http://dx.doi.org/10.1007/978-1-4615-8103-1_8
http://dx.doi.org/10.1016/j.actamat.2017.02.041
http://dx.doi.org/10.1016/j.jnucmat.2010.12.196


[18] C. D. Hardie, C. A. Williams, S. Xu, S. G. Roberts, Effects of irradiation

temperature and dose rate on the mechanical properties of self-ion implanted

Fe and Fe-Cr alloys, Journal of Nuclear Materials 439 (1-3) (2013) 33–40.

doi:10.1016/j.jnucmat.2013.03.052.

[19] R. K. Williams, R. K. Nanstad, R. S. Graves, R. G. Berggren, Irradiation effects on thermal

conductivity of a light-water reactor pressure vessel steel, Journal of Nuclear Materials

115 (2-3) (1983) 211–215. doi:10.1016/0022-3115(83)90312-4.

[20] A. Reza, H. Yu, K. Mizohata, F. Hofmann, Thermal diffusivity degradation and point defect density in self-ion implanted tungsten,

Acta Materialiadoi:10.1016/j.actamat.2020.03.034.

URL https://linkinghub.elsevier.com/retrieve/pii/S1359645420302214

[21] J. M. Ziman, Electrons and Phonons : The Theory of Transport Phenomena in Solids,

Oxford University Press, Oxford, 2001.

[22] Z. Zhou, M. L. Jenkins, S. L. Dudarev, A. P. Sutton, M. A. Kirk,

Simulations of weak-beam diffraction contrast images of dislocation loops by the many-beam Howie–Basinski equations,

Philosophical Magazine 86 (29-31) (2006) 4851–4881.

doi:10.1080/14786430600615041.

URL http://www.tandfonline.com/doi/abs/10.1080/14786430600615041

[23] S. J. Zinkle, N. M. Ghoniem, Operating temperature windows for fusion re-

actor structural materials, Fusion Engineering and Design 51-52 (2000) 55–71.

doi:10.1016/S0920-3796(00)00320-3.

[24] S. Zinkle, G. Was, Materials challenges in nuclear energy, Acta Materialia 61 (3) (2013)

735–758. doi:10.1016/j.actamat.2012.11.004.

URL https://linkinghub.elsevier.com/retrieve/pii/S1359645412007987

[25] S. Das, W. Liu, R. Xu, F. Hofmann, Helium-implantation-induced lattice strains and defects in tungsten probed by X-ray micro-diffraction,

Materials & Design 160 (2018) 1226–1237. doi:10.1016/j.matdes.2018.11.001.

URL https://linkinghub.elsevier.com/retrieve/pii/S0264127518308074

[26] D. Gelles, Microstructural examination of neutron-irradiated simple ferritic alloys,

Journal of Nuclear Materials 108-109 (C) (1982) 515–526.

34

http://dx.doi.org/10.1016/j.jnucmat.2013.03.052
http://dx.doi.org/10.1016/0022-3115(83)90312-4
https://linkinghub.elsevier.com/retrieve/pii/S1359645420302214
http://dx.doi.org/10.1016/j.actamat.2020.03.034
https://linkinghub.elsevier.com/retrieve/pii/S1359645420302214
http://www.tandfonline.com/doi/abs/10.1080/14786430600615041
http://dx.doi.org/10.1080/14786430600615041
http://www.tandfonline.com/doi/abs/10.1080/14786430600615041
http://dx.doi.org/10.1016/S0920-3796(00)00320-3
https://linkinghub.elsevier.com/retrieve/pii/S1359645412007987
http://dx.doi.org/10.1016/j.actamat.2012.11.004
https://linkinghub.elsevier.com/retrieve/pii/S1359645412007987
https://linkinghub.elsevier.com/retrieve/pii/S0264127518308074
http://dx.doi.org/10.1016/j.matdes.2018.11.001
https://linkinghub.elsevier.com/retrieve/pii/S0264127518308074
https://linkinghub.elsevier.com/retrieve/pii/0022311582905232


doi:10.1016/0022-3115(82)90523-2.

URL https://linkinghub.elsevier.com/retrieve/pii/0022311582905232

[27] D. Gelles, Void swelling in binary FeCr alloys at 200 dpa, Journal of Nuclear Materials

225 (1995) 163–174. doi:10.1016/0022-3115(95)00053-4.

URL https://linkinghub.elsevier.com/retrieve/pii/0022311595000534

[28] Y. Katoh, A. Kohyama, D. S. Gelles, Swelling and dislocation evolution in simple ferritic alloys irradiated to high fluence in FFTF/MOTA,

Journal of Nuclear Materials 225 (1995) 154–162.

doi:10.1016/0022-3115(94)00669-5.

URL https://linkinghub.elsevier.com/retrieve/pii/0022311594006695

[29] B. H. Sencer, F. A. Garner, Compositional and temperature dependence of void swelling in

model Fe-Cr base alloys irradiated in the EBR-II fast reactor, Journal of Nuclear Materials

283-287 (PART I) (2000) 164–168. doi:10.1016/S0022-3115(00)00338-X.

[30] A. Bhattacharya, E. Meslin, J. Henry, A. Barbu, S. Poissonnet, B. Décamps,

Effect of chromium on void swelling in ion irradiated high purity Fe–Cr alloys, Acta

Materialia 108 (2016) 241–251. doi:10.1016/j.actamat.2016.02.027.

URL https://linkinghub.elsevier.com/retrieve/pii/S135964541630101X

[31] F. Hofmann, D. Nguyen-Manh, M. Gilbert, C. Beck, J. Elia-

son, A. Maznev, W. Liu, D. Armstrong, K. Nelson, S. Dudarev,

Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling,

Acta Materialia 89 (2015) 352–363. doi:10.1016/j.actamat.2015.01.055.

URL https://linkinghub.elsevier.com/retrieve/pii/S1359645415000683

[32] S. L. Dudarev, D. R. Mason, E. Tarleton, P. W. Ma, A. E. Sand, A multi-scale model

for stresses, strains and swelling of reactor components under irradiation, Nuclear

Fusiondoi:10.1088/1741-4326/aadb48.

[33] J. L. Coze, Procurement of pure Fe metal and Fe-based alloys with controlled chemical

alloying element contents and microstructure, Tech. rep., ARMINES Ecole Nationale Su-

perieure des Mines (2007).

[34] A. Fraczkeiwicz, Material Delivery Report BC4000483543/P5B51, Tech. rep., Ecole des

Mines, France (2011).

35

http://dx.doi.org/10.1016/0022-3115(82)90523-2
https://linkinghub.elsevier.com/retrieve/pii/0022311582905232
https://linkinghub.elsevier.com/retrieve/pii/0022311595000534
http://dx.doi.org/10.1016/0022-3115(95)00053-4
https://linkinghub.elsevier.com/retrieve/pii/0022311595000534
https://linkinghub.elsevier.com/retrieve/pii/0022311594006695
http://dx.doi.org/10.1016/0022-3115(94)00669-5
https://linkinghub.elsevier.com/retrieve/pii/0022311594006695
http://dx.doi.org/10.1016/S0022-3115(00)00338-X
https://linkinghub.elsevier.com/retrieve/pii/S135964541630101X
http://dx.doi.org/10.1016/j.actamat.2016.02.027
https://linkinghub.elsevier.com/retrieve/pii/S135964541630101X
https://linkinghub.elsevier.com/retrieve/pii/S1359645415000683
http://dx.doi.org/10.1016/j.actamat.2015.01.055
https://linkinghub.elsevier.com/retrieve/pii/S1359645415000683
http://dx.doi.org/10.1088/1741-4326/aadb48


[35] J. F. Ziegler, M. D. Ziegler, J. P. Biersack, SRIM - The stopping and range of

ions in matter (2010), Nuclear Instruments and Methods in Physics Research, Sec-

tion B: Beam Interactions with Materials and Atoms 268 (11-12) (2010) 1818–1823.

doi:10.1016/j.nimb.2010.02.091.

[36] P. Olsson, C. S. Becquart, C. Domain, Ab initio threshold displacement energies in iron,

Materials Research Letters 4 (4) (2016) 219–225.

doi:10.1080/21663831.2016.1181680.

URL https://www.tandfonline.com/doi/full/10.1080/21663831.2016.1181680

[37] N. Juslin, K. Nordlund, J. Wallenius, L. Malerba, Simulation of threshold displace-

ment energies in FeCr, Nuclear Instruments and Methods in Physics Research, Sec-

tion B: Beam Interactions with Materials and Atoms 255 (1 SPEC. ISS.) (2007) 75–77.

doi:10.1016/j.nimb.2006.11.046.

[38] F. Hofmann, D. R. Mason, J. K. Eliason, A. A. Maznev, K. A. Nelson, S. L. Dudarev,

Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials,

Scientific Reports 5 (1) (2015) 1–7. doi:10.1038/srep16042.

[39] C. A. Dennett, M. P. Short, Time-resolved, dual heterodyne phase collection transient grating spectroscopy,

Applied Physics Letters 110 (21) (2017) 211106. doi:10.1063/1.4983716.

URL http://aip.scitation.org/doi/10.1063/1.4983716
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F. Garrido, L. Thomé, Lattice strain in irradiated materials unveils a preva-

lent defect evolution mechanism, Physical Review Materials 2 (2018) 13604.

doi:10.1103/PhysRevMaterials.2.013604.

[67] P. M. Derlet, S. L. Dudarev, Microscopic structure of a heavily irradiated material,

Physical Review Materials 4 (2) (2020) 023605.

doi:10.1103/PhysRevMaterials.4.023605.

URL https://link.aps.org/doi/10.1103/PhysRevMaterials.4.023605

[68] F. Cardarelli, F. Cardarelli, Ferrous Metals and Their Alloys, in: Ma-

terials Handbook, Springer International Publishing, 2018, pp. 101–248.

doi:10.1007/978-3-319-38925-7_2.

[69] D. R. Mason, D. Nguyen-Manh, M.-C. Marinica, R. Alexander, A. E. Sand, S. L. Dudarev,

Relaxation volumes of microscopic and mesoscopic irradiation-induced defects in tungsten,

J. Appl. Phys 126 (2019) 75112. doi:10.1063/1.5094852.

URL https://doi.org/10.1063/1.5094852

39

http://dx.doi.org/10.1088/0953-8984/27/14/145401
https://iopscience.iop.org/article/10.1088/0953-8984/27/14/145401
https://doi.org/10.1063/1.1782098
http://dx.doi.org/10.1063/1.1782098
https://doi.org/10.1063/1.1782098
http://dx.doi.org/10.1016/j.jnucmat.2012.07.021
http://dx.doi.org/10.1103/PhysRevMaterials.3.013605
http://dx.doi.org/10.1103/PhysRevMaterials.2.013604
https://link.aps.org/doi/10.1103/PhysRevMaterials.4.023605
http://dx.doi.org/10.1103/PhysRevMaterials.4.023605
https://link.aps.org/doi/10.1103/PhysRevMaterials.4.023605
http://dx.doi.org/10.1007/978-3-319-38925-7_2
https://doi.org/10.1063/1.5094852
http://dx.doi.org/10.1063/1.5094852
https://doi.org/10.1063/1.5094852


[70] N. Soneda, T. Diaz De La Rubia, Defect production, annealing kinetics and damage evolu-

tion in α-Fe: An atomic-scale computer simulation, Philosophical Magazine A: Physics of

Condensed Matter, Structure, Defects and Mechanical Properties 78 (5) (1998) 995–1019.

doi:10.1080/01418619808239970.

[71] N. Phillips, H. Yu, S. Das, D. Yang, K. Mizohata, W. Liu, R. Xu, R. Harder,

F. Hofmann, Nanoscale Lattice Strains in Self-ion-implanted Tungsten, Acta

Materialiadoi:10.1016/j.actamat.2020.05.033.

URL https://linkinghub.elsevier.com/retrieve/pii/S1359645420303803

[72] M. C. Marinica, F. Willaime, J. P. Crocombette, Irradiation-induced formation of

nanocrystallites with C15 laves phase structure in bcc iron, Physical Review Letters

108 (2) (2012) 025501. doi:10.1103/PhysRevLett.108.025501.

[73] R. Alexander, M.-C. Marinica, L. Proville, F. Willaime, K. Arakawa, M. R. Gilbert, S. L.

Dudarev, Ab initio scaling laws for the formation energy of nanosized interstitial defect clusters in iron, tungsten, and vanadium,

Physical Review B 94 (2) (2016) 024103. doi:10.1103/PhysRevB.94.024103.

URL https://link.aps.org/doi/10.1103/PhysRevB.94.024103

[74] Y. Zhang, X. M. Bai, M. R. Tonks, S. B. Biner, Formation of prismatic loops from C15

Laves phase interstitial clusters in body-centered cubic iron, Scripta Materialia 98 (2015)

5–8. doi:10.1016/j.scriptamat.2014.10.033.

[75] S. Das, D. R. Mason, P. M. Derlet, S. L. Dudarev, A. London,

H. Yu, N. W. Phillips, D. Yang, K. Mizohata, R. Xu, F. Hofmann,

Observation of transient and asymptotic driven structural states of tungsten exposed to irradiationarXiv:2007.15376.

URL http://arxiv.org/abs/2007.15376

[76] M. Matijasevic, A. Almazouzi, Effect of Cr on the mechanical properties and microstruc-

ture of Fe-Cr model alloys after n-irradiation, Journal of Nuclear Materials 377 (1) (2008)

147–154. doi:10.1016/j.jnucmat.2008.02.061.

[77] M. W. Chase, NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref.

Data Monograph (1998) 1–1951. doi:10.18434/T42S31.

40

http://dx.doi.org/10.1080/01418619808239970
https://linkinghub.elsevier.com/retrieve/pii/S1359645420303803
http://dx.doi.org/10.1016/j.actamat.2020.05.033
https://linkinghub.elsevier.com/retrieve/pii/S1359645420303803
http://dx.doi.org/10.1103/PhysRevLett.108.025501
https://link.aps.org/doi/10.1103/PhysRevB.94.024103
http://dx.doi.org/10.1103/PhysRevB.94.024103
https://link.aps.org/doi/10.1103/PhysRevB.94.024103
http://dx.doi.org/10.1016/j.scriptamat.2014.10.033
http://arxiv.org/abs/2007.15376
http://arxiv.org/abs/2007.15376
http://arxiv.org/abs/2007.15376
http://dx.doi.org/10.1016/j.jnucmat.2008.02.061
http://dx.doi.org/10.18434/T42S31


[78] O. Dimitrov, C. Dimitrov, A set of mutually consistent values of frenkel-pair resistivities,

Radiation Effects 84 (1-2) (1984) 117–129. doi:10.1080/00337578508218437.

URL http://www.tandfonline.com/doi/abs/10.1080/00337578508218437

41

http://www.tandfonline.com/doi/abs/10.1080/00337578508218437
http://dx.doi.org/10.1080/00337578508218437
http://www.tandfonline.com/doi/abs/10.1080/00337578508218437

