267 research outputs found

    B cell profiles, antibody repertoire and reactivity reveal dysregulated responses with autoimmune features in melanoma

    Get PDF
    B cells are known to contribute to the anti-tumor immune response, especially in immunogenic tumors such as melanoma, yet humoral immunity has not been characterized in these cancers to detail. Here we show comprehensive phenotyping in samples of circulating and tumor-resident B cells as well as serum antibodies in melanoma patients. Memory B cells are enriched in tumors compared to blood in paired samples and feature distinct antibody repertoires, linked to specific isotypes. Tumor-associated B cells undergo clonal expansion, class switch recombination, somatic hypermutation and receptor revision. Compared with blood, tumor-associated B cells produce antibodies with proportionally higher levels of unproductive sequences and distinct complementarity determining region 3 properties. The observed features are signs of affinity maturation and polyreactivity and suggest an active and aberrant autoimmune-like reaction in the tumor microenvironment. Consistent with this, tumor-derived antibodies are polyreactive and characterized by autoantigen recognition. Serum antibodies show reactivity to antigens attributed to autoimmune diseases and cancer, and their levels are higher in patients with active disease compared to post-resection state. Our findings thus reveal B cell lineage dysregulation with distinct antibody repertoire and specificity, alongside clonally-expanded tumor-infiltrating B cells with autoimmune-like features, shaping the humoral immune response in melanoma

    Development of a context model to prioritize drug safety alerts in CPOE systems

    Get PDF
    Background: Computerized physician order entry systems (CPOE) can reduce the number of medication errors and adverse drug events (ADEs) in healthcare institutions. Unfortunately, they tend to produce a large number of partly irrelevant alerts, in turn leading to alert overload and causing alert fatigue. The objective of this work is to identify factors that can be used to prioritize and present alerts depending on the 'context' of a clinical situation. Methods: We used a combination of literature searches and expert interviews to identify and validate the possible context factors. The internal validation of the context factors was performed by calculating the inter-rater agreement of two researcher's classification of 33 relevant articles. Results: We developed a context model containing 20 factors. We grouped these context factors into three categories: characteristics of the patient or case (e. g. clinical status of the patient); characteristics of the organizational unit or user (e. g. professional experience of the user); and alert characteristics (e. g. severity of the effect). The internal validation resulted in nearly perfect agreement (Cohen's Kappa value of 0.97). Conclusion: To our knowledge, this is the first structured attempt to develop a comprehensive context model for prioritizing drug safety alerts in CPOE systems. The outcome of this work can be used to develop future tailored drug safety alerting in CPOE systems

    KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector

    Get PDF
    The recent detections of gravitational waves (GWs) reported by LIGO/Virgocollaborations have made significant impact on physics and astronomy. A globalnetwork of GW detectors will play a key role to solve the unknown nature of thesources in coordinated observations with astronomical telescopes and detectors.Here we introduce KAGRA (former name LCGT; Large-scale Cryogenic Gravitationalwave Telescope), a new GW detector with two 3-km baseline arms arranged in theshape of an "L", located inside the Mt. Ikenoyama, Kamioka, Gifu, Japan.KAGRA's design is similar to those of the second generations such as AdvancedLIGO/Virgo, but it will be operating at the cryogenic temperature with sapphiremirrors. This low temperature feature is advantageous for improving thesensitivity around 100 Hz and is considered as an important feature for thethird generation GW detector concept (e.g. Einstein Telescope of Europe orCosmic Explorer of USA). Hence, KAGRA is often called as a 2.5 generation GWdetector based on laser interferometry. The installation and commissioning ofKAGRA is underway and its cryogenic systems have been successfully tested inMay, 2018. KAGRA's first observation run is scheduled in late 2019, aiming tojoin the third observation run (O3) of the advanced LIGO/Virgo network. In thiswork, we describe a brief history of KAGRA and highlights of main feature. Wealso discuss the prospects of GW observation with KAGRA in the era of O3. Whenoperating along with the existing GW detectors, KAGRA will be helpful to locatea GW source more accurately and to determine the source parameters with higherprecision, providing information for follow-up observations of a GW triggercandidate

    Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3

    Get PDF
    We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc-3 yr-1 and the neutron star-black hole merger rate to be between 7.8 and 140 Gpc-3 yr-1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc-3 yr-1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)Îș with Îș=2.9-1.8+1.7 for zâ‰Č1. Using both binary neutron star and neutron star-black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2-0.2+0.1 to 2.0-0.3+0.3M⊙. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3-0.5+0.3 and 27.9-1.8+1.9M⊙. While we continue to find that the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60M⊙, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χi≈0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum

    Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run

    Get PDF
    We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors. The excess power method optimizes the Fourier Transform coherence time as a function of frequency, to account for the expected signal width due to Doppler modulations. We do not find any evidence of dark photon dark matter with a mass between mA∌10−14−10−11m_{\rm A} \sim 10^{-14}-10^{-11} eV/c2c^2, which corresponds to frequencies between 10-2000 Hz, and therefore provide upper limits on the square of the minimum coupling of dark photons to baryons, i.e. U(1)BU(1)_{\rm B} dark matter. For the cross-correlation method, the best median constraint on the squared coupling is ∌1.31×10−47\sim1.31\times10^{-47} at mA∌4.2×10−13m_{\rm A}\sim4.2\times10^{-13} eV/c2c^2; for the other analysis, the best constraint is ∌2.4×10−47\sim 2.4\times 10^{-47} at mA∌5.7×10−13m_{\rm A}\sim 5.7\times 10^{-13} eV/c2c^2. These limits improve upon those obtained in direct dark matter detection experiments by a factor of ∌100\sim100 for mA∌[2−4]×10−13m_{\rm A}\sim [2-4]\times 10^{-13} eV/c2c^2, and are, in absolute terms, the most stringent constraint so far in a large mass range mA∌m_A\sim 2×10−13−8×10−122\times 10^{-13}-8\times 10^{-12} eV/c2c^2.Comment: 20 pages, 7 figure
    • 

    corecore