13 research outputs found
Comparative omics and feeding manipulations in chicken indicate a shift of the endocrine role of visceral fat towards reproduction.
BACKGROUND: The mammalian adipose tissue plays a central role in energy-balance control, whereas the avian visceral fat hardly expresses leptin, the key adipokine in mammals. Therefore, to assess the endocrine role of adipose tissue in birds, we compared the transcriptome and proteome between two metabolically different types of chickens, broilers and layers, bred towards efficient meat and egg production, respectively. RESULTS: Broilers and layer hens, grown up to sexual maturation under free-feeding conditions, differed 4.0-fold in weight and 1.6-fold in ovarian-follicle counts, yet the relative accumulation of visceral fat was comparable. RNA-seq and mass-spectrometry (MS) analyses of visceral fat revealed differentially expressed genes between broilers and layers, 1106 at the mRNA level (FDR ≤ 0.05), and 203 at the protein level (P ≤ 0.05). In broilers, Ingenuity Pathway Analysis revealed activation of the PTEN-pathway, and in layers increased response to external signals. The expression pattern of genes encoding fat-secreted proteins in broilers and layers was characterized in the RNA-seq and MS data, as well as by qPCR on visceral fat under free feeding and 24 h-feed deprivation. This characterization was expanded using available RNA-seq data of tissues from red junglefowl, and of visceral fat from broilers of different types. These comparisons revealed expression of new adipokines and secreted proteins (LCAT, LECT2, SERPINE2, SFTP1, ZP1, ZP3, APOV1, VTG1 and VTG2) at the mRNA and/or protein levels, with dynamic gene expression patterns in the selected chicken lines (except for ZP1; FDR/P ≤ 0.05) and feed deprivation (NAMPT, SFTPA1 and ZP3) (P ≤ 0.05). In contrast, some of the most prominent adipokines in mammals, leptin, TNF, IFNG, and IL6 were expressed at a low level (FPKM/RPKM< 1) and did not show differential mRNA expression neither between broiler and layer lines nor between fed vs. feed-deprived chickens. CONCLUSIONS: Our study revealed that RNA and protein expression in visceral fat changes with selective breeding, suggesting endocrine roles of visceral fat in the selected phenotypes. In comparison to gene expression in visceral fat of mammals, our findings points to a more direct cross talk of the chicken visceral fat with the reproductive system and lower involvement in the regulation of appetite, inflammation and insulin resistance.The study was supported by the Israel Academy of Sciences grants no. 876/
14 and 1294/17, and Chief Scientist of the Israeli Ministry of Agriculture
0469/14 (to MFE and ES)
Developing in vitro expanded CD45RA<sup>+</sup>Â regulatory T cells as an adoptive cell therapy for Crohn's disease
BACKGROUND AND AIM: Thymus-derived regulatory T cells (T(regs)) mediate dominant peripheral tolerance and treat experimental colitis. T(regs) can be expanded from patient blood and were safely used in recent phase 1 studies in graft versus host disease and type 1 diabetes. T(reg) cell therapy is also conceptually attractive for Crohn's disease (CD). However, barriers exist to this approach. The stability of T(regs) expanded from Crohn's blood is unknown. The potential for adoptively transferred T(regs) to express interleukin-17 and exacerbate Crohn's lesions is of concern. Mucosal T cells are resistant to T(reg)-mediated suppression in active CD. The capacity for expanded T(regs) to home to gut and lymphoid tissue is unknown. METHODS: To define the optimum population for T(reg) cell therapy in CD, CD4(+)CD25(+)CD127(lo)CD45RA(+) and CD4(+)CD25(+)CD127(lo)CD45RA(−) T(reg) subsets were isolated from patients’ blood and expanded in vitro using a workflow that can be readily transferred to a good manufacturing practice background. RESULTS: T(regs) can be expanded from the blood of patients with CD to potential target dose within 22–24 days. Expanded CD45RA(+) T(regs) have an epigenetically stable FOXP3 locus and do not convert to a Th17 phenotype in vitro, in contrast to CD45RA(−) T(regs). CD45RA(+) T(regs) highly express α(4)β(7) integrin, CD62L and CC motif receptor 7 (CCR7). CD45RA(+) T(regs) also home to human small bowel in a C.B-17 severe combined immune deficiency (SCID) xenotransplant model. Importantly, in vitro expansion enhances the suppressive ability of CD45RA(+) T(regs). These cells also suppress activation of lamina propria and mesenteric lymph node lymphocytes isolated from inflamed Crohn's mucosa. CONCLUSIONS: CD4(+)CD25(+)CD127(lo)CD45RA(+) T(regs) may be the most appropriate population from which to expand T(regs) for autologous T(reg) therapy for CD, paving the way for future clinical trials
Correction to: Mapping of leptin and its syntenic genes to chicken chromosome 1p
Correction After the publication of this work [1] an error was noticed in one of the author surnames. The author name Leif Anderson should be spelt as Leif Andersson
The tumor microenvironment shows a hierarchy of cell-cell interactions dominated by fibroblasts
Abstract The tumor microenvironment (TME) is comprised of non-malignant cells that interact with each other and with cancer cells, critically impacting cancer biology. The TME is complex, and understanding it requires simplifying approaches. Here we provide an experimental-mathematical approach to decompose the TME into small circuits of interacting cell types. We find, using female breast cancer single-cell-RNA-sequencing data, a hierarchical network of interactions, with cancer-associated fibroblasts (CAFs) at the top secreting factors primarily to tumor-associated macrophages (TAMs). This network is composed of repeating circuit motifs. We isolate the strongest two-cell circuit motif by culturing fibroblasts and macrophages in-vitro, and analyze their dynamics and transcriptomes. This isolated circuit recapitulates the hierarchy of in-vivo interactions, and enables testing the effect of ligand-receptor interactions on cell dynamics and function, as we demonstrate by identifying a mediator of CAF-TAM interactions - RARRES2, and its receptor CMKLR1. Thus, the complexity of the TME may be simplified by identifying small circuits, facilitating the development of strategies to modulate the TME
Avian Expression Patterns and Genomic Mapping Implicate Leptin in Digestion and TNF in Immunity, Suggesting That Their Interacting Adipokine Role Has Been Acquired Only in Mammals
In mammals, leptin and tumor-necrosis factor (TNF) are prominent interacting adipokines mediating appetite control and insulin sensitivity. While TNF pleiotropically functions in immune defense and cell survival, leptin is largely confined to signaling energy stores in adipocytes. Knowledge about the function of avian leptin and TNF is limited and they are absent or lowly expressed in adipose, respectively. Employing radiation-hybrid mapping and FISH-TSA, we mapped TNF and its syntenic genes to chicken chromosome 16 within the major histocompatibility complex (MHC) region. This mapping position suggests that avian TNF has a role in regulating immune response. To test its possible interaction with leptin within the immune system and beyond, we compared the transcription patterns of TNF, leptin and their cognate receptors obtained by meta-analysis of GenBank RNA-seq data. While expression of leptin and its receptor (LEPR) were detected in the brain and digestive tract, TNF and its receptor mRNAs were primarily found in viral-infected and LPS-treated leukocytes. We confirmed leptin expression in the duodenum by immunohistochemistry staining. Altogether, we suggest that whereas leptin and TNF interact as adipokines in mammals, in birds, they have distinct roles. Thus, the interaction between leptin and TNF may be unique to mammals
Additional file 2: of Mapping of leptin and its syntenic genes to chicken chromosome 1p
Characterization of RBM28. Figure S1. cDNA and predicted protein sequences of RBM28. Table S2. RBM28 Exons in chicken alligator and human. (XLSX 13Â kb
Additional file 1: of Comparative omics and feeding manipulations in chicken indicate a shift of the endocrine role of visceral fat towards reproduction
RNA-seq. Data. Table S1. Information about the RNA sequencing. Table S2: Transcripts identified by RNA-seq in visceral fat of broiler and layer females at the onset of sexual maturation. Table S3 Enriched pathways obtained using Ingenuity software and the RNA-seq differential transcripts (FDR ≤ 0.05; absolute fold change ≥1.5). A. List of enriched pathways. B. Schematic presentation of the enriched pathways. C. Expression pattern of the differentially expressed transcripts (FDR ≤ 0.05; absolute fold change ≥1.5) implicated in the in the PTEN pathway. Excel Worksheet xlsm 3.1 MB. (XLSX 3193 kb
Redifferentiated cardiomyocytes retain residual dedifferentiation signatures and are protected against ischemic injury
Cardiomyocyte proliferation and dedifferentiation have fueled the field of regenerative cardiology in recent years, whereas the reverse process of redifferentiation remains largely unexplored. Redifferentiation is characterized by the restoration of function lost during dedifferentiation. Previously, we showed that ERBB2-mediated heart regeneration has these two distinct phases: transient dedifferentiation and redifferentiation. Here we survey the temporal transcriptomic and proteomic landscape of dedifferentiation–redifferentiation in adult mouse hearts and reveal that well-characterized dedifferentiation features largely return to normal, although elements of residual dedifferentiation remain, even after the contractile function is restored. These hearts appear rejuvenated and show robust resistance to ischemic injury, even 5 months after redifferentiation initiation. Cardiomyocyte redifferentiation is driven by negative feedback signaling and requires LATS1/2 Hippo pathway activity. Our data reveal the importance of cardiomyocyte redifferentiation in functional restoration during regeneration but also protection against future insult, in what could lead to a potential prophylactic treatment against ischemic heart disease for at-risk patients