7,022 research outputs found

    Theoretical evidence for strong correlations and incoherent metallic state in FeSe

    Full text link
    The role of electronic Coulomb correlations in iron-based superconductors is an important open question. We provide theoretical evidence for strong correlation effects in the FeSe compound, based on dynamical mean field calculations. A lower Hubbard band is found in the spectral properties. Moreover, together with significant orbital-dependent mass enhancements, we find that the normal state is a bad metal over an extended temperature range, implying a non-Fermi liquid. Predictions for angle-resolved photoemission spectroscopy are made.Comment: 5 pages, 5 figures, published versio

    Roles of Critical Valence Fluctuations in Ce- and Yb-Based Heavy Fermion Metals

    Full text link
    The roles of critical valence fluctuations of Ce and Yb are discussed as a key origin of several anomalies observed in Ce- and Yb-based heavy fermion systems. Recent development of the theory has revealed that a magnetic field is an efficient control parameter to induce the critical end point of the first-order valence transition. Metamagnetism and non-Fermi liquid behavior caused by this mechanism are discussed by comparing favorably with CeIrIn5, YbAgCu4, and YbIr2Zn20. The interplay of the magnetic order and valence fluctuations offers a key concept for understanding Ce- and Yb-based systems. It is shown that suppression of the magnetic order by enhanced valence fluctuations gives rise to the coincidence of the magnetic-transition point and valence-crossover point at absolute zero as a function of pressure or magnetic field. The interplay is shown to resolve the outstanding puzzle in CeRhIn5 in a unified way. The broader applicability of this newly clarified mechanism is discussed by surveying promising materials such as YbAuCu4, beta-YbAlB4, and YbRh2Si2.Comment: 17 pages, 8 figures, invited paper in special issue on strongly correlated electron system

    Antiferromagnetic order in CeCoIn5 oriented by spin-orbital coupling

    Get PDF
    An incommensurate spin density wave (QQ phase) confined inside the superconducting state at high basal plane magnetic field is an unique property of the heavy fermion metal CeCoIn5_5. The neutron scattering experiments and the theoretical studies point out that this state come out from the soft mode condensation of magnetic resonance excitations. We show that the fixation of direction of antiferromagnetic modulations by a magnetic field reported by Gerber et al., Nat. Phys. {\bf 10}, 126 (2014) is explained by spin-orbit coupling. This result, obtained on the basis of quite general phenomenological arguments, is supported by the microscopic derivation of the χzz\chi_{zz} susceptibility dependence on the mutual orientation of the basal plane magnetic field and the direction of modulation of spin polarization in a multi-band metal.Comment: 7 pages plus 2 pages with 2 figure

    Polar type density of states in non-unitary odd-parity superconducting states of gap with point nodes

    Full text link
    It is shown that the density of states (DOS) proportional to the excitation energy, the so-called polar like DOS, can arise in the odd-parity states with the superconducting gap vanishing at points even if the spin-orbit interaction for Cooper pairing is strong enough. Such gap stuructures are realized in the non-unitary states, F_{1u}(1,i,0), F_{1u}(1,varepsilon,varepsilon^{2}), and F_{2u}(1,i,0), classified by Volovik and Gorkov, Sov. Phys.-JETP Vol.61 (1985) 843. This is due to the fact that the gap vanishes in quadratic manner around the point on the Fermi surface. It is also shown that the region of quadratic energy dependence of DOS, in the state F_{2u}(1,varepsilon,varepsilon^{2}), is restricted in very small energy region making it difficult to distinguish from the polar-like DOS.Comment: 5 pages, 3 figures, submitted to J. Phys.: Condens. Matter Lette

    Low-energy excitations in electron-doped metal phthalocyanine from NMR in Li0.5_{0.5}MnPc

    Full text link
    7^7Li and 1^1H NMR and magnetization measurements in \lpc (Pc\equivC32_{32}H16_{16}N8_8), recently proposed as a strongly correlated metal, are presented. Two different low-frequency dynamics are evidenced. The first one, probed by 1^1H nuclei gives rise to a slowly relaxing magnetization at low temperature and is associated with the freezing of MnPc S=3/2S=3/2 spins. This dynamic is similar to the one observed in pristine β\beta-MnPc and originates from Li depleted chain segments. The second one, evidenced by 7^7Li spin-lattice relaxation rate, is associated with the hopping of the electrons along Li-rich chains. The characteristic correlation times for the two dynamics are derived and the role of disorder is briefly discussed.Comment: 7 two-columns pages, 11 figure

    Importance of electronic correlations for structural and magnetic properties of the iron pnictide superconductor LaFeAsO

    Full text link
    We present calculations of structural and magnetic properties of the iron-pnictide superconductor LaFeAsO including electron-electron correlations. For this purpose we apply a fully charge self-consistent combination of Density-Functional Theory with the Dynamical Mean-Field theory, allowing for the calculation of total energies. We find that the inclusion of correlation effects gives a good agreement of the Arsenic z position with experimental data even in the paramagnetic (high-temperature) phase. Going to low temperatures, we study the formation of the ordered moment in the striped spin-density-wave phase, yielding an ordered moment of about 0.60, again in good agreement with experiments. This shows that the inclusion of correlation effects improves both structural and magnetic properties of LaFeAsO at the same time.Comment: 7 pages, 5 figures, published versio

    Rovibrationally resolved photodissociation of HeH+

    Full text link
    Accurate photodissociation cross sections have been obtained for the A-X electronic transition of HeH+ using ab initio potential curves and dipole transition moments. Partial cross sections have been evaluated for all rotational transitions from the vibrational levels v"=0-11 and over the entire accessible wavelength range 100-1129 Angstrom. Assuming a Boltzmann distribution of the rovibrational levels of the X state, photodissociation cross sections are presented for temperatures between 500 and 12,000 K. A similar set of calculations was performed for the pure rovibrational photodissociation in the X-X electronic ground state, but covering photon wavelengths into the far infrared. Applications of the cross sections to the destruction of HeH+in the early Universe and in UV-irradiated environments such as primordial halos and protoplanetary disks are briefly discussed

    A theory of new type of heavy-electron superconductivity in PrOs_4Sb_12: quadrupolar-fluctuation mediated odd-parity pairings

    Full text link
    It is shown that unconventional nature of superconducting state of PrOs_4Sb_12, a Pr-based heavy electron compound with the filled-Skutterudite structure, can be explained in a unified way by taking into account the structure of the crystalline-electric-field (CEF) level, the shape of the Fermi surface determined by the band structure calculation, and a picture of the quasiparticles in f2^{2}-configuration with magnetically singlet CEF ground state. Possible types of pairing are narrowed down by consulting recent experimental results. In particular, the chiral "p"-wave states such as p_x+ip_y is favoured under the magnetic field due to the orbital Zeeman effect, while the "p"-wave states with two-fold symmetery such as p_x can be stabilized by a feedback effect without the magnetic field. It is also discussed that the double superconducting transition without the magnetic field is possible due to the spin-orbit coupling of the "triplet" Cooper pairs in the chiral state.Comment: 12 pages, 2 figures, submitted to J. Phys.: Condens. Matter Lette

    Performance of alumina-supported Pt catalysts in an electron-beam-sustained CO2 laser amplifier

    Get PDF
    The performance of an alumina-supported Pt catalyst system used to maintain the gas purity in an electron-beam-sustained (636) isotope CO2 laser amplifier has been tested. The system characteristics using the two-zone, parallel flow reactor were determined for both continuous- and end-of-day reactor operation using on-line mass spectrometric sampling. The laser amplifier was run with an energy loading of typically 110 J-l/atm and an electron-beam current of 4 mA/sq cm. With these conditions and a pulse repetition frequency of 10 Hz for up to 10,000 shots, increases on the order of 100 ppm O2 were observed with the purifier on and 150 ppm with it off. The 1/e time recovery time was found to be approximately 75 minutes
    corecore