1,227 research outputs found

    A comparative study of experimental configurations in synchrotron pair distribution function

    Get PDF
    The identification and quantification of amorphous components and nanocrystalline phases with very small crystal sizes, smaller than ~3 nm, within samples containing crystalline phases is very challenging. However, this is important as there are several types of systems that contain these matrices: building materials, glass-ceramics, some alloys, etc. The total scattering synchrotron pair distribution function (PDF) can be used to characterize the local atomic order of the nanocrystalline components and to carry out quantitative analyses in complex mixtures. Although the resolution in momentum transfer space has been widely discussed, the resolution in the interatomic distance space has not been discussed to the best of our knowledge. Here, we report synchrotron PDF data collected at three beamlines in different experimental configurations and X-ray detectors. We not only discuss the effect of the resolution in Q-space, Qmax ins of the recorded data and Qmax of the processed data, but we also discuss the resolution in the interatomic distance (real) space. A thorough study of single-phase crystalline nickel used as standard was carried out. Then, selected cement-related samples including anhydrous tricalcium and dicalcium silicates, and pastes derived from the hydration of tricalcium silicate and ye’elimite with bassanite were analyzed.This work is part of the PhD of Mr. Jesus D. Zea-Garcia. This work was supported by Spanish MINECO and FEDER [BIA2017-82391-R research project and I3 [IEDI-2016-0079] program]

    Epitaxial checkerboard arrangement of nanorods in ZnMnGaO4 films studied by x-ray diffraction

    Full text link
    The intriguing nano-structural properties of a ZnMnGaO4 film epitaxially grown on MgO (001) substrate have been investigated using synchrotron radiation-based x-ray diffraction. The ZnMnGaO4 film consisted of a self-assembled checkerboard (CB) structure with perfectly aligned and regularly spaced vertical nanorods. The lattice parameters of the orthorhombic and rotated tetragonal phases of the CB structure were analyzed using H-K, H-L, and K-L cross sections of the reciprocal space maps measured around various symmetric and asymmetric reflections of the spinel structure. We demonstrate that the symmetry of atomic displacements at the phases boundaries provides the means for coherent coexistence of two domains types within the volume of the film

    In-situ strain tuning of the Dirac surface states in Bi2Se3 films

    Full text link
    Elastic strain has the potential for a controlled manipulation of the band gap and spin-polarized Dirac states of topological materials, which can lead to pseudo-magnetic-field effects, helical flat bands and topological phase transitions. However, practical realization of these exotic phenomena is challenging and yet to be achieved. Here, we show that the Dirac surface states of the topological insulator Bi2Se3 can be reversibly tuned by an externally applied elastic strain. Performing in-situ x-ray diffraction and in-situ angle-resolved photoemission spectroscopy measurements during tensile testing of epitaxial Bi2Se3 films bonded onto a flexible substrate, we demonstrate elastic strains of up to 2.1% and quantify the resulting reversible changes in the topological surface state. Our study establishes the functional relationship between the lattice and electronic structures of Bi2Se3 and, more generally, demonstrates a new route toward momentum-resolved mapping of strain-induced band structure changes

    Design, Control and in Situ Visualization of Gas Nitriding Processes

    Get PDF
    The article presents a complex system of design, in situ visualization and control of the commonly used surface treatment process: the gas nitriding process. In the computer design conception, analytical mathematical models and artificial intelligence methods were used. As a result, possibilities were obtained of the poly-optimization and poly-parametric simulations of the course of the process combined with a visualization of the value changes of the process parameters in the function of time, as well as possibilities to predict the properties of nitrided layers. For in situ visualization of the growth of the nitrided layer, computer procedures were developed which make use of the results of the correlations of direct and differential voltage and time runs of the process result sensor (magnetic sensor), with the proper layer growth stage. Computer procedures make it possible to combine, in the duration of the process, the registered voltage and time runs with the models of the process
    • 

    corecore