626 research outputs found

    Repeat ridge jumps associated with plume‐ridge interaction, melt transport, and ridge migration

    Get PDF
    Repeated shifts, or jumps, of mid-ocean ridge segments toward nearby hot spots can produce large, long-term changes to the geometry and location of the tectonic plate boundaries. Ridge jumps associated with hot spot–ridge interaction are likely caused by several processes including shear on the base of the plate due to expanding plume material as well as reheating of lithosphere as magma passes through it to feed off-axis volcanism. To study how these processes influence ridge jumps, we use numerical models to simulate 2-D (in cross section) viscous flow of the mantle, viscoplastic deformation of the lithosphere, and melt migration upward from the asthenospheric melting zone, laterally along the base of the lithosphere, and vertically through the lithosphere. The locations and rates that magma penetrates and heats the lithosphere are controlled by the time-varying accumulation of melt beneath the plate and the depth-averaged lithospheric porosity. We examine the effect of four key parameters: magmatic heating rate of the lithosphere, plate spreading rate, age of the seafloor overlying the plume, and the plume-ridge migration rate. Results indicate that the minimum value of the magmatic heating rate needed to initiate a ridge jump increases with plate age and spreading rate. The time required to complete a ridge jump decreases with larger values of magmatic heating rate, younger plate age, and faster spreading rate. For cases with migrating ridges, models predict a range of behaviors including repeating ridge jumps, much like those exhibited on Earth. Repeating ridge jumps occur at moderate magmatic heating rates and are the result of changes in the hot spot magma flux in response to magma migration along the base of an evolving lithosphere. The tendency of slow spreading to promote ridge jumps could help explain the observed clustering of hot spots near the Mid-Atlantic Ridge. Model results also suggest that magmatic heating may significantly thin the lithosphere, as has been suggested at Hawaii and other hot spots

    EPR, Bell, and Quantum Locality

    Full text link
    Maudlin has claimed that no local theory can reproduce the predictions of standard quantum mechanics that violate Bell's inequality for Bohm's version (two spin-half particles in a singlet state) of the Einstein-Podolsky-Rosen problem. It is argued that, on the contrary, standard quantum mechanics itself is a counterexample to Maudlin's claim, because it is local in the appropriate sense (measurements at one place do not influence what occurs elsewhere there) when formulated using consistent principles in place of the inconsistent appeals to "measurement" found in current textbooks. This argument sheds light on the claim of Blaylock that counterfactual definiteness is an essential ingredient in derivations of Bell's inequality.Comment: Minor revisions to previous versio

    There exist non orthogonal quantum measurements that are perfectly repeatable

    Full text link
    We show that, contrarily to the widespread belief, in quantum mechanics repeatable measurements are not necessarily described by orthogonal projectors--the customary paradigm of "observable". Nonorthogonal repeatability, however, occurs only for infinite dimensions. We also show that when a non orthogonal repeatable measurement is performed, the measured system retains some "memory" of the number of times that the measurement has been performed.Comment: 4 pages, 1 figure, revtex4, minor change

    Jacobi's Principle and the Disappearance of Time

    Full text link
    Jacobi's action principle is known to lead to a problem of time. For example, the timelessness of the Wheeler-DeWitt equation can be seen as resulting from using Jacobi's principle to define the dynamics of 3-geometries through superspace. In addition, using Jacobi's principle for non-relativistic particles is equivalent classically to Newton's theory but leads to a time-independent Schrodinger equation upon Dirac quantization. In this paper, we study the mechanism for the disappearance of time as a result of using Jacobi's principle in these simple particle models. We find that the path integral quantization very clearly elucidates the physical mechanism for the timeless of the quantum theory as well as the emergence of duration at the classical level. Physically, this is the result of a superposition of clocks which occurs in the quantum theory due to a sum over all histories. Mathematically, the timelessness is related to how the gauge fixing functions impose the boundary conditions in the path integral.Comment: Published version. Significant amendments to presentation. 27 page

    The Definition of Mach's Principle

    Full text link
    Two definitions of Mach's principle are proposed. Both are related to gauge theory, are universal in scope and amount to formulations of causality that take into account the relational nature of position, time, and size. One of them leads directly to general relativity and may have relevance to the problem of creating a quantum theory of gravity.Comment: To be published in Foundations of Physics as invited contribution to Peter Mittelstaedt's 80th Birthday Festschrift. 30 page

    Molecular mode of action and role of TP53 in the sensitivity to the novel epothilone sagopilone (ZK-EPO) in A549 non-small cell lung cancer cells

    Get PDF
    Sagopilone, an optimized fully synthetic epothilone, is a microtubule-stabilizing compound that has shown high in vitro and in vivo activity against a broad range of human tumor models. We analyzed the differential mechanism of action of sagopilone in non-small cell lung cancer cell lines in vitro. Sagopilone inhibited proliferation of non-small cell lung cancer cell lines at lower nanomolar concentration. The treatment with sagopilone caused strong disturbances of cellular cytoskeletal organization. Two concentration-dependent phenotypes were observed. At 2.5 nM sagopilone or 4 nM paclitaxel an aneuploid phenotype occur whereas a mitotic arrest phenotype was induced by 40 nM sagopilone or paclitaxel. Interestingly, treatment with 2.5 nM of sagopilone effectively inhibited cell proliferation, but - compared to high concentrations (40 nM) - only marginally induced apoptosis. Treatment with a high versus a low concentration of sagopilone or paclitaxel regulates a non-overlapping set of genes, indicating that both phenotypes substantially differ from each other. Genes involved in G2/M phase transition and the spindle assembly checkpoint, like Cyclin B1 and BUBR1 were upregulated by treatment with 40 nM sagopilone. Unexpectedly, also genes involved in DNA damage response were upregulated under that treatment. In contrast, treatment of A549 cells with a low concentration of sagopilone revealed an upregulation of direct transcriptional target genes of TP53, like CDKN1A, MDM2, GADD45A, FAS. Knockdown of TP53, which inhibited the transcriptional induction of TP53 target genes, led to a significant increase in apoptosis induction in A549 cells when treated with a low concentration of sagopilone. The results indicate that activation of TP53 and its downstream effectors like CDKN1A by low concentrations of sagopilone is responsible for the relative apoptosis resistance of A549 cells and might represent a mechanism of resistance to sagopilone

    Type-Decomposition of a Pseudo-Effect Algebra

    Full text link
    The theory of direct decomposition of a centrally orthocomplete effect algebra into direct summands of various types utilizes the notion of a type-determining (TD) set. A pseudo-effect algebra (PEA) is a (possibly) noncommutative version of an effect algebra. In this article we develop the basic theory of centrally orthocomplete PEAs, generalize the notion of a TD set to PEAs, and show that TD sets induce decompositions of centrally orthocomplete PEAs into direct summands.Comment: 18 page

    Unsharp Quantum Reality

    Get PDF
    The positive operator (valued) measures (POMs) allow one to generalize the notion of observable beyond the traditional one based on projection valued measures (PVMs). Here, we argue that this generalized conception of observable enables a consistent notion of unsharp reality and with it an adequate concept of joint properties. A sharp or unsharp property manifests itself as an element of sharp or unsharp reality by its tendency to become actual or to actualize a specific measurement outcome. This actualization tendency-or potentiality-of a property is quantified by the associated quantum probability. The resulting single-case interpretation of probability as a degree of reality will be explained in detail and its role in addressing the tensions between quantum and classical accounts of the physical world will be elucidated. It will be shown that potentiality can be viewed as a causal agency that evolves in a well-defined way

    Diffuse venting at the ASHES hydrothermal field : heat flux and tidally modulated flow variability derived from in situ time-series measurements

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 1435–1453, doi:10.1002/2015GC006144.Time-series measurements of diffuse exit-fluid temperature and velocity collected with a new, deep-sea camera, and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), were examined from a fracture network within the ASHES hydrothermal field located in the caldera of Axial Seamount, Juan de Fuca Ridge. The DEMS was installed using the HOV Alvin above a fracture near the Phoenix vent. The system collected 20 s of 20 Hz video imagery and 24 s of 1 Hz temperature measurements each hour between 22 July and 2 August 2014. Fluid velocities were calculated using the Diffuse Fluid Velocimetry (DFV) technique. Over the ∌12 day deployment, median upwelling rates and mean fluid temperature anomalies ranged from 0.5 to 6 cm/s and 0°C to ∌6.5°C above ambient, yielding a heat flux of 0.29 ± 0.22 MW m−2 and heat output of 3.1± 2.5 kW. Using a photo mosaic to measure fracture dimensions, the total diffuse heat output from cracks across ASHES field is estimated to be 2.05 ± 1.95 MW. Variability in temperatures and velocities are strongest at semidiurnal periods and show significant coherence with tidal height variations. These data indicate that periodic variability near Phoenix vent is modulated both by tidally controlled bottom currents and seafloor pressure, with seafloor pressures being the dominant influence. These results emphasize the importance of local permeability on diffuse hydrothermal venting at mid-ocean ridges and the need to better quantify heat flux associated with young oceanic crust.NSF Grant Numbers: OCE-1131772, OCE-1131455, OCE-1337473; University of Washington, and the NSF award Grant Number: OCE-09579382016-10-2

    A quantum logical and geometrical approach to the study of improper mixtures

    Get PDF
    We study improper mixtures from a quantum logical and geometrical point of view. Taking into account the fact that improper mixtures do not admit an ignorance interpretation and must be considered as states in their own right, we do not follow the standard approach which considers improper mixtures as measures over the algebra of projections. Instead of it, we use the convex set of states in order to construct a new lattice whose atoms are all physical states: pure states and improper mixtures. This is done in order to overcome one of the problems which appear in the standard quantum logical formalism, namely, that for a subsystem of a larger system in an entangled state, the conjunction of all actual properties of the subsystem does not yield its actual state. In fact, its state is an improper mixture and cannot be represented in the von Neumann lattice as a minimal property which determines all other properties as is the case for pure states or classical systems. The new lattice also contains all propositions of the von Neumann lattice. We argue that this extension expresses in an algebraic form the fact that -alike the classical case- quantum interactions produce non trivial correlations between the systems. Finally, we study the maps which can be defined between the extended lattice of a compound system and the lattices of its subsystems.Comment: submitted to the Journal of Mathematical Physic
    • 

    corecore