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Abstract

Sagopilone, an optimized fully synthetic epothilone, is a microtubule-stabilizing compound that has shown high in vitro and
in vivo activity against a broad range of human tumor models. We analyzed the differential mechanism of action of
sagopilone in non-small cell lung cancer cell lines in vitro. Sagopilone inhibited proliferation of non-small cell lung cancer
cell lines at lower nanomolar concentration. The treatment with sagopilone caused strong disturbances of cellular
cytoskeletal organization. Two concentration-dependent phenotypes were observed. At 2.5 nM sagopilone or 4 nM
paclitaxel an aneuploid phenotype occur whereas a mitotic arrest phenotype was induced by 40 nM sagopilone or
paclitaxel. Interestingly, treatment with 2.5 nM of sagopilone effectively inhibited cell proliferation, but - compared to high
concentrations (40 nM) - only marginally induced apoptosis. Treatment with a high versus a low concentration of
sagopilone or paclitaxel regulates a non-overlapping set of genes, indicating that both phenotypes substantially differ from
each other. Genes involved in G2/M phase transition and the spindle assembly checkpoint, like Cyclin B1 and BUBR1 were
upregulated by treatment with 40 nM sagopilone. Unexpectedly, also genes involved in DNA damage response were
upregulated under that treatment. In contrast, treatment of A549 cells with a low concentration of sagopilone revealed an
upregulation of direct transcriptional target genes of TP53, like CDKN1A, MDM2, GADD45A, FAS. Knockdown of TP53, which
inhibited the transcriptional induction of TP53 target genes, led to a significant increase in apoptosis induction in A549 cells
when treated with a low concentration of sagopilone. The results indicate that activation of TP53 and its downstream
effectors like CDKN1A by low concentrations of sagopilone is responsible for the relative apoptosis resistance of A549 cells
and might represent a mechanism of resistance to sagopilone.
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Introduction

Lung cancer is one of the leading causes of cancer death

worldwide, as it is often only diagnosed at advanced stages and

displays a high degree of resistance to the chemotherapeutic

regimens used. [1–5]. Sagopilone (SAG) is a fully synthetic

epothilone, currently in clinical development that was optimized to

overcome limitations frequently associated with taxanes, conven-

tional tubulin-binding agents (TBAs) as for example MDR

mediated resistant mechanisms [6]. SAG has demonstrated high

in vitro and in vivo activity in a range of tumor models compared

with paclitaxel (PAC) and other commonly used chemotherapeutic

agents [6]. With strong anti-tumor activity been observed in

NSCLC (non-small cell lung cancer) cell lines in vitro and primary

human NSCLC mouse xenograft models, SAG may provide a

potential new treatment opportunity for NSCLC [7].

Several studies describe predictive markers of response for

NSCLC cell lines, as expression of the excision repair cross-

complementation group 1 (ERCC1) gene for platinum compounds

[8] or the epidermal growth factor receptor (EGFR) mutational

status for the EGFR tyrosine-kinase inhibitors (gefitinib and

erlotinib) [9]; [10]. With regard to resistance to TBAs, reports on

cell lines selected for PAC resistance through long-term culture in

the presence of the drug showed increased levels of TUBB3 (beta

III tubulin) protein expression [11]. In contrast, their patupilone

(epothilone B) resistant counterpart, incubated in the same

manner, showed low TUBB3 protein expression [11]. These data

suggest that TUBB3 contributes to the cellular resistance towards
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PAC but not to epothilone. As a consequence there is a need for

other markers that can predict SAG response.

Mutations in tumor-suppressor genes, which plays a central role

in cellular response to DNA damage, cell cycle regulation, and

apoptosis [12], were found in about 50% of all NSCLC cases [13].

However, the role of TP53 in response to TBAs like PAC has been

contested: Some groups reported no correlation between TP53

mutational status and sensitivity to PAC [14]; [15], while others

observed that lack of TP53 activity resulted in increased

chemosensitivity to PAC [16]; [17]. These findings suggest that

the TP53 mutational status and altered TP53 activity might

influence the sensitivity of cells to SAG. To address this question,

we have analyzed the influence of TP53 on the ability of SAG to

induce apoptosis in an NSCLC model in vitro.

The identification of stratification biomakers or drug- or drug

target-related response markers might considerably improve the

outcome of the therapy and would lead to a shift towards more

tailored therapies against specific disease types [18]. The optimal

treatment for patients suffering from NSCLC will increasingly rely

on biomarker analysis to identify the patient population who will

benefit most from a certain mono- or combination therapy.

Nevertheless, biomarker identification and validation remains a

major challenge [19] and it is therefore important to accompany

the development of new therapeutic agents for patients with

NSCLC with research on patient stratification and the identifica-

tion and validation of clinical biomarkers which predict response.

As part of this process, it is vital to understand how the activity of

promising new agents is influenced by alterations in key cellular

pathways, and vice versa.

The aim of our translational program was to examine the

activity of SAG in vitro in a panel of NSCLC cell lines, to further

analyze its mechanism of action and to compare it with the effects

of PAC and to investigate possible resistance mechanisms as well

as predictors of response based on gene expression profiling.

Materials and Methods

Cells and compounds
Human lung carcinoma cell lines (A549, NCI-H1437, NCI-

H23, NCI-H522, NCI-H226, NCI-H460) were obtained from the

American Type Culture Collection (ATCC) and cultured

according to recommended protocols. SAG was synthesized at

Bayer Healthcare Laboratories through total syntheses. PAC was

purchased from Sigma-Aldrich (Munich, Germany). The pan-

caspase inhibitor ZVAD.fmk was purchased from Bachem,

(Heidelberg, Germany). All media and supplements for cell culture

were purchased from Biochrom AG (Berlin, Germany). Stock

solutions were prepared as previously described [20]. For selection

of stably transduced cell lines Hygromycin was purchased from

Roche (Mannheim, Germany).

Tumor cell proliferation assay
The effect of SAG or PAC on the proliferation of lung cancer

was assessed using a cell proliferation assay based on staining cells

with crystal violet as described before [20]. IC50 values were

calculated from three independent experiments using the Sigma-

plot software (SPSS, Friedrichsdorf, Germany).

In vitro analysis of effects on the cytoskeleton, the cell
cycle and apoptosis

A549 cells were incubated with vehicle (ethanol 0.1%), 2.5 nM

or 40 nM SAG for 20 h, fixed with 4% paraformaldehyde and

stained with a monoclonal mouse anti-a-tubulin antibody (1:1000)

(Sigma-Aldrich), Alexa FluorH 488-linked goat anti-mouse IgG

secondary antibody (1:250) (Invitrogen Inc., Carlsbad, CA, USA)

and DRAQ5 (Biostatus, Leicestershire, UK), according to

standard protocols. Fixed and stained cells were analyzed using

a Zeiss LSM 510 META microscope (Carl Zeiss AG, Jena,

Germany) equipped with a Plan-ApochromatH 63x/1.4 (oil DIC)

objective. Zeiss LSM software (version 3.0 SP3) was employed for

confocal imaging.

Fluorescence-activated cell sorter (FACS) analysis was per-

formed to determine cell cycle distribution of SAG- or PAC-

treated cells. Cells were incubated with SAG at the indicated

concentrations or vehicle for 18 h, fixed with 70% ethanol, and

stained with 50 mg/mL propidium iodide (PI) (Sigma-Aldrich).

Cellular DNA content was determined by flow cytometry using the

BD FACSCaliburTM (Becton, Dickinson and Company, San Jose,

CA, USA) and data were analyzed with the CellQuestTM software

(Becton, Dickinson and Company). To investigate apoptosis by

FACS, A549 cells were incubated continuously for 72 hrs with the

indicated concentrations of SAG or vehicle, trypsinized and

stained with DiOC6(3) (3,39-dihexyloxacarbocyanine iodide) (In-

vitrogen Inc.) and PI as described before [21].

Quantitative Real-Time PCR and Western Blot
RNA was extracted using RNeasy Mini Kit (Qiagen, Hilden,

Germany), cDNA was generated using SuperScript First Strand

Synthesis System (Invitrogen Inc.). Real-time PCR was performed

with gene expression assays from Applied Biosystems: p21 (#Hs

00355782_m1), TP53 (#Hs00153340_m1), Cyclin B1 (#Hs00

259126_m1), BUBR1 (Hs00176169_m1), FAS (Hs00163653_m1),

GADD45A (Hs00169255_m1), MDM2 (Hs00242813_m1), and

HPRT (#4326321E) as endogenous control. Reactions were set up

in triplicates using the TaqMan FAST Universal PCR Mastermix

and recorded in a 7500 Fast Real-Time PCR-System (Applied

Biosystems). The relative expression of each gene was quantified

according to the comparative threshold cycle method (DD Ct

method) with equal amplification efficiencies of the target and the

endogenous control.

Proteins were extracted using M-PER Mammalian Protein

Extraction Reagent (Pierce, Perbio Science, Bonn, Germany). The

protein concentrations of the lysates were determined with the

BCA Protein Assay Kit (Pierce) according to the manufacturer’s

instructions. Equal amounts of proteins were separated on a 4–

12% Bis-Tris gel (Invitrogen) in an XCell SureLock electropho-

resis chamber (Invitrogen) filled with MOPS SDS running buffer

and transferred to a PVDF membrane (Invitrogen) according to

the manufacturer’s instructions. After blocking of unspecific

binding sites, the membrane was probed with antibodies specific

for CDKN1A (abcam, #16767), TP53 (BD Pharmingen,

#15801A), BUB1B (BD Transduction Laboratories, # 612502),

Cyclin B1 (BD Pharmingen, # 554176), cH2AX (upstate, # 05-

636), PARP (BD Pharmingen, # 551024), phospho-Ser/Thr-

MPM-2 (upstate # 05-368), and GAPDH (Advanced Immuno-

Chemical, # RGM2/Clone 6C5) as loading control.

RNA extraction for gene expression analysis
A549 cells were seeded in 10 cm cell culture plates and allowed

to attach overnight. The cells were then treated with medium

containing either 2.5 nM SAG, 40 nM SAG, 4 nM PAC or

40 nM PAC, respectively, vehicle (ethanol 0.1%), or were left

untreated for 18 hours. Total RNA was extracted using the

RNeasy Mini Kit (Qiagen, Hilden, Germany) including a DNase I

(Qiagen) step to eliminate genomic DNA. Total RNA was checked

for integrity using the RNA LabChips on the Agilent Bioanalyzer

2100 (Agilent Technologies Inc., Palo Alto, CA, USA) and the

concentration was determined on a Nanodrop spectrophotometer
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(Peqlab, Erlangen, Germany). All RNA samples had high RNA

integrity numbers [22] larger than 9.5.

Affymetrix GeneChipH analysis
The One-Cycle Eukaryotic Target Labeling Kit (Affymetrix

Inc., Santa Clara, CA, USA) was used according to the

manufacturer’s instructions. Briefly, 2 mg of high quality total

RNA was reverse-transcribed using a T7 tagged oligo-dT primer

for the first-strand cDNA synthesis reaction. After RNase H-

mediated second-strand cDNA synthesis, the double-stranded

cDNA was purified and served as template for the subsequent in

vitro transcription reaction which generates biotin-labeled comple-

mentary RNA (cRNA). The biotinylated cRNA was then cleaned

up, fragmented and hybridized to GeneChip HGU133Plus2.0

expression arrays (Affymetrix, Inc., Santa Clara, CA, USA.),

which contain 54675 probe sets. The GeneChips were washed and

stained with streptavidin-phycoerythrin on a GeneChip Fluidics

Station 450 (Affymetrix). After washing, the arrays were scanned

on an Affymetrix GeneChip 3000 scanner with autoloader. A total

of 30 HGU133Plus2.0 arrays were processed with n = 5 biological

replicates for all treatment groups.

Expression analyses were performed with the Expressionist Pro

4.0 software (Genedata AG, Basel, Switzerland). The quality of the

data files (CEL format) containing probe level expression data was

checked and refined using the Expressionist Refiner software

(Genedata AG). The refiner process was performed by clustering

of samples on feature intensity level. This allows the identification

of possible outliers on feature intensity level. Subsequently, refined

CEL files were condensed with MAS5.0 algorithm (Affymetrix)

and LOWESS normalized using all experiments as a reference.

The normalized expression data sets were loaded into the CoBi

database (Genedata) and analyzed with the Genedata Expression-

ist software. Principle Component Analysis (PCA) and hierarchical

clustering was performed with the Expressionist Analyst Pro 4.0

software (Genedata). A valid value proportion analysis was

performed for each group (4 of 5 probe sets had to show a signal)

and the resultant groups of probe sets were united. These data

were subjected to a number of pairwise comparisons using the

Expressionist Analyst Pro 4.0 software (Genedata). Statistical

analyses included pairwise comparisons between SAG- or PAC

treated samples and vehicle-treated samples. Probe sets were

considered to be regulated if they were outside of the ellipsoid

region in the Volcano plot applying the following thresholds:

Volcano plot: .5x-fold change and P-value ,1610-5 from T-test

for 40 nM SAG and PAC; for 2.5 nM SAG and 4 nM PAC .3-

fold change and P-value ,5610-3. Venn intersection analyses of

significantly regulated genes were performed to identify genes

regulated commonly by different treatments using the Expression-

ist Analyst Pro 4.0 software. Pathway analyses were performed

with the GeneGo Metacore (St. Joseph, MI, USA) database and

software tools. All Affymetrix cel-file data are available via the

ArrayExpress accession number E-MTAB-377.

Cloning of shRNA constructs
The BLOCK-iT RNAi Designer algorithm (Invitrogen, Carls-

bad, CA, USA) was used to analyze TP53 mRNA (GenBank

accession number, NM_000546.4) and to identify three target

sequences for shRNA, i.e. shTP53_1 (sense) 59-GCATCTTATCC-

GAGTGGAAGG-39 and 59-CCTTCCACTCGGATAAGATGC-

39; shTP53_2 (sense) 59-GACTCCAGTGGTAATCTAC-39 and

59-GTAGATTACCACTGGAGTC-39; shTP53_3 (sense) 59-GC-

GCACAGAGGAAGAGAATCT-39 and 59-AGATTCTCTTC-

CTCTGTGCGC-39. The target sequences for a non-specific

control shRNA (non-targeting shRNA) were shCtrl1 (sense)

59-TAAGGCTATGAAGAGATAC-39 and 59-GTATCTCTTC-

ATAGCCTTA-39 and shCtrl2 (sense) 59-TTCTCCGAACGT-

GTCACGT-39 and 59-ACGTGACACGTTCGGAGAA-39.

Complementary synthetic DNA oligonucleotides were hybridized

and inserted into pENTR/U6 vector (Invitrogen). shRNA cassettes

were recombined by Gateway cloning into a modified pLenti-6

destination vector (pGT3, Invitrogen) to generate lentiviral shRNA

expression constructs shCtrl1, shCtrl2, shTP53_1, shTP53_2, and

shTP53_3. All constructs were confirmed by DNA sequencing at the

Services in Molecular Biology (SMB), Berlin, Germany.

Production of lentivirus and transduction of A549 cells
293FT cells were transfected with different pGT3 expression

vectors containing TP53 shRNAs or nontarget control shRNA.

Lentivirus production was carried out according to the BLOCK-

iT U6 RNAi Entry Vector Kit User Manual (Invitrogen). A549

cells were infected with lentiviruses recombinant for shTP53_1,

shTP53_2, shTP53_3, or non-target control shRNAs shCtrl1 and

shCtrl2, respectively, and selected with hygromycin (100 mg/ml).

Individual clones were expanded and tested for TP53- knockdown

efficiency by qRT-PCR (data not shown) and immunoblotting.

Results

Sagopilone efficaciously inhibits proliferation of NSCLC
cell lines in the nanomolar range

The anti-proliferative activity of SAG and PAC was examined

in 6 non-small cell lung cancer cell lines of different subtypes

(adenocarcinoma: A549, NCI-H1437, NCI-H23, NCI-H522;

squamous cell carcinoma: NCI-H226; large cell lung carcinoma:

NCI-H460) using an in vitro proliferation assay (Fig. 1A). SAG

inhibited lung tumor cell proliferation in all cell lines, with IC50

values ranging from 0.2 to 3.3 nM, and was effective at sub-

nanomolar concentrations (#1 nM) in five of the six cell lines.

Moreover, SAG was consistently more efficacious than PAC.

Sagopilone interferes with cytoskeletal functions and
induces apoptosis in A549 cells

Further experiments on the general mode of action of SAG

were performed with the A549 as model cell line. Vehicle-treated

A549 cells showed a normal microtubule spread in interphase cells

and typical bipolar spindles with congressed chromosomes at the

metaphase plate in mitotic cells (Fig. 1B). In contrast, when A549

cells were incubated with 40 nM SAG marked microtubule

bundling in interphase cells was visible which led to an abnormal

spindle organization in metaphase cells, with multiple spindle

poles, several plates of congressed chromosomes, and an irregular

chromosomal alignment. These cellular effects were dose-depen-

dent and also seen after incubation with 2.5 nM SAG, but to a

lesser extent.

Effects of SAG and PAC on cell cycle progression were

measured in A549 cells in vitro with FACS analysis (Fig. 1C and

Supplementary Fig. S1). Two different phenotypes were observed:

Low concentrations of SAG or PAC (0.5–5 nM and 2–7 nM,

respectively) induced aberrant cell division resulting in the

formation of an increased percentage of aneuploid cells with a

DNA content ,2N or .2N, but only a slight increase in the

percentage of cells in G2/M phase. A different phenotype was

observed at higher concentrations of SAG and PAC (.10 nM):

Here, a dramatic increase in the percentage of cells in the G2/M

phase was observed (Fig. 1C and Supplementary Fig. S1). For

all further analyses of the two different phenotypes, two

concentrations were employed which induce either the aneuploid
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phenotype, i.e. 2.5 nM SAG or 4 nM PAC or the mitotic arrest

phenotype, i.e. 40 nM SAG or PAC.

A concentration-dependent induction of apoptosis by SAG was

observed in FACS analysis after 72 hrs of incubation. Interesting-

ly, treatment with low concentrations of SAG (2.5, 5, and 10 nM)

effectively inhibited cell proliferation but induced only little

apoptosis, whereas the high concentration SAG treatments

(40 nM and 100 nM) led to pronounced induction of apoptosis

in A549 cells (Fig. 1D).

Strong effects of high concentration, but not by low
concentration sagopilone-treatment on changes in
genome-wide gene expression in A549 cells

RNA was isolated from A549 cells, untreated, vehicle control-

treated, as well as treated with two concentrations each of SAG

(2.5 nM and 40 nM) and PAC (4 nM and 40 nM) for 18 hrs, and

hybridized to Affymetrix HGU133Plus2.0 arrays. High-quality

gene expression data were obtained. A principle component

analysis (PCA) based on the expression of all genes revealed two

main clusters: One cluster contained the untreated, vehicle-treated

and low concentration SAG (2.5 nM)- or PAC-treated (4 nM)

samples, whereas samples treated with high concentrations

(40 nM) of SAG or PAC formed a separate cluster (Fig. 2A, 2B)

indicating that treatment with a low drug concentration of SAG or

PAC induced only relatively small gene expression changes as

compared to the untreated samples, whereas a high drug

concentration of SAG or PAC induced stronger gene expression

changes.

Paired t-tests comparing each treatment group with the vehicle-

treated groups were performed and the results displayed as

Volcano plot (Supplementary Fig. S2) depicting the significance as

a function of the fold change. Four gene lists were generated with

the threshold parameters for P-value and fold change of the high

and low concentration treatments of both compounds were as

described in Table 1, together with the total number and the

number of up- and down-regulated genes. The gene lists obtained

from the statistical tests were compared using Venn diagrams.

From the total of 503 genes regulated by 40 nM PAC and 593 by

40 nM SAG, 391 genes were both regulated by both treatments,

indicating a similar set of genes affected by a high concentration of

both TBAs. A Gene Ontology (GO) analysis of the 391 regulated

genes with the GeneGo Metacore software revealed a similar

occurrence and rank order of biological processes (data not shown)

indicating a very similar mechanism of action for both TBAs at

high concentration. In contrast, when comparing the 593 genes

regulated by 40 nM SAG with the 221 genes affected by treatment

with 2.5 nM of the same drug, only 41 genes were commonly

regulated by both drug concentrations and a meager nine genes

were commonly regulated by 40 nM (total of 503 genes) or 4 nM

PAC (total of 158 genes), which indicated that treatment with a

high versus a low concentration of either SAG or PAC for 18 hrs

regulates a non-overlapping set of genes. When comparing the

effects of 2.5 nM SAG (total of 221 genes) with 4 nM PAC (total of

Figure 2. Differential gene expression induced by high versus low concentration of sagopilone. 2A and 2B. Principle Component
Analysis (PCA) of microarray data of A549 cells untreated (grey), vehicle-treated (dark grey), or treated with 2.5 nM (blue) or 40 nM SAG (dark blue)
and 4 nM (green) or 40 nM PAC (dark green) for 18 hrs. Each plotted sphere represents the expression profile of an individual sample with n = 5
independent biological replicates on the projection of the data on the first three principal components, accounting for most of the variability in the
data (labeled axes). Views from two different angles (Fig. 2A, 2B) are shown to visualize the clustering.
doi:10.1371/journal.pone.0019273.g002

Figure 1. Effect of sagopilone (SAG) on cell proliferation, tubulin cytoskeleton, cell cycle and apoptosis of lung cancer cells. 1A, SAG
and PAC inhibit proliferation of lung cancer cell lines. Six different lung cancer cell lines were treated with SAG or PAC for 72 hrs. Proliferation was
measured with crystal violet assay. Mean IC50 values as measure of the half-maximal growth inhibition and standard deviations are shown. 1B,
Immunofluorescence staining of a-tubulin (green) and DNA (red) in A549 lung cancer cells after incubation with either vehicle (0.1% ethanol), 2.5 nM,
or 40 nM SAG. Scale bar = 20 mm. Representative pictures of interphase and mitotic cells are shown. 1C, FACS analysis of A549 cells treated with
vehicle, 2.5 and 40 nM SAG or 4 nM and 40 nM PAC for 18 hrs revealed G2/M arrest at 40 nM SAG or PAC and increased numbers of cells with ,2N
and .2N DNA content and enrichment in G0/G1 phase of the cell cycle at 2.5 nM SAG or 4 nM PAC. 1D, Induction of apoptosis by increasing
concentrations of SAG in A549 cells. A549 cells were incubated for 72 hrs with vehicle, or 2.5 nM, 5 nM, 10 nM, 40 nM, or 100 nM SAG. Further, the
cells were stained with 3,39-dihexyloxacarbocyanine iodide (DiOC6(3)) and propidium iodide for FACS measurement. White bars indicate the mean
percentage of cells characterized by decrease of DYm (DYm low) and black bars indicate cells with DYm low and high propidium iodide signal (PI+
and DYm low) due to plasma membrane rupture. The mean of three independent experiments and standard deviation is given.
doi:10.1371/journal.pone.0019273.g001
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158 genes), 30 genes were regulated by both TBAs, reflecting

about one-fifth of all low concentration PAC and one-seventh of

all low concentration SAG regulated genes. This suggests an

overlapping but also differential effect on gene regulation at low

concentration of SAG or PAC. Among the 30 genes commonly

regulated by SAG and PAC were the TP53 response genes.

Genes involved in G2/M phase transition are upregulated
by high concentration sagopilone treatment

Differentially regulated genes were subjected to pathway

analysis using the GeneGo MetaCore software and database.

Genes involved in G2/M phase transition and mitosis, such as

Cyclin A, Cyclin B, Nek2A and Securin [23]; [24] and genes such

as BUB1, BUBR1 and CDC20, which are components of the

spindle assembly checkpoint (SAC) [25], were upregulated after

treatment with high concentration of SAG or PAC (Table 2).

CDK1, which is essential for the G1/S and G2/M phase

transitions of eukaryotic cells, is down-regulated by 40 nM SAG

or PAC.

As treatment with 40 nM SAG or PAC led to mitotic arrest in

A549 cells we were interested in analyzing the protein expression

levels of the differentially expressed genes involved in G2/M phase

of the cell cycle in dependence of the drug concentration. Both,

SAG and PAC, at 40 nM markedly upregulated protein

expression of Cyclin B1 and BUBR1 (Fig. 3A and 3B) as well as

mRNA expression (Supplementary Fig. S4), whereas treatments at

concentration below 10 nM SAG or 20 nM PAC did not

significantly alter the expression levels of the proteins (Fig. 3A

and 3B) and mRNAs (Supplementary Fig S4). The results revealed

that high concentrations of A549 cells with SAG or PAC -

concurrent with the observed G2/M arrest - led to an

upregulation of genes and proteins involved in the G2/M phase.

Genes involved in DNA damage response are
upregulated by high concentration sagopilone treatment

Interestingly, GO analysis revealed that genes involved in DNA

damage response and repair pathways such as the human DNA

Polymerase epsilon (POLE) [26], XRCC6 and XRCC5 [27], were

found to be upregulated after treatment of A549 cells with 40 nM

SAG or PAC (Table 3). In order to analyze a potential direct effect

of SAG on DNA damage, phoshorylation of histone H2AX was

measured as marker for DNA double strand breaks (DSBs). In

A549 cells, high concentrations of SAG, i.e. at 40 nM and

100 nM, increased phosphorylations of H2AX (Supplementary

Fig. S3A). Treatment with the pan-caspase inhibitor zVAD-fmk

inhibits both phosphorylation of H2AX and PARP cleavage

demonstrating that the SAG-induced increase in DSBs is not a

direct effect of SAG, but rather a consequence of the increased

DSBs which accompanies the apoptosis.

TP53 and direct transcriptional targets of TP53 are
upregulated by low concentration sagopilone treatment

Numerous genes that are direct transcriptional targets of TP53

[28], such as CDKN1A, or GADD45A were upregulated after

treatment of A549 cells with low concentration of SAG or PAC on

the mRNA level (Table 4). Remarkably, A549 cells treated with

2.5 nM SAG showed a more pronounced upregulation of TP53

target genes compared to cells treated with 4 nM PAC (Table 4).

In order to analyze the effects of SAG and PAC on TP53 target

genes in a concentration-dependent manner, A549 cells were

treated with increasing concentration of SAG or PAC which

revealed a bell-shaped curve of gene induction for the TP53 target

genes CDKN1A, MDM2, GADD45A, and FAS: Expression was

induced between 1–10 nM SAG or PAC, whereas concentrations

exceeding 10 nM SAG or PAC resulted in a lower induction of

gene expression (Fig. 3C). Treatment with PAC was consistently

less potent in induction of these four genes.

In order to analyze if the changes observed on the RNA level

were also mirrored by changes on the protein level, immunoblot

analysis of TP53 and CDKN1A were performed from lysates of

A549 cells treated with increasing concentrations of SAG or PAC

for 18 hrs. TP53 and CDKN1A showed increased protein

expression levels after treatment with 0.5–10 nM SAG or PAC

(Fig. 3D and 3E).

Knockdown of TP53 increases apoptosis induction by
low concentration of sagopilone in A549 cells

To further elucidate the role of TP53 activation in response to

SAG, A549 cells containing wild-type TP53 were stably

transfected with expression plasmids containing short hairpin

RNAs (shRNAs) targeting the mRNA of TP53 for knockdown.

The TP53 protein expression level (Fig. 4A) and the TP53 mRNA

(Fig. 4B) were dramatically reduced (80–90%) in the three

independently generated shTP53 A549 cell lines (Fig. 4A, 4B).

Moreover, the transcriptional induction of CDKN1A by SAG was

markedly diminished in the TP53 shRNA knock-down cell lines

when compared with the two control A549 cell lines shCtrl1 and

shCtrl2, in which where p21 was found to be elevated in the

expected manner (Fig. 4C).

The effect of increasing concentrations of SAG on the TP53

knockdown compared to the control shRNA cell lines on apoptosis

induction was measured by FACS. The TP53 shRNA knockdown

cell lines exhibited a significant increase of apoptotic cell numbers

compared to the control A549 when treated with 2.5 nM, 5 nM,

or 10 nM SAG (Fig. 4D). Treatment with SAG at 40 nM and

100 nM led only to marginally elevated induction of apoptosis in

TP53 shRNA knock-down cell lines compared to control cell lines.

The results indicate that activation of TP53 and downstream

effectors by low concentrations of SAG is responsible for the

Table 1. Number of regulated genes after treatment with sagopilone (SAG) or paclitaxel (PAC).

Treatment P-value Fold Change Regulated Genes Up-regulated Down-regulated

4 nM PAC vs. vehicle #561023 $3 158 83 75

2.5 nM SAG vs. vehicle #561023 $3 221 110 111

40 nM PAC vs. vehicle #161025 $5 503 403 100

40 nM SAG vs. vehicle #161025 $5 593 455 138

Shown is the number of genes that were either up- or down-regulated obtained from Volcano plots (similar to the one shown in Supplementary Figure 2) using specific
parameters for P-value and fold change.
doi:10.1371/journal.pone.0019273.t001
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apoptosis resistance of A549 cells and might represent a

mechanism of resistance to SAG.

Discussion

Resistance towards chemotherapy is a main obstacle in

successful lung cancer treatment. Hence the development of new

therapeutic regimens should be accompanied by research on

molecular mechanisms of resistance at the earliest time point. This

could help to identify patient population most likely benefit from

treatment and therefore increasing the chance for a more

successful therapeutic response.

In this study, the cellular and molecular mechanisms instigated

by the new epothilone SAG have further been elucidated and

compared with PAC, a standard TBA, used in combination with

carboplatin for the treatment of NSCLC. We analyzed the efficacy

of SAG compared to PAC in five different lung cancer cell lines in

vitro and showed that SAG was consistently more efficient than

PAC. This is in line with previous articles reporting that SAG has

a higher affinity and selectivity towards the target b-tubulin, which

results in a higher intracellular drug concentration of SAG

compared to PAC [29].

In the past, TBAs were generally believed to cause mitotic

arrest, but more detailed studies have identified two different,

Table 2. Differently expressed genes with relevance to G2/M transition or mitosis after treatment with high concentrations of
sagopilone (SAG) or paclitaxel (PAC).

Identifier Gene Name Gene Symbol Fold Change 40 nM SAG Fold Change 40 nM PAC

232588_at stromal antigen 1 STAG1 12.50 11.37

207331_at centromere protein F, 350/400 ka (mitosin) CENPF 5.59 5.25

232466_at Cullin 4A CUL4A 4.90 4.66

1556339_a_at Ubiquitin-activating enzyme E1C (UBA3 homolog, yeast) UBE1C 4.03 3.89

215623_x_at SMC4 structural maintenance of chromosomes 4-like 1 (yeast) SMC4L1 3.97 3.75

244427_at Kinesin family member 23 KIF23 3.92 3.33

233940_at Echinoderm microtubule associated protein like 4 EML4 3.51 3.20

242362_at Cullin 3 CUL3 2.74 n.c.

228729_at cyclin B1 CCNB1 2.52 2.35

204641_at NIMA (never in mitosis gene a)-related kinase 2 NEK2 2.25 2.09

221258_s_at kinesin family member 18A KIF18A n.c. 2.09

218755_at kinesin family member 20A KIF20A 2.09 1.93

236974_at Cyclin I CCNI 2.01 n.c.

209408_at kinesin family member 2C KIF2C 1.97 1.84

208079_s_at serine/threonine kinase 6 (aurora kinase A) STK6 1.96 1.86

209642_at BUB1 budding uninhibited by benzimidazoles 1 homolog BUB1 1.92 1.69

202870_s_at CDC20 cell division cycle 20 homolog (S. cerevisiae) CDC20 1.91 1.79

203755_at BUB1 budding uninhibited by benzimidazoles 1 homolog beta BUB1B 1.91 1.69

204170_s_at CDC28 protein kinase regulatory subunit 2 CKS2 1.86 1.81

203418_at cyclin A2 CCNA2 1.86 1.84

210052_s_at TPX2, microtubule-associated protein homolog (Xenopus laevis) TPX2 1.75 1.67

218355_at kinesin family member 4A KIF4A 1.71 1.57

202705_at cyclin B2 CCNB2 1.65 1.64

203554_x_at pituitary tumor-transforming 1 (Securin) PTTG1 1.52 1.50

209714_s_at cyclin-dependent kinase inhibitor 3 CDKN3 1.50 n.c.

223394_at SERTA domain containing 1 SERTAD1 n.c. 1.35

203967_at CDC6 cell division cycle 6 homolog (S. cerevisiae) CDC6 0.48 0.49

213523_at cyclin E1 CCNE1 0.46 0.44

210559_s_at cell division cycle 2, G1 to S and G2 to M CDC2 n.c. 0.46

203213_at cell division cycle 2, G1 to S and G2 to M CDC2 0.42 n.c.

202107_s_at MCM2 minichromosome maintenance deficient 2 MCM2 0.45 0.49

201930_at MCM6 minichromosome maintenance deficient 6 MCM6 0.44 0.45

205296_at retinoblastoma-like 1 (p107) RBL1 0.36 0.40

205034_at cyclin E2 CCNE2 0.22 0.24

From the overall 705 differentially regulated genes in response to treatment with 40 nM SAG or PAC (assessed by pair wise comparisons of treatment versus vehicle and
selection according to Volcano plot with .5fold change, P-value,1610-5 after Affymetrix gene expression analysis) the 34 genes involved in G2/M transition and
mitosis (Gene Ontology classification cell cycle, mitosis or cytokinesis) are shown.
Statistical significance level P,0.001. n.c. = no change.
doi:10.1371/journal.pone.0019273.t002
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Figure 3. Validation of differential gene regulation by sagopilone and paclitaxel on the RNA and protein level. 3A, 3B, Increase of
Cyclin B1 protein and BUBR1 protein by high concentrations of SAG (Fig. 3A) and PAC (Fig. 3B) A549 cells were incubated with the indicated
concentrations of SAG or PAC for 18 hours. Cell lysates were subjected to immunoblotting and probed with antibodies recognizing Cyclin B1 and
BUBR1, respectively. GAPDH served as loading control. 3C, Regulation of TP53 target genes by SAG and PAC. A549 cells were incubated with the
indicated concentrations of SAG or PAC for 18 hours and subjected to RNA extraction. Expression of CDKN1A, MDM2, GADD45A, and FAS, was
determined by real-time PCR (TaqMan) and normalized to the expression of the endogenous control gene HPRT. The mean of three independent
experiments and standard deviations are shown. The fold change of the vehicle treated A549 cells was set as 1.0 and the SAG treated samples were
normalized to the vehicle treated A549 cells. 3D, 3E, Increase of TP53 and CDKN1A protein levels by concentrations of SAG or PAC between 0.5–
10 nM. A549 cells were incubated with the indicated concentrations of SAG (Fig 3D) or PAC (Fig. 3E) for 18 hours. Cell lysates were subjected to
immunoblotting and probed with antibodies recognizing TP53, CDKN1A and GAPDH, respectively.
doi:10.1371/journal.pone.0019273.g003
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concentration-dependent phenotypes [30]. We were able to show

that this is also the mode of action of SAG in lung cancer cells,

where an aneuploid phenotype is induced by 2.5 nM SAG or

4 nM PAC and, in contrast, a mitotic arrest phenotype is induced

by 40 nM SAG or PAC, indicating that SAG has a similar

concentration-dependent mechanism as PAC. However, we

showed that for PAC the induction of aneuploid cells peaked at

higher concentrations compared to SAG, probably reflecting the

pharmacological differences reported earlier [29].

To explore the differences between the two phenotypes caused

by SAG, we have generated genome-wide gene expression profiles

of A549 cells treated with low and high concentrations of SAG or

PAC, which were analyzed statistically, as well as by pathway

analysis tools including Gene Ontology. Treatment of A549 cells

with 40 nM SAG or PAC for 18 hrs strongly induced differential

gene expression and very similar gene expression profiles by both,

SAG and PAC. Due to the fact that the majority of the cells

arrested at the metaphase/anaphase transition after treatment, the

gene expression patterns mainly showed upregulation of compo-

nents of the SAC and genes involved in mitosis, like BUBR1 and

Cyclin B1, all indicative of a mitotic arrest phenotype induced by

40 nM SAG or PAC. These results are in line with previous

Table 3. Differently expressed genes involved in DNA damage response after treatment with high concentrations of sagopilone
(SAG) or paclitaxel (PAC).

Identifier Gene Name Gene Symbol Fold Change 40 nM SAG Fold Change 40 nM PAC

1560509_at Polymerase (DNA directed), epsilon POLE 5.88 4.24

237133_at Sterile alpha motif and leucine zipper containing kinase AZK ZAK 3.88 4.38

215308_at Thyroid autoantigen 70 kDa (Ku antigen) G22P1 3.37 3.16

232633_at X-ray repair complementing defective repair
in Chinese hamster cells 5

XRCC5 3.02 2.82

207746_at polymerase (DNA directed), theta POLQ 2.66 2.43

204317_at G-2 and S-phase expressed 1 GTSE1 2.18 n.c.

211040_x_at G-2 and S-phase expressed 1 GTSE1 n.c. 1.99

203554_x_at pituitary tumor-transforming 1 PTTG1 1.52 1.50

208808_s_at high-mobility group box 2 HMGB2 1.51 n.c.

204767_s_at flap structure-specific endonuclease 1 FEN1 n.c. 0.59

205698_s_at mitogen-activated protein kinase kinase 6 MAP2K6 0.48 0.52

From the overall 705 differentially regulated genes in response to treatment with 40 nM SAG or PAC (selected by pairwise comparison and Volcano Plot analysis, see
Table 1), genes were further selected using the search phrases ‘‘DNA damage’’, ‘‘double strand breaks’’, ‘‘DNA repair’’ and ‘‘excision repair’’ in their Gene Ontology
classification. Statistical significance level P,0.01. n.c. = no change.
doi:10.1371/journal.pone.0019273.t003

Table 4. Differential expression of TP53 target genes after incubation with low concentrations of sagopilone (SAG) and paclitaxel
(PAC).

Identifier Gene Name Gene Symbol Fold Change 2.5 nM SAG Fold Change 4 nM PAC

225912_at tumor protein p53 inducible nuclear protein 1 TP53INP1 2.82 1.90

217373_x_at Mdm2, transformed 3T3 cell double minute 2 MDM2 2.47 n.c.

202284_s_at cyclin-dependent kinase inhibitor 1A (p21, Cip1) CDKN1A 2.30 1.44

215719_x_at Fas (TNF receptor superfamily, member 6) FAS 2.20 1.32

201236_s_at BTG family, member 2 BTG2 2.18 n.c.

207813_s_at ferredoxin reductase FDXR 1.79 1.34

203725_at growth arrest and DNA-damage-inducible, alpha GADD45A 1.64 n.c.

227345_at tumor necrosis factor receptor superfamily, member 10d TNFRSF10D 1.57 n.c.

219628_at p53 target zinc finger protein WIG1 1.51 n.c.

223342_at ribonucleotide reductase M2 B (TP53 inducible) RRM2B 1.47 n.c.

208478_s_at BCL2-associated X protein BAX n.c. 1.29

203409_at damage-specific DNA binding protein 2, 48 kDa DDB2 1.29 1.30

209295_at tumor necrosis factor receptor superfamily, member 10b TNFRSF10B 1.28 n.c.

1563016_at Acetyl-Coenzyme A carboxylase alpha ACACA 0.21 0.70

From the overall 349 differentially regulated genes in response to treatment with 2.5 nM SAG or PAC (selected by pairwise comparison and Volcano Plot analysis, see
Table 1), genes were further selected according to their transcriptional activation by TP53 (Riley et. al., 2008).
Statistical significance level P,0.05, n.c. = no change.
doi:10.1371/journal.pone.0019273.t004
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reports about gene expression studies comparing epothilones and

PAC [31]; [32]. Moreover, a recent report about primary NSCLC

mouse xenograft models treated with SAG unveiled a highly

significant upregulation of genes involved in pathways like SAC

and chromosome segregation in the primary NSCLC xenograft

models which are SAG responders compared to non-responder

[7], indicating that the phenotype observed in vitro after treatment

with the high concentration of SAG is mainly responsible for

tumor cells killing.

Induction of DNA damage response genes and the phosphor-

ylation of histone H2AX, which marks DNA as prerequisite for

repair process to take place, at 40 nM SAG, as reported here,

might be due to direct induction of DNA damage by high

concentration of SAG. As treatment with the pan-caspase

inhibitor zVAD-fmk inhibits both phosphorylation of H2AX and

PARP cleavage indicates that the SAG-induced increase in DSBs

is not direct effect of SAG, but rather the consequence of the

increased apoptosis. However, up to now, the role of DSBs and the

phosphorylation of H2AX in response to SAG and its potential

role in the mechanistic activity of SAG will need further

investigation.

In our studies, treatment of A549 cells with low concentrations

of SAG or PAC resulted in stabilization of TP53 and induction of

TP53 target genes, potentially resulting from consistent translation

of the long-lived TP53 mRNA during prolonged mitosis induced

by both drugs [33]; [34]; [35]. However, it should be noted that

induction of TP53 target genes was more pronounced after SAG

treatment.

This upregulation of TP53 target genes such as CDKN1A or

GADD45A, mostly resembled an activation pattern which is

caused in response to mild, repairable damage, and induced cell

cycle arrest, rather than strong damages which promote apoptosis

[36]; [28]; [37]. This allows repair processes to take place and the

cells to survive. In terms of chemotherapy this would indicate an

unfavorable condition, because the cells might start regrowing

after a terminal cell cycle arrest. The aneuploid cells finally arrest

in the G1 state due to a postmitotic checkpoint that is dependent

on TP53 [38]. TP53 mediates G1 arrest mainly by increasing

protein levels of the cyclin-dependent kinase (CDK) inhibitor p21

(CDKN1A) [39]. Apart from functions in cell cycle regulations

several anti-apoptotic functions of p21 have been described [40];

[41]; [42]; [43]. Moreover, the weak apoptosis induction after low

concentration SAG treatment of A549 cells compared to high

concentrations leads to the conclusion that anti-apoptotic effects of

TP53 overweigh in this phenotype.

To date the role of TP53 in the sensitivity of cancer cells to

TBAs is contested [14]; [15]. Many groups reported that cells

lacking wild type TP53 displayed increased sensitivity to PAC

[16]; [44]; [45]. Sensitization of TP53 wild type (wt) cells to low

concentration PAC was achieved by by siRNA-mediated knock-

down of TP53 in NCI-H460 cells [46]. Furthermore, the gene

transfection of TP53-null human non-small cell lung cancer H358

cells with wt TP53 resulted in loss of PAC sensitivity [47].

To address the question whether TP53 plays a role in the

sensitivity towards SAG, we analyzed the effect of TP53 knock

down on the apoptosis induction of A549 cells. We have shown

that the knockdown of TP53 increased the rate of apoptosis after

low concentration SAG treatment in A549 cells. These effects in

A549 TP53 knockdown cells were mostly based on abrogation of

TP53-mediated transcription at low concentration of SAG. The

TP53-dependent CDKN1A induction was coincident with

resistance to low concentration SAG-induced apoptosis in A549

cells. Thus, the transactivation of TP53 is responsible for the low

apoptosis induction of A549 cells in vitro after treatment with low

concentration SAG. Pharmacological inhibition of TP53 using

pifithrin-a could be a second method to validate the role of TP53

in SAG efficacy. Results from previous studies show that the

sensitizing effects of pifithrin-a towards microtubule inhibiting

drugs [48]; [46] is well in accordance with the findings of our study

for SAG in NSCLC.

On the other hand it has been shown that pifithrin-a is not

completely specific in its action on TP53, as it is known to have

targets other than TP53 [49]; [50]; [51] and pifithrin-a is known

to protect cells from DNA damage-induced apoptosis by a p53-

independent mechanism [52]. Therefore in the current study we

used shRNA based knockdown of TP53 as the most specific

method on otherwise genetically identical cell lines.

It might be possible that in tumors, harboring areas with low

vascularization only very low amounts of SAG will actually reach

the tumor cells. In that case, the aneuploid phenotype (here

Figure 4. Knockdown of TP53 increases apoptosis induction by low concentration sagopilone. 4A; shRNA mediated knockdown of TP53
in A549 cells after lentiviral transduction and hygromycin selection. A549 cell were stably transduced with three different shRNAs targeting the mRNA
of TP53 (shTP53_1, shTP53_2, shTP53_3) or two different control shRNAs (shCtrl1 or shCtrl2). TP53 protein is strongly downregulated in A549 cells
stably transfected with shRNAs targetting TP53. Lysates from A549 cells with shRNA-mediated TP53 knockdown and sh control cells were subjected
to immunoblotting and probed with antibodies recognizing TP53 and GAPDH, respectively. 4B, TP53 mRNA is downregulated in A549 shTP53 cells.
TP53 gene expression in A549 shTP53 knockdown and control cell lines were determined by real-time PCR (TaqMan) and normalized to the
endogenous control (HPRT). The mean TP53 expression of shCtrl1 was set as 1.0 and the TP53 expression of the control shRNA or TP53 shRNA was
normalized to the expression of shCtrl1. Shown is the average of three independent experiments and standard deviations. 4C, TP53 knockdown
inhibits CDN1A induction by SAG. Regulation of TP53 target gene CDKN1A by SAG. A549 shTP53 knockdown and control cell lines cells were
incubated with the indicated concentrations of SAG for 18 hours and subjected to RNA extraction. Expression of CDKN1A was determined by real-
time PCR (TaqMan), normalized to the endogenous control (HPRT). Shown is the average of three independent experiments and standard deviations.
The average expression of the control shRNA shCtrl1 was set as 1.0 and the SAG treated shTP53 knock down cell lines were normalized to the control.
4D. Knockdown of TP53 increases apoptosis induction by low concentration SAG Apoptosis induction by SAG after 72 hours. A549 sh RNA controls
(shCtrl1, shCtrl2) and TP53 shRNA knockdown cell lines (shTP53_1, shTP53_2, shTP53_3) were treated for 72 hrs with vehicle, or 2.5 nM, 5 nM, 10 nM,
40 nM, or 100 nM SAG. Afterwards, the cells were stained with DiOC6(3) and propidium iodide for FACS detection of apoptosis-associated
mitochondrial membrane potential dissipation (D Ym low) and in combination with plasma membrane rupture (PI + and D Ym low). White bars
indicate the mean percentage of cells characterized by decrease of DYm (DYm low) and black bars indicate cells with DYm low and high propidium
iodine signal (PI+) due to plasma membrane rupture. Three independent experiments were performed. For statistic significance One-way ANOVA
analysis followed by the Bonferroni a posteriori test was performed comparing the response of the control A549 cell line with the shTP53 cell lines
treated with the same SAG concentration or vehicle. The mean apoptosis induction was significantly higher in the three shTP53 cell lines treated with
5 nM SAG than in the control group treated with 5 nM SAG (ANOVA, F = 56.68, p,0.0002), shTP53_1 vs control (ANOVA/Bonferroni, t = 8.195,
p,0.01), shTP53_2 vs control (ANOVA/Bonferroni, t = 11.16, p,0.01), shTP53_3 vs control (ANOVA/Bonferroni, t = 7.405, p,0.01). The mean apoptosis
induction was significantly higher in two shTP53 cell lines treated with 10 nM SAG than in the control group treated with 10 nM SAG (ANOVA,
F = 18,81, p,0.0032), shTP53_1 vs control (ANOVA/Bonferroni, t = 5.171, p,0.05), shTP53_2 vs control (ANOVA/Bonferroni, t = 6.992, p,0.05), while
no significant difference was observed between shTP53_3 vs control (ANOVA/Bonferroni, t = 4.750, p.0.05).
doi:10.1371/journal.pone.0019273.g004
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experimentally induced by 2.5 nM SAG or 4 nM PAC) would

subsequently result in a G1 arrest. Under that condition, the TP53

response would play an important role. It is an open question

whether in vivo these cells then die from apoptosis or were arrested

for a certain time and start regrowing eventually, which is well in

accordance with data from a recent study in patient derived

NSCLC xenografts showing a better long-term response to SAG in

models with mutated TP53 [7].

About half of all NSCLC cases harbor mutations in TP53 [13].

The question remains whether these tumors might have a higher

probability to respond to SAG. SAG is currently in clinical

development and has been evaluated in phase II trials in NSCLC

[53]; [54] therefore investigations whether mutational status of

TP53 could serve as predictive biomarker in clinical trials warrants

further investigation. Additionally, it could be of clinical relevance

if patients with TP53 wild type tumors benefit from combination

therapy with drugs inhibiting TP53. Those drugs would enhance

the effect of SAG therapy and concurrently would help to reduce

the systemic chemotherapy-induced toxicity [55]. As the currently

available TP53 inhibitors such as pifithrin-a are not appropriate

for clinical application. TP53 inhibitors that more specifically

inhibit certain functions of TP53 i.e. those that block TP53-

dependent transactivation (with no effect on p53-mediated

apoptosis) are needed.

Supporting Information

Figure S1 Cell cycle analysis of A549 cells treated with
different concentrations sagopilone and paclitaxel. Cells

were incubated with growth medium containing 0 to 100 nM SAG

and PAC for 18 hours, followed by fixation and incubation with

propidium iodide. DNA content was determined by flow cytometry.

The amounts of cells constituting the aneuploid, G1, S and G2/M

populations were determined using ModFit software and plotted

against the drug concentration. S phase cells are not shown because

of clarity. Mean values and standard deviation given.

(TIF)

Figure S2 Volcano plot from T-test of 40 nM sagopilone
vs. vehicle (threshold: .5-fold change, P-value ,161025).
The Volcano plot depicts the significance as a function of the fold

change. Thus, highly significant genes with a low fold change as

well as genes which possess a high fold change and a relatively low

significance were indicated in red. Thresholds for the Volcano

plots were defined as ellipse with .5-fold change and P-value

,161025 from T-test for 40 nM SAG and PAC and for 2.5 nM

SAG and 4 nM PAC as ellipse with .3-fold change and P-value

,561023.

(TIF)

Figure S3 cH2AX as marker for DNA double strand
breaks and apoptosis. (A) A549 cell were treated with

increasing concentrations of SAG for 18 hours and subjected to

western blot analysis. cH2AX antibody staining is shown. (B)

Western blot analysis of A549 cells treated with 40 nM SAG for

different times in the presence (+zVAD) (40 mM) or absence

(-zVAD) of ZVAD.fmk and probed with antibodies detecting

PARP, cH2AX, MPM2, respectively. GAPDH served as loading

control.

(TIF)

Figure S4 Regulation of gene expression of Cyclin B1,
BUBR1 and TP53 by sagopilone and paclitaxel. A549 cells

were incubated continuously with medium containing increasing

concentrations of both agents for 18 hours and were subjected to

RNA extraction. After performing a reverse transcription the

cDNA was subjected to real time PCR (TaqMan) of Cyclin B1,

BUBR1 and TP53. Shown is the fold change compared to the

vehicle treated samples as mean of three independent experiments

and standard deviations.

(TIF)
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