181 research outputs found

    Sea state and rain: a second take on dual-frequency altimetry

    Get PDF
    TOPEX and Jason were the first two dual-frequency altimeters in space, with both operating at Ku- and C-band. Each thus gives two measurements of the normalized backscatter, sigma0, (from which wind speed is calculated) and two estimates of wave height. Departures from a well-defined relationship between the Ku- and C-band sigma0 values give an indication of rain.This paper investigates differences between the two instruments using data from Jason's verification phase. Jason's Ku-band estimates of wave height are ~1.8% less than TOPEX's, whereas its sigma0 values are higher. When these effects have been removed the root mean square (r.m.s.) mismatch between TOPEX and Jason's Ku-band observations is close to that for TOPEX's observations at its two frequencies, and the changes in sigma0 with varying wave height conditions are the same for the two altimeters. Rain flagging and quantitative estimates of rain rate are both based on the atmospheric attenuation derived from the sigma0 measurements at the two frequencies. The attenuation estimates of TOPEX and Jason agree very well, and a threshold of -0.5 dB is effective at removing the majority of spurious data records from the Jason GDRs. In the high sigma0 regime, anomalous data can be cause by processes other than rain. Consequently, for these low wind conditions, neither can reliable rain detection be based on altimetry alone, nor can a generic rain flag be expected to remove all suspect data

    Characterizing the role of Glycine max NHL gene family members in plant-nematode interactions [abstract]

    Get PDF
    Abstract only availableSoybean cyst nematode (SCN; Heterodera glycines) is a microscopic parasitic roundworm of soybean that causes nearly $1 billion dollars in annual yield loss in the United States. SCN damages the plant by attaching itself to the soybean root system, where it forms a complex feeding site and drains vital nutrients from the plant. Naturally resistant soybean lines have been used as the primary strategy to manage SCN, because they have evolved a natural mechanism for resisting SCN infection. However, soybean resistance against SCN is derived from a small genetic base and repeated annual plantings of these same resistant lines has selected for populations of SCN that can reproduce on the resistant lines. Therefore, understanding the molecular mechanisms of how some soybean plants have the ability to naturally resist infection by SCN is critical for designing new strategies to improve crop plant resistance to SCN. My project focuses on soybean NDR1/HIN1-like (NHL) genes found to be expressed at higher levels specifically within SCN-induced feeding cells of resistant soybean as compared to susceptible soybean. To gain insight into the potential role of these genes in soybeans ability to resist SCN, full-length gene and cDNA sequences have been isolated using techniques known as genome walking and RACE PCR. RNAi and overexpression constructs have been generated to directly test the function of these genes in SCN resistance. To gain insight into the nematode-responsive regulation of each gene, the endogenous promoter sequences have been isolated and fused to the _-glucuronidase reporter gene for expression studies. This project will give insight into the mechanisms the soybean plant uses to defend itself against SCN infection and hopefully reveal crucial results which aid in the goal of developing SCN resistant soybean.Life Sciences Undergraduate Research Opportunity Progra

    Assessment of Current Global and Regional Mean Sea Level Estimates Based on the TOPEX/Poseidon Jason-1 and 2 Climate Data Record

    Get PDF
    Recent developments in Precise Orbit Determinations (POD) due to in particular to revisions to the terrestrial reference frame realization and the time variable gravity (TVG) continues to provide improvements to the accuracy and stability of the PO directly affecting mean sea level (MSL) estimates. Long-term credible MSL estimates require the development and continued maintenance of a stable reference frame, along with vigilant monitoring of the performance of the independent tracking systems used to calculate the orbits for altimeter spacecrafts. The stringent MSL accuracy requirements of a few tenths of an mm/yr are particularly essential for mass budget closure analysis over the relative short time period of Jason-l &2, GRACE, and Argo coincident measurements. In an effort to adhere to cross mission consistency, we have generated a full time series of experimental orbits (GSFC stdlllO) for TOPEX/Poseidon (TP), Jason-I, and OSTM based on an improved terrestrial reference frame (TRF) realization (ITRF2008), revised static (GGM03s), and time variable gravity field (Eigen6s). In this presentation we assess the impact of the revised precision orbits on inter-mission bias estimates, and resultant global and regional MSL trends. Tide gauge verification results are shown to assess the current stability of the Jason-2 sea surface height time series that suggests a possible discontinuity initiated in early 2010. Although the Jason-2 time series is relatively short (approximately 3 years), a thorough review of the entire suite of geophysical and environmental range corrections is warranted and is underway to maintain the fidelity of the record

    Assessment of Current Estimates of Global and Regional Mean Sea Level from the TOPEX/Poseidon, Jason-1, and OSTM 17-Year Record

    Get PDF
    The science value of satellite altimeter observations has grown dramatically over time as enabling models and technologies have increased the value of data acquired on both past and present missions. With the prospect of an observational time series extending into several decades from TOPEX/Poseidon through Jason-1 and the Ocean Surface Topography Mission (OSTM), and further in time with a future set of operational altimeters, researchers are pushing the bounds of current technology and modeling capability in order to monitor global sea level rate at an accuracy of a few tenths of a mm/yr. The measurement of mean sea-level change from satellite altimetry requires an extreme stability of the altimeter measurement system since the signal being measured is at the level of a few mm/yr. This means that the orbit and reference frame within which the altimeter measurements are situated, and the associated altimeter corrections, must be stable and accurate enough to permit a robust MSL estimate. Foremost, orbit quality and consistency are critical to satellite altimeter measurement accuracy. The orbit defines the altimeter reference frame, and orbit error directly affects the altimeter measurement. Orbit error remains a major component in the error budget of all past and present altimeter missions. For example, inconsistencies in the International Terrestrial Reference Frame (ITRF) used to produce the precision orbits at different times cause systematic inconsistencies to appear in the multimission time-frame between TOPEX and Jason-1, and can affect the intermission calibration of these data. In an effort to adhere to cross mission consistency, we have generated the full time series of orbits for TOPEX/Poseidon (TP), Jason-1, and OSTM based on recent improvements in the satellite force models, reference systems, and modeling strategies. The recent release of the entire revised Jason-1 Geophysical Data Records, and recalibration of the microwave radiometer correction also require the further re-examination of inter-mission consistency issues. Here we present an assessment of these recent improvements to the accuracy of the 17 -year sea surface height time series, and evaluate the subsequent impact on global and regional mean sea level estimates

    Anatomy and origin of authochthonous late Pleistocene forced regression deposits, east Coromandel inner shelf, New Zealand: implications for the development and definition of the regressive systems tract

    Get PDF
    High-resolution seismic reflection data from the east Coromandel coast, New Zealand, provide details of the sequence stratigraphy beneath an autochthonous, wave dominated inner shelf margin during the late Quaternary (0-140 ka). Since c. 1 Ma, the shelf has experienced limited subsidence and fluvial sediment input, producing a depositional regime characterised by extensive reworking of coastal and shelf sediments during glacio-eustatic sea-level fluctuations. It appears that only one complete fifth-order (c. 100 000 yr) depositional sequence is preserved beneath the inner shelf, the late Pleistocene Waihi Sequence, suggesting any earlier Quaternary sequences were mainly cannibalised into successively younger sequences. The predominantly Holocene-age Whangamata Sequence is also evident in seismic data and modern coastal deposits, and represents an incomplete depositional sequence in its early stages of formation. A prominent aspect of the sequence stratigraphy off parts of the east Coromandel coast is the presence of forced regressive deposits (FRDs) within the regressive systems tract (RST) of the late Pleistocene Waihi Sequence. The FRDs are interpreted to represent regressive barrier-shoreface sands that were sourced from erosion and onshore reworking of underlying Pleistocene sediments during the period of slow falling sea level from isotope stages 5 to 2 (c. 112-18 ka). The RST is volumetrically the most significant depositional component of the Waihi Sequence; the regressive deposits form a 15-20 m thick, sharp-based, tabular seismic unit that downsteps and progrades continuously across the inner shelf. The sequence boundary for the Waihi Sequence is placed at the most prominent, regionally correlative, and chronostratigraphically significant surface, namely an erosional unconformity characterised in many areas by large incised valleys that was generated above the RST. This unconformity is interpreted as a surface of maximum subaerial erosion generated during the last glacial lowstand (c. 18 ka). Although the base of the RST is associated with a prominent regressive surface of erosion, this is not used as the sequence boundary as it is highly diachronous and difficult to identify and correlate where FRDs are not developed. The previous highstand deposits are limited to subaerial barrier deposits preserved behind several modern Holocene barriers along the coast, while the transgressive systems tract is preserved locally as incised-valley fill deposits beneath the regressive surface of erosion at the base of the RST. Many documented late Pleistocene RSTs have been actively sourced from fluvial systems feeding the shelf and building basinward-thickening, often stacked wedges of FRDs, for which the name allochthonous FRDs is suggested. The Waihi Sequence RST is unusual in that it appears to have been sourced predominantly from reworking of underlying shelf sediments, and thus represents an autochthonous FRD. Autochthonous FRDs are also present on the Forster-Tuncurry shelf in southeast Australia, and may be a common feature in other shelf settings with low subsidence and low sediment supply rates, provided shelf gradients are not too steep, and an underlying source of unconsolidated shelf sediments is available to source FRDs. The preservation potential of such autochthonous FRDs in ancient deposits is probably low given that they are likely to be cannibalised during subsequent sea-level falls

    Geological controls on the geometry of incised-valley fills: Insights from a global dataset of late-Quaternary examples

    Get PDF
    Incised valleys that develop due to relative sea-level change are common features of continental shelves and coastal plains. Assessment of the factors that control the geometry of incised-valley fills has hitherto largely relied on conceptual, experimental or numerical models, else has been grounded on case studies of individual depositional systems. Here, a database-driven statistical analysis of 151 late-Quaternary incised-valley fills has been performed, the aim being to investigate the geological controls on their geometry. Results of this analysis have been interpreted with consideration of the role of different processes in determining the geometry of incised-valley fills through their effect on the degree and rate of river incision, and on river size and mobility. The studied incised-valley fills developed along active margins are thicker and wider, on average, than those along passive margins, suggesting that tectonic setting exerts a control on the geometry of incised-valley fills, likely through effects on relative sea-level change and river behaviour, and in relation to distinct characteristics of basin physiography, water discharge and modes of sediment delivery. Valley-fill geometry is positively correlated with the associated drainage-basin size, confirming the dominant role of water discharge. Climate is also inferred to exert a potential control on valley-fill dimensions, possibly through modulations of temperature, peak precipitation, vegetation and permafrost, which would in turn affect water discharge, rates of sediment supply and valley-margin stability. Shelves with slope breaks that are currently deeper than 120 m contain incised-valley fills that are thicker and wider, on average, than those hosted on shelves with breaks shallower than 120 m. No correlation exists between valley-fill thickness and present-day coastal-prism convexity, which is measured as the difference in gradient between lower coastal plains and inner shelves. These findings challenge some concepts embedded in sequence stratigraphic thinking, and have significant implications for analysis and improved understanding of source-to-sink sediment route-ways, and for attempting predictions of the occurrence and characteristics of hydrocarbon reservoirs

    A century of sea level measurements at Newlyn, SW England

    Get PDF
    The Newlyn Tidal Observatory is the most important sea level station in the UK. It commenced operations in 1915 as part of the Second Geodetic Levelling of England and Wales, and the mean sea level determined from the tide gauge during the first six years (May 1915-April 1921) defined Ordnance Datum Newlyn (ODN) which became the national height datum for the whole of Great Britain. The 100 years of sea level data now available have contributed significantly to many studies in oceanography, geology and climate change. This paper marks the centenary of this important station by reviewing the sea level (and, more recently, detailed land level) measurements and Newlyn’s contributions to UK cartography, geodesy and sea-level science in general. Recommendations are made on how sea and land level measurements at Newlyn might be enhanced in the future

    Tide Gauge Benchmark Monitoring Working Group Technical Report 2022

    Get PDF
    editorial reviewedApplications of the Global Navigation Satellite Systems (GNSS) to Earth Sciences are numerous. The International GNSS Service (IGS), a voluntary federation of government agencies, universities and research institutions, combines GNSS resources and expertise to provide the highest–quality GNSS data, products, and services in order to support high–precision applications for GNSS–related research and engineering activities. This IGS Technical Report 2022 includes contributions from the IGS Governing Board, the Central Bureau, Analysis Centers, Data Centers, station and network operators, working groups, pilot projects, and others highlighting status and important activities, changes and results that took place and were achieved during 2022
    • 

    corecore