4,201 research outputs found

    The nitroxide radical TEMPOL prevents obesity, hyperlipidaemia, elevation of inflammatory cytokines, and modulates atherosclerotic plaque composition in apoE<sup>-/-</sup> mice

    Full text link
    © 2015 Elsevier Ireland Ltd. The nitroxide compound TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl radical) has been shown to prevent obesity-induced changes in adipokines in cell and animal systems. In this study we investigated whether supplementation with TEMPOL inhibits inflammation and atherosclerosis in apoE-/- mice fed a high fat diet (HFD). Methods: ApoE-/- mice were fed for 12 weeks on standard chow diet or a high-fat diet. Half the mice were supplemented with 10mg/g TEMPOL in their food. Plasma samples were analysed for triglycerides, cholesterol, low- and high-density lipoprotein cholesterol, inflammatory cytokines and markers (interleukin-6, IL-6; monocyte-chemotactic protein, MCP-1; myeloperoxidase, MPO; serum amyloid A, SAA; adiponectin; leptin). Plaques in the aortic sinus were analysed for area, and content of collagen, lipid, macrophages and smooth muscle cells. Results: High fat feeding resulted in marked increases in body mass and plasma lipid levels. Dietary TEMPOL decreased both parameters. In the high-fat-fed mice significant elevations in plasma lipid levels and the inflammatory markers IL-6, MCP-1, MPO, SAA were detected, along with an increase in leptin and a decrease in adiponectin. TEMPOL supplementation reversed these effects. When compared to HFD-fed mice, TEMPOL supplementation increased plaque collagen content, decreased lipid content and increased macrophage numbers. Conclusions: These data indicate that in a well-established model of obesity-associated hyperlipidaemia and atherosclerosis, TEMPOL had a significant impact on body mass, atherosclerosis, hyperlipidaemia and inflammation. TEMPOL may therefore be of value in suppressing obesity, metabolic disorders and increasing atherosclerotic plaque stability

    Topological Analysis of Metabolic Networks Integrating Co-Segregating Transcriptomes and Metabolomes in Type 2 Diabetic Rat Congenic Series

    Get PDF
    Background: The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus is caused by complex organ-specific cellular mechanisms contributing to impaired insulin secretion and insulin resistance. Methods: We used systematic metabotyping by 1H NMR spectroscopy and genome-wide gene expression in white adipose tissue to map molecular phenotypes to genomic blocks associated with obesity and insulin secretion in a series of rat congenic strains derived from spontaneously diabetic Goto-Kakizaki (GK) and normoglycemic Brown-Norway (BN) rats. We implemented a network biology strategy approach to visualise shortest paths between metabolites and genes significantly associated with each genomic block. Results: Despite strong genomic similarities (95-99%) among congenics, each strain exhibited specific patterns of gene expression and metabotypes, reflecting metabolic consequences of series of linked genetic polymorphisms in the congenic intervals. We subsequently used the congenic panel to map quantitative trait loci underlying specific metabotypes (mQTL) and genome-wide expression traits (eQTL). Variation in key metabolites like glucose, succinate, lactate or 3-hydroxybutyrate, and second messenger precursors like inositol was associated with several independent genomic intervals, indicating functional redundancy in these regions. To navigate through the complexity of these association networks we mapped candidate genes and metabolites onto metabolic pathways and implemented a shortest path strategy to highlight potential mechanistic links between metabolites and transcripts at colocalized mQTLs and eQTLs. Minimizing shortest path length drove prioritization of biological validations by gene silencing. Conclusions: These results underline the importance of network-based integration of multilevel systems genetics datasets to improve understanding of the genetic architecture of metabotype and transcriptomic regulations and to characterize novel functional roles for genes determining tissue-specific metabolism

    Radiosensitization of hypoxic tumour cells by S-nitroso-N-acetylpenicillamine implicates a bioreductive mechanism of nitric oxide generation

    Get PDF
    The radiosensitizing activity of S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, was assessed in a model of non-metabolic hypoxia achieved in an atmosphere of 95% nitrogen–5% carbon dioxide. A 10 min preincubation of hypoxic EMT-6 cells (10 × 106 ml−1) with 0.1 and 1 mM SNAP before radiation resulted in an enhancement ratio of 1.6 and 1.7 respectively. The level of spontaneous NO release, measured by a NO specific microsensor, correlated directly with the concentration of SNAP and was enhanced 50 times in the presence of cells. Dilution of the cell suspension from 10 to 0.1 × 106 ml−1 resulted in a 16-fold decline in NO release, but only a twofold decrease in radiosensitization was observed. Preincubation of hypoxic cells with SNAP for 3 min up to 30 min caused an increasing radiosensitizing effect. Extended preincubation of 100 min led to the loss of radiosensitization although the half-life of SNAP is known to be 4–5 h. Taken together, these observations suggest that SNAP generates NO predominantly by a bioreductive mechanism and that its biological half-life is unlikely to exceed 30 min. The lack of correlation between free NO radical and radiosensitizing activity may reflect a role of intracellular NO adducts which could contribute to radiosensitization as well. © 1999 Cancer Research Campaig

    Islet autoimmunity identifies a unique pattern of impaired pancreatic beta-cell function, markedly reduced pancreatic beta cell mass and insulin resistance in clinically diagnosed type 2 diabetes

    Get PDF
    There is a paucity of literature describing metabolic and histological data in adult-onset autoimmune diabetes. This subgroup of diabetes mellitus affects at least 5% of clinically diagnosed type 2 diabetic patients (T2DM) and it is termed Latent Autoimmune Diabetes in Adults (LADA). We evaluated indexes of insulin secretion, metabolic assessment, and pancreatic pathology in clinically diagnosed T2DM patients with and without the presence of humoral islet autoimmunity (Ab). A total of 18 patients with at least 5-year duration of clinically diagnosed T2DM were evaluated in this study. In those subjects we assessed acute insulin responses to arginine, a glucose clamp study, whole-body fat mass and fat-free mass. We have also analyzed the pancreatic pathology of 15 T2DM and 43 control cadaveric donors, using pancreatic tissue obtained from all the T2DM organ donors available from the nPOD network through December 31, 2013. The presence of islet Ab correlated with severely impaired β-cell function as demonstrated by remarkably low acute insulin response to arginine (AIR) when compared to that of the Ab negative group. Glucose clamp studies indicated that both Ab positive and Ab negative patients exhibited peripheral insulin resistance in a similar fashion. Pathology data from T2DM donors with Ab or the autoimmune diabetes associated DR3/DR4 allelic class II combination showed reduction in beta cell mass as well as presence of autoimmune-associated pattern A pathology in subjects with either islet autoantibodies or the DR3/DR4 genotype. In conclusion, we provide compelling evidence indicating that islet Ab positive long-term T2DM patients exhibit profound impairment of insulin secretion as well as reduced beta cell mass seemingly determined by an immune-mediated injury of pancreatic β-cells. Deciphering the mechanisms underlying beta cell destruction in this subset of diabetic patients may lead to the development of novel immunologic therapies aimed at halting the disease progression in its early stage

    Surveillance strategies for Classical Swine Fever in wild boar – a comprehensive evaluation study to ensure powerful surveillance

    Get PDF
    Surveillance of Classical Swine Fever (CSF) should not only focus on livestock, but must also include wild boar. To prevent disease transmission into commercial pig herds, it is therefore vital to have knowledge about the disease status in wild boar. In the present study, we performed a comprehensive evaluation of alternative surveillance strategies for Classical Swine Fever (CSF) in wild boar and compared them with the currently implemented conventional approach. The evaluation protocol was designed using the EVA tool, a decision support tool to help in the development of an economic and epidemiological evaluation protocol for surveillance. To evaluate the effectiveness of the surveillance strategies, we investigated their sensitivity and timeliness. Acceptability was analysed and finally, the cost-effectiveness of the surveillance strategies was determined. We developed 69 surveillance strategies for comparative evaluation between the existing approach and the novel proposed strategies. Sampling only within sub-adults resulted in a better acceptability and timeliness than the currently implemented strategy. Strategies that were completely based on passive surveillance performance did not achieve the desired detection probability of 95%. In conclusion, the results of the study suggest that risk-based approaches can be an option to design more effective CSF surveillance strategies in wild boar

    Synaesthesia: a distinct entity that is an emergent feature of adaptive neurocognitive differences

    Get PDF
    In this article, I argue that synaesthesia is not on a continuum with neurotypical cognition. Synaesthesia is special: its phenomenology is different; it has distinct causal mechanisms; and is likely to be associated with a distinct neurocognitive profile. However, not all synaesthetes are the same, and there are quantifiable differences between them. In particular, the number of types of synaesthesia that a person possesses is a hitherto underappreciated variable that predicts cognitive differences along a number of dimensions (mental imagery, sensory sensitivity, attention to detail). Together with enhanced memory, this may constitute a common core of abilities that may go some way to explaining why synaesthesia might have evolved. I argue that the direct benefits of synaesthesia are generally limited (i.e. the synaesthetic associations do not convey novel information about the world) but, nevertheless, synaesthesia may develop due to other adaptive functions (e.g. perceptual ability, memory) that necessitate changes to design features of the brain. The article concludes by suggesting that synaesthesia forces us to reconsider what we mean by a ‘normal’ mind/brain. There may be multiple ‘normal’ neurodevelopmental trajectories that can sculpt very different ways of experiencing the world, of which synaesthesia is but one. This article is part of a discussion meeting issue ‘Bridging senses: novel insights from synaesthesia’

    Effect of a vitamin/mineral supplement on children and adults with autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vitamin/mineral supplements are among the most commonly used treatments for autism, but the research on their use for treating autism has been limited.</p> <p>Method</p> <p>This study is a randomized, double-blind, placebo-controlled three month vitamin/mineral treatment study. The study involved 141 children and adults with autism, and pre and post symptoms of autism were assessed. None of the participants had taken a vitamin/mineral supplement in the two months prior to the start of the study. For a subset of the participants (53 children ages 5-16) pre and post measurements of nutritional and metabolic status were also conducted.</p> <p>Results</p> <p>The vitamin/mineral supplement was generally well-tolerated, and individually titrated to optimum benefit. Levels of many vitamins, minerals, and biomarkers improved/increased showing good compliance and absorption. Statistically significant improvements in metabolic status were many including: total sulfate (+17%, p = 0.001), S-adenosylmethionine (SAM; +6%, p = 0.003), reduced glutathione (+17%, p = 0.0008), ratio of oxidized glutathione to reduced glutathione (GSSG:GSH; -27%, p = 0.002), nitrotyrosine (-29%, p = 0.004), ATP (+25%, p = 0.000001), NADH (+28%, p = 0.0002), and NADPH (+30%, p = 0.001). Most of these metabolic biomarkers improved to normal or near-normal levels.</p> <p>The supplement group had significantly greater improvements than the placebo group on the Parental Global Impressions-Revised (PGI-R, Average Change, p = 0.008), and on the subscores for Hyperactivity (p = 0.003), Tantrumming (p = 0.009), Overall (p = 0.02), and Receptive Language (p = 0.03). For the other three assessment tools the difference between treatment group and placebo group was not statistically significant.</p> <p>Regression analysis revealed that the degree of improvement on the Average Change of the PGI-R was strongly associated with several biomarkers (adj. R<sup>2 </sup>= 0.61, p < 0.0005) with the initial levels of biotin and vitamin K being the most significant (p < 0.05); both biotin and vitamin K are made by beneficial intestinal flora.</p> <p>Conclusions</p> <p>Oral vitamin/mineral supplementation is beneficial in improving the nutritional and metabolic status of children with autism, including improvements in methylation, glutathione, oxidative stress, sulfation, ATP, NADH, and NADPH. The supplement group had significantly greater improvements than did the placebo group on the PGI-R Average Change. This suggests that a vitamin/mineral supplement is a reasonable adjunct therapy to consider for most children and adults with autism.</p> <p>Trial Registration</p> <p><b>Clinical Trial Registration Number: </b><a href="http://www.clinicaltrials.gov/ct2/show/NCT01225198">NCT01225198</a></p

    A dynamic network approach for the study of human phenotypes

    Get PDF
    The use of networks to integrate different genetic, proteomic, and metabolic datasets has been proposed as a viable path toward elucidating the origins of specific diseases. Here we introduce a new phenotypic database summarizing correlations obtained from the disease history of more than 30 million patients in a Phenotypic Disease Network (PDN). We present evidence that the structure of the PDN is relevant to the understanding of illness progression by showing that (1) patients develop diseases close in the network to those they already have; (2) the progression of disease along the links of the network is different for patients of different genders and ethnicities; (3) patients diagnosed with diseases which are more highly connected in the PDN tend to die sooner than those affected by less connected diseases; and (4) diseases that tend to be preceded by others in the PDN tend to be more connected than diseases that precede other illnesses, and are associated with higher degrees of mortality. Our findings show that disease progression can be represented and studied using network methods, offering the potential to enhance our understanding of the origin and evolution of human diseases. The dataset introduced here, released concurrently with this publication, represents the largest relational phenotypic resource publicly available to the research community.Comment: 28 pages (double space), 6 figure
    corecore