39 research outputs found

    MIMO free-space optical communication employing subcarrier intensity modulation in atmospheric turbulence channels

    Get PDF
    In this paper, we analyse the error performance of transmitter/receiver array free-space optical (FSO) communication system employing binary phase shift keying (BPSK) subcarrier intensity modulation (SIM) in clear but turbulent atmospheric channel. Subcarrier modulation is employed to eliminate the need for adaptive threshold detector. Direct detection is employed at the receiver and each subcarrier is subsequently demodulated coherently. The effect of irradiance fading is mitigated with an array of lasers and photodetectors. The received signals are linearly combined using the optimal maximum ratio combining (MRC), the equal gain combining (EGC) and the selection combining (SelC). The bit error rate (BER) equations are derived considering additive white Gaussian noise and log normal intensity fluctuations. This work is part of the EU COST actions and EU projects

    Testate amoebae in pollen slides

    Get PDF
    Among the non-pollen micro-fossils commonly encountered in Quaternary sediment samples prepared for pollen analysis are many shells of testate amoebae. Testate amoebae are eukaryotic micro-organisms which are increasingly used in ecological and palaeoecological studies, particularly as indicators of hydrological change in Sphagnum-dominated peatlands. In this study we address the extent to which testate amoebae are used in palynological research, the key challenges to more widespread use, and the extent to which ecological information is retained in the testate amoeba assemblages of standard palynological slides. To achieve this we review the literature on the use of testate amoebae in palynology, compare testate amoeba records produced by palynological and water-based preparation methods and carry out simulations using previously-derived datasets. Our results show that testate amoebae are widely encountered in Quaternary palynological studies, primarily in peatlands, but the information which they can provide is undermined by limited taxonomic knowledge. Many taxa are destroyed in pollen preparations, but for taxa that are retained patterns of abundance parallel those determined using water-based preparation methods. Although the loss of sensitive taxa limits the ecological information contained in testate amoeba assemblages the information preserved is likely to be useful in a multiproxy approach to palaeoenvironmental reconstruction. To help improve taxonomic awareness and encourage the use of testate amoebae in palynology we present a basic introduction to testate amoeba taxonomy and a guide to the taxonomic literature

    Water: how much is enough?

    No full text

    A multi-proxy, high-resolution record of peatland development and its drivers during the last millennium from the subalpine Swiss Alps

    Get PDF
    We present a record of peatland development during the last 1000 years from Mauntschas mire in the eastern Swiss Alps (Upper Engadine valley; 1818 m a.s.l.) inferred from testate amoebae (pH and depth to the water table (DWT) reconstructions), stable oxygen isotopes in Sphagnum (δ18O; proxy for water vapour pressure) and carbon isotopes in Sphagnum (δ13C; proxy for mire surface wetness), peat accumulation rates, charcoal (indicating local burning), pollen and spores (proxies for human impact), and plant macrofossils (reflecting local vegetation and trophic state). Past human impact on the local mire conditions was strong but fluctuating during AD 1000–1570 (±50 yr; depth–age model based on 29 14C AMS dates) with local irrigation of nutrient-enriched water and grazing. Human impact was minor AD 1570–1830 (±30 yr) with partial recovery of the local mire vegetation, and it was absent AD 1830 (±30 yr)–present when hummock formation took place. Correlations among DWT, pH, δ13C, and δ18O, carried out both with the raw data and with linear trends removed, suggest that the factors driving peatland development changed over time, since only testate amoeba-based pH and DWT co-varied during all the three aforementioned periods. δ18O correlates with δ13C only in the period AD 1830–present and with DWT only during AD 1570–1830, δ13C correlates with DWT only during AD 1000–1570. Part of this apparent instability among the four time series might be attributed to shifts in the local mire conditions which potentially formed very different (non-analogue) habitats. Lack of analogues, caused, for example, by pre-industrial human impact, might have introduced artefacts in the reconstructions, since those habitats are not well represented in some proxy transfer functions. Human impact was probably the main factor for peatland development, distorting most of the climate signals
    corecore