115 research outputs found

    Observable Neutron-Antineutron Oscillations in Seesaw Models of Neutrino Mass

    Get PDF
    We show that in a large class of supersymmetric models with spontaneously broken B-L symmetry, neutron--antineutron oscillations occur at an observable level even though the scale of B-L breaking is very high, v_{B-L} ~ 2 x 10^{16} GeV, as suggested by gauge coupling unification and neutrino masses. We illustrate this phenomenon in the context of a recently proposed class of seesaw models that solves the strong CP problem and the SUSY phase problem using parity symmetry. We obtain an upper limit on N-\bar{N} oscillation time in these models, \tau_{N-\bar{N}} < 10^{9} -10^{10} sec. This suggests that a modest improvement in the current limit on \tau_{N-\bar{N}} of 0.86 x 10^8 sec will either lead to the discovery of N-\bar{N} oscillations, or will considerably restrict the allowed parameter space of an interesting class of neutrino mass models.Comment: 11 pages RevTeX, 1 figur

    New Black Hole Solutions in Brans-Dicke Theory of Gravity

    Get PDF
    Existence check of non-trivial, stationary axisymmetric black hole solutions in Brans-Dicke theory of gravity in different direction from those of Penrose, Thorne and Dykla, and Hawking is performed. Namely, working directly with the known explicit spacetime solutions in Brans-Dicke theory, it is found that non-trivial Kerr-Newman-type black hole solutions different from general relativistic solutions could occur for the generic Brans-Dicke parameter values -5/2\leq \omega <-3/2. Finally, issues like whether these new black holes carry scalar hair and can really arise in nature and if they can, what the associated physical implications would be are discussed carefully.Comment: 20 pages, no figure, Revtex, version to appear in Phys. Rev.

    On 'Light' Fermions and Proton Stability in 'Big Divisor' D3/D7 Swiss Cheese Phenomenology

    Full text link
    Building up on our earlier work [1,2], we show the possibility of generating "light" fermion mass scales of MeV-GeV range (possibly related to first two generations of quarks/leptons) as well as eV (possibly related to first two generations of neutrinos) in type IIB string theory compactified on Swiss-Cheese orientifolds in the presence of a mobile space-time filling D3-$brane restricted to (in principle) stacks of fluxed D7-branes wrapping the "big" divisor \Sigma_B. This part of the paper is an expanded version of the latter half of section 3 of a published short invited review [3] written up by one of the authors [AM]. Further, we also show that there are no SUSY GUT-type dimension-five operators corresponding to proton decay, as well as estimate the proton lifetime from a SUSY GUT-type four-fermion dimension-six operator to be 10^{61} years. Based on GLSM calculations in [1] for obtaining the geometric Kaehler potential for the "big divisor", using further the Donaldson's algorithm, we also briefly discuss in the first of the two appendices, obtaining a metric for the Swiss-Cheese Calabi-Yau used, that becomes Ricci flat in the large volume limit.Comment: v2: 1+25 pages, Title modified and text thoroughly expanded including a brief discussion on obtaining Ricci-flat Swiss Cheese Calabi-Yau metrics using the Donaldson's algorithm, references added, to appear in EPJ

    Epidemiology and Clinicopathological Profile of Renal Cell Carcinoma: A Review from Tertiary Care Referral Centre

    Get PDF
    Renal cell carcinoma (RCC) accounts for 3% of all adult cancers and 85% of all kidney tumours. Incidence of RCC is lower in Asian region, particularly in India, probably due to lack of reporting. Most of the data about RCC are from Western countries; and data from India are scarce, especially regarding para-neoplastic syndromes. We sought to determine the epidemiology, clinicopathological profile and management of RCCin a tertiary care centre in Western India. This was a retrospective study that involved data analysis of records of RCC patients who presented to our institution from April 2016 to February 2020. Laboratory investigations, including tests for paraneoplastic syndrome (PNS), and relevant radiologic investigations were performed and treatment was offered according to the stage, patient factors and available modalities. A total 142 RCC patients were included in the study. The median age of presentation was 58 years. Most of the patients (67%) were symptomatic, and 33% of the patients were asymptomatic, and the RCC was diagnosed incidentally. A large number of patients (56.3%) had PNS. The most common histopathologic type of RCC was clear cell carcinoma (68.8%), followed by papillary (20%) and chromophobe (8%) carcinoma. 40% of carcinomas with sarcomatoid differentiation were seen in patients under 50 years of age. Two cases of multicystic RCC were both seen in patients less than 50 years of age. 65.5% of the patients presented at Stage 1 and 2. Most surgeries (71.2%) were done in a minimally invasive manner. A significant number of patients were asymptomatic, in which RCC was detected incidentally. The age of presentation was earlier, yet the patients had a higher tumour stage. More than half of the patients had PNSs. Despite growing trend towards Western data, the significantly higher number of patients with PNSs and early age of presentation suggest inherent differences in tumour biology, possibly related to differences in genetic and environmental factors

    Coupling Unification, GUT-Scale Baryogenesis and Neutron-Antineutron Oscillation in SO(10)

    Full text link
    We show that unification of the three gauge couplings can be realized consistently in a class of non-supersymmetric SO(10) models with a one-step breaking to the Standard Model if a color-sextet scalar field survives down to the TeV scale. Such scalars, which should be accessible to the LHC for direct detection, arise naturally in SO(10) as remnants of the seesaw mechanism for neutrino masses. The diquark couplings of these scalars lead to \Delta B = 2 baryon number violating processes such as neutron-antineutron oscillation. We estimate the free neutron-antineutron transition time to be \tau_{n-\bar{n}} \approx (10^9-10^{12}) sec., which is in the interesting range for next generation n-\bar{n} oscillation experiments. These models also realize naturally the recently proposed (B-L)-violating GUT scale baryogenesis which survives to low temperatures unaffected by the electroweak sphaleron interactions.Comment: 15 pages, 4 eps figures, references added, to appear in Phys. Lett.

    Phonon-assisted resonant tunneling of electrons in graphene–boron nitride transistors

    Get PDF
    We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene–boron nitride heterostructures and are close to peaks in the single phonon density of states

    Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures

    Get PDF
    Chirality is a fundamental property of electrons with the relativistic spectrum found in graphene and topological insulators. It plays a crucial role in relativistic phenomena, such as Klein tunneling, but it is difficult to visualize directly. Here we report the direct observation and manipulation of chirality and pseudospin polarization in the tunneling of electrons between two almost perfectly aligned graphene crystals. We use a strong in-plane magnetic field as a tool to resolve the contributions of the chiral electronic states that have a phase difference between the two components of their vector wavefunction. Our experiments not only shed light on chirality, but also demonstrate a technique for preparing graphene’s Dirac electrons in a particular quantum chiral state in a selected valley

    Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments

    Get PDF
    Magnesite forms a series of 1- to 15-m-thick beds within the approximate to2.0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680-m-thick formation is composed of a stromatolite-dolomite-'red bed' sequence formed in a complex combination of shallow-marine and non-marine, evaporitic environments. Dolomite-collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by delta C-13 values from +7.1 parts per thousand to +11.6 parts per thousand (V-PDB) and delta O-18 ranging from 17.4 parts per thousand to 26.3 parts per thousand (V-SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high delta C-13 values ranging from +9.0 parts per thousand to +11.6 parts per thousand and delta O-18 values of 20.0-25.7 parts per thousand. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water-derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high delta C-13 values reflect a combined contribution from both global and local carbon reservoirs. A C- 13-rich global carbon reservoir (delta C-13 at around +5 parts per thousand) is related to the perturbation of the carbon cycle at 2.0 Ga, whereas the local enhancement in C-13 (up to +12 parts per thousand) is associated with evaporative and restricted environments with high bioproductivity

    Modeling a teacher in a tutorial-like system using Learning Automata

    Get PDF
    The goal of this paper is to present a novel approach to model the behavior of a Teacher in a Tutorial- like system. In this model, the Teacher is capable of presenting teaching material from a Socratic-type Domain model via multiple-choice questions. Since this knowledge is stored in the Domain model in chapters with different levels of complexity, the Teacher is able to present learning material of varying degrees of difficulty to the Students. In our model, we propose that the Teacher will be able to assist the Students to learn the more difficult material. In order to achieve this, he provides them with hints that are relative to the difficulty of the learning material presented. This enables the Students to cope with the process of handling more complex knowledge, and to be able to learn it appropriately. To our knowledge, the findings of this study are novel to the field of intelligent adaptation using Learning Automata (LA). The novelty lies in the fact that the learning system has a strategy by which it can deal with increasingly more complex/difficult Environments (or domains from which the learning as to be achieved). In our approach, the convergence of the Student models (represented by LA) is driven not only by the response of the Environment (Teacher), but also by the hints that are provided by the latter. Our proposed Teacher model has been tested against different benchmark Environments, and the results of these simulations have demonstrated the salient aspects of our model. The main conclusion is that Normal and Below-Normal learners benefited significantly from the hints provided by the Teacher, while the benefits to (brilliant) Fast learners were marginal. This seems to be in-line with our subjective understanding of the behavior of real-life Students

    Tunnel spectroscopy of localised electronic states in hexagonal boron nitride

    Get PDF
    Hexagonal boron nitride is a large band gap layered crystal, frequently incorporated in van der Waals heterostructures as an insulating or tunnel barrier. Localised states with energies within its band gap can emit visible light, relevant to applications in nanophotonics and quantum information processing. However, they also give rise to conducting channels, which can induce electrical breakdown when a large voltage is applied. Here we use gated tunnel transistors to study resonant electron tunnelling through the localised states in few atomic-layer boron nitride barriers sandwiched between two monolayer graphene electrodes. The measurements are used to determine the energy, linewidth, tunnelling transmission probability, and depth within the barrier of more than 50 distinct localised states. A three-step process of electron percolation through two spatially separated localised states is also investigated
    corecore