24 research outputs found
Direct detection of dark matter: a critical review
The nature of the dark matter in the Universe is one of the hardest unsolved
problems in modern physics. Indeed, on one hand, the overwhelming indirect
evidence from astrophysics seems to leave no doubt about its existence; on the
other hand, direct search experiments, especially those conducted with low
background detectors in underground laboratories all over the world seem to
deliver only null results, with a few debated exceptions. Furthermore, the lack
of predicted candidates at the LHC energy scale has made this dichotomy even
more puzzling. We will recall the most important phases of this novel branch of
experimental astro-particle physics, analyzing the interconnections among the
main projects involved in this challenging quest, and we will draw conclusions
slightly different from how the problem is commonly understood.Comment: 28 pages, 15 picture, 2 table
Improving sensitivity of a BEGe-based high-purity germanium spectrometer through pulse shape analysis
Abstract We performed Pulse Shape Analysis to separate single-scattered gamma energy deposition events from multiple-scattered photons in a high-sensitivity γ -ray spectrometer. The spectrometer is based on a Broad Energy High Purity Germanium detector and the developed technique uses multivariate analysis by an application of the Multi-Layer Perceptron Neural Network. A very good separation of the single-site- and multi-site events was achieved leading to a significant reduction of the background level of the investigated spectrometer – the double escape peak, rich in single-site events, was reduced by 95%, while the full energy peaks lost at most 25% of their counts. The peak to Compton ratio, calculated for the 2614.5 keV gamma line from 208 Tl, was improved by 114.3%
Recommended from our members
Borexino : geo-neutrino measurement at Gran Sasso, Italy
Geo-neutrinos, electron anti-neutrinos produced in beta-decays of naturally occurring radioactive isotopes in the Earth, are a unique direct probe of our planet's interior. After a brief introduction of the geo-neutrinos' properties and of the main aims of their study, we discuss the features of a detector which has recently provided breakthrough achievements in the field, Borexino, a massive, calorimetric liquid scintillator detector installed at the underground Gran Sasso Laboratory. With its unprecedented radiopurity levels achieved in the core of the detection medium, it is the only experiment in operation able to study in real time solar neutrino interactions in the challenging sub-MeV energy region. Its superior technical properties allowed Borexino also to provide a clean detection of terrestrial neutrinos. Therefore, the description of the characteristics of the detected geo-neutrino signal and of the corresponding geological implications are the main core of the discussion contained in this work
The SOX experiment in the neutrino physics
SOX (Short distance neutrino Oscillations with BoreXino) is a new experiment that takes place at the Laboratori Nazionali del Gran Sasso (LNGS) and it exploits the Borexino detector to study the neutrino oscillations at short distance. In different phases, by using two artificial sources Cr-51 and Ce-144-Pr-144, neutrino and antineutrino fluxes of measured intensity will be detected by Borexino in order to observe possible neutrino oscillations in the sterile state. In this paper an overview of the experiment is given and one of the two calorimeters that will be used to measure the source activity is described. At the end the expected sensitivity to determine the neutrino sterile mass is shown
First results of GERDA Phase II and consistency with background models
The GERDA (GERmanium Detector Array) is an experiment for the search of neutrinoless double beta decay (0νββ) in (76)Ge, located at Laboratori Nazionali del Gran Sasso of INFN (Italy). GERDA operates bare high purity germanium detectors submersed in liquid Argon (LAr). Phase II of data-taking started in Dec 2015 and is currently ongoing. In Phase II 35 kg of germanium detectors enriched in (76)Ge including thirty newly produced Broad Energy Germanium (BEGe) detectors is operating to reach an exposure of 100 kg·yr within about 3 years data taking. The design goal of Phase II is to reduce the background by one order of magnitude to get the sensitivity for . To achieve the necessary background reduction, the setup was complemented with LAr veto. Analysis of the background spectrum of Phase II demonstrates consistency with the background models. Furthermore (226)Ra and (232)Th contamination levels consistent with screening results. In the first Phase II data release we found no hint for a 0νββ decay signal and place a limit of this process yr (90% C.L., sensitivity 4.0·10(25) yr). First results of GERDA Phase II will be presented
Modeling of GERDA Phase II data
The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground
laboratory (LNGS) of INFN is searching for neutrinoless double-beta
() decay of Ge. The technological challenge of GERDA is
to operate in a "background-free" regime in the region of interest (ROI) after
analysis cuts for the full 100kgyr target exposure of the
experiment. A careful modeling and decomposition of the full-range energy
spectrum is essential to predict the shape and composition of events in the ROI
around for the search, to extract a precise
measurement of the half-life of the double-beta decay mode with neutrinos
() and in order to identify the location of residual
impurities. The latter will permit future experiments to build strategies in
order to further lower the background and achieve even better sensitivities. In
this article the background decomposition prior to analysis cuts is presented
for GERDA Phase II. The background model fit yields a flat spectrum in the ROI
with a background index (BI) of cts/(kgkeVyr) for the enriched BEGe data set and
cts/(kgkeVyr) for the
enriched coaxial data set. These values are similar to the one of Gerda Phase I
despite a much larger number of detectors and hence radioactive hardware
components
Search for exotic physics in double-β decays with GERDA Phase II
A search for Beyond the Standard Model double- decay modes ofGe has been performed with data collected during the Phase II of theGERmanium Detector Array (GERDA) experiment, located at Laboratori Nazionalidel Gran Sasso of INFN (Italy). Improved limits on the decays involvingMajorons have been obtained, compared to previous experiments with Ge,with half-life values on the order of 10 yr. For the first time withGe, limits on Lorentz invariance violation effects in double-decay have been obtained. The isotropic coefficient, which embeds Lorentz violation indouble- decay, has been constrained at the order of GeV. Wealso set the first experimental limits on the search for light exotic fermionsin double- decay, including sterile neutrinos.<br
Recommended from our members
Modeling of GERDA Phase II data
The GERmanium Detector Array (Gerda) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0νββ) decay of 76Ge. The technological challenge of Gerda is to operate in a “background-free” regime in the region of interest (ROI) after analysis cuts for the full 100 kg·yr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around Qββ for the 0νββ search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2νββ) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for Gerda Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of 16.04+0.78−0.85⋅10−3 cts/(keV·kg·yr) for the enriched BEGe data set and 14.68+0.47−0.52⋅10−3 cts/(keV·kg·yr) for the enriched coaxial data set. These values are similar to the one of Phase I despite a much larger number of detectors and hence radioactive hardware components
Direct Detection of Dark Matter: A Critical Review
The nature of dark matter in the Universe is one of the hardest unsolved problems in modern physics. Indeed, on one hand, the overwhelming indirect evidence from astrophysics seems to leave no doubt about its existence; on the other hand, direct search experiments, especially those conducted with low-background detectors in underground laboratories all over the world, seem to deliver only null results with a few debated exceptions. Furthermore, the lack of predicted candidates on the LHC energy scale has made this dichotomy even more puzzling. We will recall the most important phases of this novel branch of experimental astro-particle physics, analyzing the interconnections among the main projects involved in this challenging quest, and we will draw conclusions slightly different from how the problem is commonly understood