38 research outputs found
An EOQ model with time dependent Weibull deterioration and ramp type demand ,
This paper presents an order level inventory system with time dependent Weibull deterioration and ramp type demand rate where production and demand are time dependent. The proposed model of this paper considers economic order quantity under two different cases. The implementation of the proposed model is illustrated using some numerical examples. Sensitivity analysis is performed to show the effect of changes in the parameters on the optimum solution
Ordering policy for linear deteriorating items for decling demand with permissible delay in payments
Abstract This paper deals with the inventory model for deteriorating items in declining market when delay in payments is allowed to the retailer to settle the account against the purchases made by him. Shortages are not allowed in this model. Here we have dealt with two cases, first one for payment within the permissible time and another for payment after the permissible time. Numerical examples are given to illustrate our results. Sensitivity analysis has been carried out to analyze the changes in the optimal solution with respect to deterioration rate of units in inventory and the rate of change of demand
Two-storage fuzzy inventory model with time dependent demand and holding cost under acceptable delay in payment
If we observe a real business market, the demand for items in each cycle is not in the same pattern, that is, for specific business cycle it may increase, stable or decrease (for instance, cool drinks from end stage of the summer to winter; the demand goes on decreasing, and from the end of winter to peak time of summer; the demand goes on increasing). Also, if the supplier permits for delay in payment, retailer wishes to buy more goods, and for which the retailer may need extra storage (in terms of a rented warehouse). Moreover, the retailer has always wished to sell the items before they expire and accordingly order is placed. Mostly the parameters in a real world inventory model are imprecise. Thus, in the proposed study an inventory model having decreasing time dependent demand pattern with variable holding cost for TwoStorage facility under acceptable delay in payment has been developed. Mathematical model of the problem and its solution procedure is discussed for both crisp and fuzzy environment in order to obtain the optimal replenishment time and cost. Also, numerical examples are discussed to validate the study. Finally, sensitivity analysis is also studied to describe the fluctuating scenario of associated parameters
Soil and Land-Use Change Sustainability in the Northern Great Plains of the USA
In the Northern Great Plains (NGP), the combined impacts of land-use and climate variability have the potential to place many soils on the tipping point of sustainability. The objectives of this study were to assess if the conversion of grassland to croplands occurred on fragile landscapes in the North America Northern Great Plains. South Dakota and Nebraska were selected for this study because they are located in a climate transition zone. We visually classified 43,200 and 38,400 points in South Dakota and Nebraska, respectively, from high-resolution imagery in 2006, 2012, and 2014 into five different categories (cropland, grassland, habitat, NonAg, and water). The sustainability risk of the land-use changes was assessed based on the land capability class (LCC) scores at the selected sites. Sites with LCC scores ≤ 4 are considered sustainable for crop production if appropriate management practices are followed. Scores ≥ 6 are not considered suitable for row crop production. From 2006 to 2014, 910,000 and 360,000 ha of land were converted from grassland to cropland in South Dakota and Nebraska, respectively. Approximately 92 and 80% of the grassland conversion to croplands occurred on land suitable for crop production (land capability class, LCC ≤ 4) in South Dakota and Nebraska, respectively
Retailer’s Joint Ordering, Pricing, and Preservation Technology Investment Policies for a Deteriorating Item under Permissible Delay in Payments
10.1155/2018/6962417Mathematical Problems in Engineering2018696241
Recommended from our members
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation
An EOQ Model for Time Dependent Weibull Deterioration with Linear Demand and Shortages
Background. The study of control and maintenance of production inventories of deteriorating items with and without shortages has grown in its importance recently. The effect of deterioration is very important in many inventory systems. Deterioration is defined as decay or damage such that the item cannot be used for its original purpose.
Methods: In this article order level inventory models have been developed for deteriorating items with linear demand and Weibull deterioration. In developing the model we have assumed that the production rate and the demand rate are time dependent. The unit production cost is inversely proportional to demand. Inventory-production system has two parameters Weibull deterioration.
Results and conclusions: Two models have been developed considering without shortage cases and with shortage case where the shortages are completely backlogged. The objective of the model is to develop an optimal policy that minimizes the total average cost. Sensitivity analysis has been carried out to show the effect of changes in the parameter on the optimum total average cost.
 
Optimizing hybrid power systems with compressed air energy storage
Concern for the environment necessitates the reduction in use of fossil fuels. A solution is to use more renewable power generation facilities. However, the intermittency of renewable energy makes operational scheduling challenging. An optimization model is developed here to determine the performance of a hydro-thermal-wind-solar hybrid power system with the possibility of integrating a compressed air energy storage system. The hybrid power system is implemented in the IEEE-30 bus system. Real-time operational constraints such as varying renewable power availability and disruptions are considered. The model was solved using the meta-heuristic approaches of differential evolution and modified bacteria foraging algorithm. Results indicate that the modified bacteria foraging algorithm arrived at better solutions, making it possible to achieve lower power loss, higher annual savings and reduced variability in voltage security. The best performance is obtained using a hybrid power system which incorporates the compressed air energy storage. Results indicate that higher renewable energy penetration with proper scheduling strategy can result in improvements in system performance. © 2020 Elsevier Lt