18 research outputs found

    Multispectral remote-sensing algorithms for particulate organic carbon (POC): The Gulf of Mexico

    Get PDF
    To greatly increase the spatial and temporal resolution for studying carbon dynamics in the marine environment, we have developed remote-sensing algorithms for particulate organic carbon (POC) by matching in situ POC measurements in the Gulf of Mexico with matching SeaWiFS remote-sensing reflectance. Data on total particulate matter (PM) as well as POC collected during nine cruises in spring, summer and early winter from 1997-2000 as part of the Northeastern Gulf of Mexico (NEGOM) study were used to test algorithms across a range of environments from low %POC coastal waters to high %POC open-ocean waters. Finding that the remote-sensing reflectance clearly exhibited a peak shift from blue-to-green wavelengths with increasing POC concentration, we developed a Maximum Normalized Difference Carbon Index (MNDCI) algorithm which uses the maximum band ratio of all available blue-to-green wavelengths, and provides a very robust estimate over a wide range of POC and PM concentrations (R2 = 0.99, N = 58). The algorithm can be extrapolated throughout the region of shipboard sampling for more detailed coverage and analysis

    Model-based remote sensing algorithms for particulate organic carbon (POC) in the Northeastern Gulf of Mexico

    Get PDF
    Hydrographic data, including particulate organic carbon (POC) from the Northeastern Gulf of Mexico (NEGOM) study, were combined with remotely-sensed SeaWiFS data to estimate POC concentration using principal component analysis (PCA). The spectral radiance was extracted at each NEGOM station, digitized, and averaged. The mean value and spurious trends were removed from each spectrum. De-trended data included six wavelengths at 58 stations. The correlation between the weighting factors of the first six eigenvectors and POC concentration were applied using multiple linear regression. PCA algorithms based on the first three, four, and five modes accounted for 90, 95, and 98% of total variance and yielded significant correlations with POC with R2 = 0.89, 0.92, and 0.93. These full waveband approaches provided robust estimates of POC in various water types. Three different analyses (root mean square error, mean ratio and standard deviation) showed similar error estimates, and suggest that spectral variations in the modes defined by just the first four characteristic vectors are closely correlated with POC concentration, resulting in only negligible loss of spectral information from additional modes. The use of POC algorithms greatly increases the spatial and temporal resolution for interpreting POC cycling and can be extrapolated throughout and perhaps beyond the area of shipboard sampling

    Global comparison of benthic nepheloid layers based on 52 years of nephelometer and transmissometer measurements

    No full text
    Global maps of maximum bottom particle concentration, benthic nepheloid layer thickness, and integrated particle mass in benthic nepheloid layers (BNL) based on 2412 global profiles collected using the Lamont Thorndike nephelometer from 1964 to 1984 are compared with maps of those same properties compiled from 6392 global profiles measured by transmissometers from 1979 to 2016. Outputs from both instruments were converted to particulate matter concentration (PM). The purposes of this paper are to compare global differences and similarities in the location and intensity of BNLs measured with these two independent instruments over slightly overlapping decadal time periods, to combine the data sets in order to expand the time scale of global in situ measurements of BNLs, and to gain insight about the factors creating/sustaining BNLs. The similarity between general locations of high and low particle concentration BNLs during the two time periods indicates that the driving forces of erosion and resuspension of bottom sediments are spatially persistent during recent decadal time spans, though in areas of strong BNLs, intensity is highly episodic. Topography and well-developed current systems play a role. These maps will help to understand deep ocean sediment dynamics, linkage with upper ocean dynamics, the potential for scavenging of adsorption-prone elements near the seafloor, and provide a comprehensive comparison of these data sets on a global scale. During both time periods, BNLs are weak or absent in most of the Pacific, Indian, and Atlantic basins away from continental margins. High surface eddy kinetic energy is associated with the Kuroshio Current east of Japan. Both data sets show weak BNLs south of the Kuroshio, but no transmissometer data have been collected beneath the Kuroshio itself. Sparse nephelometer data show moderate BNLs just north of the Kuroshio Extension, but with much lower concentrations than beneath the Gulf Stream. Strong BNLs are found in areas where eddy kinetic energy in overlying waters, mean kinetic energy near bottom, and energy dissipation within the bottom boundary layer are high. Areas of strongest BNLs include the Western North Atlantic, Argentine Basin (South Atlantic), areas around South Africa tied to the Agulhas Current region, and somewhat random locations in the Antarctic Circumpolar Current of the Southern Ocean

    Changes in freshwater content in the North Atlantic Ocean 1955–2006

    No full text
    Freshwater content changes (FW) for the North Atlantic Ocean (NA) are calculated from in situ salinity profiles for the period 1955–2006 from the surface to 2,000 meters. Heat content (HC) is also calculated from in situ temperature profiles for comparison. A decrease in FW between 1955 and 2006 of ~30,000 km3 is found for the NA, despite an increase in FW of ~16,000 km3 in the subpolar North Atlantic (SNA) and Nordic Seas between the late 1960s and the early 1990s. Over the last two decades there is a pattern of decreasing FW in the upper 400 meters and increasing FW below 1,300 meters for the NA. FW and HC are strongly negatively correlated for both the SNA (r = ?0.93) and the NA (r = ?0.79). Net precipitation, from NCEP/NCAR, is found to have a strong influence on FW changes in the SNA but this relation is weaker elsewhere
    corecore