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Abstract 

To greatly increase the spatial and temporal resolution for studying carbon 

dynamics in the marine environment, we have developed remote sensing algorithms for 

particulate organic carbon (POC) by matching in-situ POC measurements in the Gulf of 

Mexico with matching SeaWiFS remote sensing reflectance. Data on total particulate 

matter (PM) as well as POC collected during nine cruises in spring, summer and early 

winter from 1997-2000 as part of the Northeastern Gulf of Mexico (NEGOM) study 

were used to test algorithms across a range of environments from low %POC coastal 

waters to high %POC open ocean waters. Finding that the remote-sensing reflectance 

clearly exhibited a peak shift from blue to green wavelengths with increasing POC 

concentration, we developed a maximum normalized difference carbon index (MNDCI) 

algorithm which uses the maximum band ratio of all available blue-to-green wavelengths, 

and provides a very robust estimate over a wide range of POC and PM concentrations 

(R2=0.99, N=58). The algorithm can be extrapolated throughout the region of shipboard 

sampling for more detailed coverage and analysis.  

 

Keywords: Particulate Organic Carbon (POC), Satellite ocean color algorithm, 

Maximum normalized difference carbon index (MNDCI), SeaWiFS, the Gulf of Mexico 
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1. Introduction 

As we strive to better understand carbon cycling in the ocean, it is important to 

be able to measure particulate organic carbon (POC) as well as dissolved organic and 

inorganic constituents effectively. POC generally may be a small component of the total 

carbon, but since POC can sink through the water column, it plays an important role in 

sequestering carbon and transporting associated elements and compounds downward as 

part of the biological pump. 

The Gulf of Mexico, a semi-enclosed ocean, is biologically productive in the 

shelf environments and has a physically complex circulation system (Ohlmann & Niiler, 

2005; Vastano et al., 1995; Walker, 1996). Several rivers along the surrounding land 

discharge a large mass of fresh water to the shelf along with high concentrations of 

dissolved and particulate organic and inorganic matter and pollutants (Morey et al., 

2003; Walker et al., 1994). The largest riverine source is the Mississippi-Atchafalaya 

System (Walker et al., 1994), which drains approximately 40% of the continental United 

States. Due to the input of organic and inorganic materials, the Mississippi River plume 

has been identified as a potentially important factor in the high level of primary 

production found in the northern Gulf of Mexico, and strongly influences seasonal and 

inter-annual circulation patterns of that region (Lohrenz et al., 1990; Rabalais et al., 

1996; Redalje et al., 1994; Walker, 1996).  

Spatial and temporal variations in particle concentrations in the Gulf of Mexico 

are influenced by the seasonal and inter-annual variations of the local shelf and 

mesoscale circulations. These conditions can sometimes cause negative impacts 
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resulting from high productivity, elevated organic matter concentrations, and export 

from the euphotic zone causing “dead zones” of hypoxia along the Gulf Coast west of 

the Mississippi (Rabalais et al., 1996). The North-East Gulf of Mexico (NEGOM), 

Louisiana-Texas Shelf Physical Oceanography Program (LATEX), and hypoxia studies 

around the Mississippi River outflow have provided useful information for 

characterizing the oceanic environment of the northern Gulf of Mexico region (Cho et al., 

1998; DiMarco & Reid, 1998). These studies have greatly expanded our knowledge on 

many parameters of the carbon pool as well as hydrography. However, measurements of 

POC have been made primarily in a limited number of programs. In order to expand 

coverage, in situ optical and remote sensing approaches are desperately needed to assess 

the distribution of POC in a variety of oceanic environments on different spatial and 

temporal scales.  

Over the past three decades, most efforts have focused on predicting the 

concentration of marine chlorophyll a using empirical relationships between spectral 

reflectance or, equivalently, normalized water leaving radiance and chlorophyll a 

pigment concentration (Afonin et al., 1992; O’Reilly et al., 1998, 2000; Sathyendranath 

et al., 1989). Several algorithms have been developed based on optical closure 

relationships using model-based approaches to reveal links between reflectance spectra 

or normalized water leaving radiance and relevant inherent optical properties (IOP) of 

seawater, namely, the backscattering and absorption coefficients (Carder et al., 1999; 

Garver & Siegel, 1997; Maritorena et al., 2002; Roesler & Perry, 1995). The goal of 

such efforts is to obtain reasonable coverage to monitor spatial and temporal changes in 
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chlorophyll and derived products such as primary production (Behrenfeld et al., 2005) 

for a variety of environmental and ecological studies. 

While chlorophyll is a component of POC, it is only a small percentage (<~2%; 

Chung et al., 1998), and not all POC contains chlorophyll. To better understand the 

cycling of POC in surface waters, algorithms have been developed for the open ocean 

(Gardner et al., 2006; Loisel et al., 2001; Mishonov et al., 2003; Stramska & Stramski, 

2005; Stramski et al., 1999; 2008). 

In the first published algorithm for estimating POC from remote sensing, 

Stramski et al. (1999) used a two-step process to calculate POC concentrations. First 

they correlated POC concentration with the in-situ particulate backscattering coefficient, 

bbp. The second relationship linked remote-sensing reflectance Rrs with bbp. 

Measurements were made in the green spectral band. They used the remote-sensing 

reflectance at 555 nm (Rrs(555)) for correlation/normalization instead of Lwn(555). 

Stramski et al. (2008) further refined this approach using data from two regions of the 

Pacific Ocean and Atlantic Ocean and found the best power function fits to be for POC 

vs Rrs(443)/Rrs(555), and vs Rrs(490)/Rrs(555). A single-wavelength approach using 

Lwn(555) correlated with beam attenuation due to particles (cp) was later developed and 

used to estimate surface POC concentration in the South Atlantic by means of a cp/POC 

regression (Mishonov et al., 2003) and a similar approach using K490 was tested in the 

Pacific Southern Ocean and the Gulf of Mexico (Gardner et al., 2006). 

While these algorithms provide a reasonable assessment of POC distribution in 

the open ocean on regional to global scales, further assessment is needed to be sure that 
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algorithms can predict POC concentrations in coastal waters. As with chlorophyll, the 

ability to remotely determine POC concentrations is important for quantifying the time-

varying evolution of POC in surface waters to monitor, and eventually model, the impact 

of climate change on surface water productivity and loss. 

The purpose of this paper is to develop accurate and efficient POC algorithms 

in the Gulf of Mexico based on satellite products by comparing POC estimates with in 

situ measurements, and to demonstrate how the improved resolution in mapping POC 

distributions improve our ability to understand, monitor, and eventually to model 

temporal and spatial variability of POC in complex oceanic environments. 
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2.  Methods and Data 

2.1. In situ Shipboard Data 

During the Northeastern Gulf of Mexico project (NEGOM), data from 

approximately 100 CTD/transmissometer/fluorometer casts were collected on each of 

nine cruises from November 1997 to August 2000 along the same eleven track lines. 

Each seasonal cruise was completed along lines normal to the coastline between mid-

Florida and the Mississippi River, starting from about 20 m water depth on the shelf and 

moving out to the 1000 m isobath (Fig. 1). This area spans a wide range of particle 

concentrations and types, from turbid river runoff to clear, open-ocean waters. 

Hydrographic data (temperature, salinity), including beam attenuation due to particles 

(cp, λ=660 nm), were collected at each station. Water samples from the CTD rosette 

were filtered to obtain concentrations of particulate organic carbon (POC) and 

particulate matter (PM) at about ~60 of the stations. Samples were collected from the 

surface (1-10m) and near bottom with occasional additional samples within the first 

attenuation depth of light or at attenuation/fluorescence maxima. 

For PM sampling, 47-mm diameter, 0.4-μm pore size polycarbonate membrane 

filters were triple-weighed prior to each cruise. After filtering 1-3 liters the filters were 

dried at approximately 30°C for 3-4 hours and triple-weighed after the cruise. For each 

cruise, several blanks were subjected to the same weighing process, taken to sea, and 

reweighed after the cruise to serve as blank corrections. No water was passed through 

these filters (Bernal, 2001; Gardner et al., 1993).  
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For POC sampling, 1-3 liters of water were filtered through 25-mm diameter GF-

75 glass-fiber filters (approximately 0.7-μm pore size) that had been pre-combusted in a 

Thermolyne Type 1300 furnace along with aluminum foil squares. The filters were then 

wrapped in aluminum foil and dried at approximately 30°C for 3-4 hours. Prior to 

analysis, filters were acidified to remove carbonates, and then combusted converting the 

organic carbon to CO2, which was then measured by thermal conductivity. Blanks were 

subtracted as described in protocols for JGOFS (JGOFS, 1996). When multiple surface 

samples were obtained at a station, their POC values were averaged for this analysis. 

A SeaTech 25-cm pathlength (r) transmissometer was used to measure beam 

attenuation coefficient due to particles (cp), at a wavelength of 660 nm (± 10 nm) using 

standard protocols (Gardner et al. 2006). Values of cp were then plotted against the 

corresponding discrete POC and PM concentrations to determine the correlation between 

POC/PM and cp, thus providing predictive capability of the POC and PM concentration 

based on the optical beam attenuation. A few outlying points were examined and 

removed if they were collected at depths of large vertical gradients in cp. 

 

2.2. Satellite Data 

Daily SeaWiFS satellite images (1-km Level 1A) covering the Gulf of Mexico 

were obtained from NASA (http://oceancolor.gsfc.nasa.gov/). The spectral normalized 

water-leaving radiance (Lwn) was derived from the SeaWiFS Level 2 data with SeaDAS 

MSL12 processing code (Baith et al., 2001; McClain et al., 2004) using the standard 

Gordon and Wang (1994) atmospheric correction to derive Lwn and remotely-sensed 
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reflectance (Rrs) at 412, 443, 490, 510, 555, and 670 nm. Rrs was calculated as Rrs(λ)= 

Lwn(λ)/F0, where F0 is the mean extraterrestrial solar irradiance at a given spectral band. 

The derived spectral data were used to estimate POC and calculate the chlorophyll 

concentration and diffuse attenuation coefficient at 490 nm (K490) using the standard 

SeaWiFS algorithms (Mueller, 2000; O’Reilly et al., 2000).  

 

2.3. Empirical Approach 

To estimate POC concentration using an empirical match-up approach, we 

matched concentrations of ship-collected POC samples with synchronously obtained 

satellite-derived ocean color data. We recognize that it may be desirable to have in-water 

optical measurements in the development of satellite algorithms, but that was not an 

objective of the original NEGOM program, so this study is a post-cruise analysis of the 

in situ POC data matched with satellite data that are available. 

The matching of spectral data was initially restricted to a narrow area when the 

satellite passed our in situ sampling location at local noon. However, it was temporally 

and spatially impossible to match up a significant portion of the data set in this manner. 

In order to expand our temporal and spatial data coverage for comparing SeaWiFS and 

hydrographic data, we adopted the NASA Ocean Biology Processing Group’s (OBPG) 

approach (Bailey et al., 2000; Bailey & Werdell, 2006). In the temporal window the 

SeaWiFS data were extracted for the location of NEGOM stations when in-situ and 

satellite measurements were made within a ±3 hour window (Bailey & Werdell, 2006) of 

local noon (0900 – 1500 local time). In order to obtain a reasonable balance between the 
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geophysical homogeneity of the sampling matrix and number of clear pixels in the 

spatial window, Bailey and Werdell (2006) argued that satellite data must meet the 

following conditions: 1) the size of the matrix of satellite data used does not significantly 

degrade the geophysical homogeneity among pixels used, and 2) >50% of the pixels are 

free of clouds or other errors. In our study we found that a 3×3 pixel grid  met the above 

conditions; that is, this matrix size provided enough pixels to provide confidence in the 

average value, but not so large as to cross parameter gradients. Although uncertainties 

exist between in situ measurements and satellite-derived ocean color products based on 

pixel-by-pixel or averaging of pixels found, such match-up approaches (McClain et al., 

2000) are essential for using satellite data. 58 POC sub-samples, about 11 % of the total 

526 POC samples, were matched with the SeaWiFS spectral data using the above and 

following criteria:  

1) the effect of outliers on the calculation was reduced by applying the filtered 

mean method (Bailey & Werdell, 2006) as 
N

XXX
i

i∑ ×+<<×− )5.1()5.1( σσ
.  

where X  is the unfiltered mean value, σ  is the standard deviation of the unfiltered data 

and N is the number of values within ±1.5×σ . 

2) the in-situ POC values were compared with the revised mean values of 

SeaWiFS-derived chlorophyll a, K490, normalized water leaving radiance Lwn, and 

remotely-sensed reflectance Rrs for all spectral bands; and 

3) least-squares fit methods were used for multiple and linear regressions.  
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3. Results and Discussions 

3.1. Water Mass Classification Using Beam Attenuation, POC, and PM 

Previous efforts at correlating POC with ocean color have focused on open-ocean 

data (Gardner et al., 2006; Loisel et al., 2001; Mishonov et al., 2003; Stramska & 

Stramski, 2005; Stramski et al., 1999; 2008). Our NEGOM data come from both open-

ocean and coastal waters influenced by river input, which were originally classified as 

Case 1 and Case 2 waters (Morel & Prieur, 1977). Recent analyses of this classification 

have better articulated the definitions of water types and their complexity as more 

remote optical measurements become available and our understanding of optics and 

ecology increase. Mobley et al. (2004) and Lee and Hu (2006) suggest the abandonment 

of the Case 1 – Case 2 classification. 

In an attempt to optically differentiate water types, we sought to take advantage 

of having both POC and PM data from the same samples by classifying waters based on 

the percentage of POC relative to PM (%POC=(POC/PM)ｘ100). We first tested this 

differentiation in the relationship between POC and beam attenuation coefficient due to 

particles at 660 nm (cp) as illustrated in Fig. 2a. A linear regression between POC and cp 

revealed a reasonable relationship (R2=0.64, N=500), but scatter increased at higher 

POC concentrations (Fig. 2a). Other studies have shown much tighter correlations 

between beam attenuation and POC concentration (Bishop, 1999; Bishop et al., 1999; 

Chung et al., 1998; Gardner et al., 1993, 1995, 2003, 2006; Loisel & Morel, 1998; 

Mishonov et al., 2003; Stramska & Stramski, 2005; Stramski et al., 1999), but previous 
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studies primarily used data from open ocean environments, that did not include coastal 

areas close to the output of large rivers.  

The cp data are not used in our remote sensing algorithms, but the marked 

improvement in the cp-POC correlation suggested this would be a useful differentiation 

in developing remote sensing algorithms. All 500 data points (Fig. 2a) were separated at 

the >25%, <25% point to distinguish between samples dominated by organic and 

inorganic components (Fig. 2c and 2d). The 25% dividing point is empirical, determined 

by the highest R value tested at 2.5 % increments. Fig. 2c shows that POC 

concentrations from samples with POC >25% were significantly better correlated with cp 

(R2=0.87, N=244).  

POC = 326.6× cp + 2.0        (1) 

The slope of our regression is similar to the results of studies in other oceans 

using bottle-collected POC (Fig. 2b). These results confirm that cp provides a good 

estimate of POC when samples are primarily biogenic particles, and we expected that the 

compositional difference might have an impact on satellite POC algorithms as well.  

Samples where POC <25% contain relatively more terrigenous particles and 

potentially CDOM, which can cause significant differences due to variations in their 

absorption/scattering properties compared with phytoplankton. In the Gulf of Mexico 

study area these zones are not always delineated geographically or by water depth, 

because river plumes, the loop-current, and eddies are always moving, so high %POC 

(>25%) and low %POC (<25%) was a useful first-order differentiation between water 

types. 
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3.2. Empirical Approach with POC and SeaWiFS Products (Chlorophyll or K490) 

In this study we test several approaches in order to find the most reliable 

algorithms for estimating POC directly from remote-sensing products. In the first 

approach we use an empirical property-property match-up and calculate a regression 

between POC and chlorophyll concentrations using a logarithmic-fit that results in 

equation 2, which yields a well-correlated relationship (R2=0.97, N=58, Fig. 3a): .  

)2.2)(log71.0( 1010 +×= chlPOC        (2) 

where chl is derived from the standard SeaWiFS-OC4v4 chlorophyll algorithm, which is 

based on a ratio of blue/green reflectance (O’Reilly et al., 2000). Note that in this 

correlation we use only the 58 points where in-situ POC and SeaWiFS chlorophyll a are 

collected synchronously as defined earlier. In the POC-Chlorophyll a relationship there 

is only a slight difference between samples where POC is less than or greater than 25% 

(Fig. 3a, 7a and Table 1). 

Our regression in Fig. 3a is in fair agreement with the relationships determined 

by Loisel and Morel (1998), Mishonov et al. (2003) and Stramska and Stramski (2005), 

all based on open-ocean data. POC algorithms of Mishonov et al. (2003) used data 

averaged over 5 years from the South Atlantic Ocean, Stramska and Stramski (2005) 

used data from the North Atlantic Ocean, and Loisel and Morel (1998) used data from 

the North Atlantic and Pacific Ocean, so deviations are likely due to regional differences.  

Behrenfeld et al. (2005) argue that in general, POC concentration is well 

correlated with phytoplankton carbon, which is strongly suggested by the tight 
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correlation in Fig. 3a, although earlier studies state that phytoplankton carbon represents 

only 19-49% of POC (DuRand et al., 2001; Eppley et al., 1992; Gundersen et al., 2001). 

Cho and Azam (1990) suggested that the sum of bacterial carbon and phytoplankton 

carbon generally adds-up to about one-half of total POC. 

 Using the same approach as with chlorophyll a, we made an empirical match-up 

between NEGOM POC and K490, the downwelling diffuse attenuation at 490nm, and 

calculated a regression using a logarithmic fit that results in equation 3.  

)3.3)(log2.1( 4901010 +×= KPOC        (3) 

where K490 is derived from an algorithm using the standard SeaWiFS diffuse attenuation 

coefficient at 490 nm (Mueller, 2000). 

As with the chlorophyll-POC correlation, POC concentrations based on K490 data 

are also slightly different between samples where POC is less than or greater than 25% 

(R2=0.95, N=58, Fig. 3b, 7b and Table 1). The standard SeaWiFS K490 algorithm uses 

the ratio of Lwn(490) to Lwn(555), but the wavelength of the peak radiance varied 

between 490 nm and 555 nm, particularly over green and brown coastal water (Dudek et 

al., 2003). An algorithm by Mishonov et al. (2003) for other oceans closely predicts the 

relationship between POC and chlorophyll in the Gulf of Mexico (Fig. 3a). The 

algorithms of both Mishonov et al. (2003) and Gardner et al. (2006) closely match the 

relationship between POC and K490 at mid to high concentrations, but deviate more at 

lower concentrations (Fig. 3b). 

 

3.3. Spectral Radiance and Surface POC Concentration 
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Our second approach employs empirical regressions to quantify correlations 

between the spectral radiance and surface POC concentration. The depth of penetration 

within the water column is wavelength-dependent. Gordon and McCluney (1975) 

showed that 90% of all remotely-sensed ocean color radiance originates from the upper 

layer - the first optical depth (z90), which is the depth at which radiance decreases to 1/e 

of the incident radiance values (=1/K490). Normally it has been assumed that radiance 

can be linearly integrated down and up through the water column, however, Zaneveld et 

al. (2005) show that although this is true if all radiance comes from an optically well-

mixed layer (i.e. homogeneous), the integration should be exponential over non-

homogeneous optical depths.  

SeaWiFS measurements of the spectral radiance upwelled from the ocean during 

NEGOM cruises were acquired at every POC station using 6 wavelengths over the full 

SeaWiFS spectral range of 412-670 nm (Fig. 4a). However, the 58-point synchronously 

matched data set was not large enough to delineate the radiance curves for different POC 

concentration ranges. Therefore we combined all binned radiance and POC data during 

each cruise day to test how the radiance varied as a function of POC concentration. The 

radiance means were between 0.05 and 1.37 (mw/cm2/µm/sr), and the standard error at 

each wavelength ranged from 0.00005 to 0.0612 (0.005 to 6.12 %).  

POC concentration versus radiance shows a relationship that changes as a 

function of POC concentration (Fig. 4a). Not surprisingly, this is very similar to the 

relationship demonstrated and modeled between Rrs versus wavelength at varying 

chlorophyll a concentrations (e.g. Morel & Maritorena, 2001; Werdell & Bailey, 2005). 
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When the POC concentration in the surface water increases, the peak in radiance shifts 

from the shorter wavelengths (412 and 443 nm, violet-blue band) to longer wavelengths 

(to 490 nm and then 555 nm, green band). As with chlorophyll, radiance at 510 nm 

remains relatively constant over a wide range of POC concentrations (20 <POC <550 

mg/m3). In particle-free water, the depth of light penetration decreases by a factor of 

about 20 from blue to red wavelengths. Thus, radiance at shorter wavelengths comes 

from a much thicker water column than at long wavelengths, and water reflectance 

dominates the signal. The depth of light penetration also diminishes as the concentration 

of POC, chlorophyll, inorganic particles, etc. increases. When POC concentration 

increases, the radiance peak shifts toward longer wavelengths because reflectance from 

particles in the water dominates over water reflectance (Fig. 4a and 4b). 

 

3.4. Empirical Approaches between POC and Spectral Radiance (or Reflectance) 

Re-plotting the data from Fig. 4a to show POC concentration as a function of Lwn 

reveals non-linearity at shorter wavelengths (412 - 510 nm; Fig. 4b). The relationship is 

more linear at 555 nm, but still produces considerable scatter (R2=0.70, N=58; Table 1). 

The relationship is most linear at 670 nm, but the radiance range is small. Thus, it is 

difficult to predict POC concentration based on radiance using a single wavelength. 

Therefore it is not surprising that correlations between POC and chlorophyll or K490 are 

much better than a single wavelength radiance because chlorophyll and K490 are both 

based on a ratio of radiances at two wavelengths.  
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Using a multiple-wavelength approach, one is more likely to distinguish multiple 

or shifting radiance peaks resulting from multiple or compound particle types in the 

water column, thus improving the correlation with POC. To improve upon the 

limitations of a single-wavelength correlation, and to be independent of chlorophyll and 

K490 determinations, we adapted a multiple wavelength approach originally developed 

for land vegetation, known as the Normalized Difference Vegetation Index (NDVI) 

(Deering et al., 1975; Rouse et al., 1974). We refer to it here as the Normalized 

Difference Carbon Index (NDCI).  Fig. 4a reveals that when surface POC concentration 

increases, the radiance peak shifts toward longer wavelengths. Thus, in our third 

approach the NDCI algorithm uses the difference of radiance between one blue and one 

green wavelength divided by their sum to estimate the concentration of POC:  

)26.2_37.1_09.1_08.1( 23

10 +×+×+×= LwnNDCILwnNDCILwnNDCIPOC , or  

)24.2_34.1_06.1_08.1( 23

10 +×+×+×= RrsNDCIRrsNDCIRrsNDCIPOC     (4) 

where ( )
( )⎥⎦

⎤
⎢
⎣

⎡
+
−

=
)443()555(
)443()555(_

wnwn

wnwn

LL
LLLwnNDCI , or ( )

( )⎥⎦
⎤

⎢
⎣

⎡
+
−

)443()555(
)443()555(_

rsrs

rsrs

RR
RRRrsNDCI .

 NDCI values are directly (but not linearly) proportional to POC concentrations 

(R2=0.97, N=58, Fig. 5a and 5b), and are best fit with a cubic polynomial. The 443 nm 

radiance maximum in the NDCI corresponded best with POC concentrations less than 

200 mg/m3 and the 555 nm radiance maximum with POC concentrations greater than 

200 mg/m3 (Fig. 5b). At low (<200 mg/m3) POC values (which were best related to the 

443 nm radiance maximum) samples included both high and low %POC (Fig. 5a and 5b), 

while high POC values (>300 mg/m3), (which were best related to the 555 nm radiance 
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maximum) were all samples with low %POC (Fig. 5a and 5b). Using two radiance 

maxima (443 and 555 nm) tended to decrease the noise level regardless of the 

concentration or percentage of inorganic and organic constituents. 

Our fourth approach builds on the NDCI and is referred to as the Maximum 

Normalized Difference Carbon Index (MNDCI). It uses the approach developed in the 

SeaWiFS chlorophyll a algorithm OC4v4 (O’Reilly et al., 2000) of selecting the 

maximum radiance band of all blue-to-green wavelengths, though we use 412, 443 and 

490 rather than 443, 490 and 510 as used in OC4v4. As noted in O’Reilly et al. (1998), 

this has the potential advantage of maintaining the highest possible satellite sensor 

signal:noise ratio over a broad range of POC concentrations. They note that multiple 

band ratios may also be useful in operationally differentiating different ocean realms 

with respect to trophic status, based on the concentration boundaries over which each 

band dominates. In the green wavelengths, peaks (which occurred at concentrations 

>~160 mg/m3), were consistently at 555 nm, so radiance at 555 nm was used as the long 

wavelength reference. Normalized ratios should be less sensitive to errors in the 

atmospheric correction than the simple magnitude of normalized water leaving radiance 

at a single wavelength, yielding: 

)45.2_78.1_21.0_98.1_77.1_36.4( 2345

10 +×+×−×−×+×= LwnMNDCILwnMNDCILwnMNDCILwnMNDCILwnMNDCIPOC  , or 

)42.2_79.1_40.0_37.0_26.3_36.6( 2345

10 +×+×−×−×+×= RrsMNDCIRrsMNDCIRrsMNDCIRrsMNDCIRrsMNDCIPOC  (5) 

where  MNDCI _ Lwn =
Lwn (555) − max(Lwn (412),Lwn (443),Lwn (490)){ }
Lwn (555) + max(Lwn (412),Lwn (443),Lwn (490)){ }

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  or 
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MNDCI _ Rrs =
Rrs(555) − max(Rrs(412),Rrs(443),Rrs(490)){ }
Rrs(555) + max(Rrs(412),Rrs(443),Rrs(490)){ }

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ . 

MNDCI values are directly (but not linearly) proportional to POC concentrations 

and are fit with a fifth-order polynomial (Fig. 5c and 5d). Although a cubic polynomial 

produced an excellent fit to the data (R2=0.99), the fifth-order polynomial fit the data 

better at low concentrations (<30 mg/m3), yielding lower values than a cubic fit. Because 

a large portion of the open ocean is in this low-concentration range it is important to 

obtain accurate estimates in that concentration range. The MNDCI algorithm produces 

better results than the first three approaches, especially when predicting high POC 

concentrations (R2=0.99, N=58). 

Evaluation of the dominant radiance in the MNDCI as a function of POC 

concentration demonstrates that the 412 and 443 radiances best predict POC 

concentration when POC <60 mg/m3, the 490 radiance when 60 <POC < 300 mg/m3, 

and the 555 radiance when POC >300 mg/m3 (Fig. 5d). POC concentrations >300 mg/m3, 

which were best predicted by the long wavelength radiance (555 nm) were dominated by 

samples with <25% POC (Fig. 5c and 5d). This multispectral approach using NDCI or 

MNDCI makes the POC estimates more accurate than using single wavelength or 

radiance ratio algorithms, especially in waters containing a mixture of organic (living 

and non-living) and inorganic particulate components. 

Plotting NDCI versus MNDCI values (Fig. 6) shows close agreement between 

the two algorithms when both values were less than -0.4 (<~65 mg/m3) because both 

algorithms use similar band ratios over most of that range (Fig. 5b and 5d). The root 
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mean square error (RMSE) for both NDCI and MNDCI was similar (5.9 and 4.1 mg/m3) 

whether POC % was > 25 or <25. Low POC concentration areas are generally located 

offshore and the blue bands have the highest peaks of the six wavelengths.  

The difference in predicted POC between the two algorithms increased as the 

index exceeded -0.2 because the MNDCI used the maximum of three wavelengths (412, 

443, 490 nm) rather than a fixed wavelength (443 nm) for NDCI. In the 100~200 mg/m3 

range (Fig. 6), the RMS errors of NDCI and MNDCI were about 30 and 14 mg/m3 

respectively for POC percentages > and < 25%. While the NDCI errors were similar for 

POC >25% and <25% (30 and 31 mg/m3), the difference between POC >25% and <25% 

was larger using MNDCI (9 and 18 mg/m3 respectively), but the MNDCI errors were 

much smaller in both %POC ranges. Where POC concentrations were 200 and 300 

mg/m3, total PM concentration varied from 500 to 1,600 mg/m3. For samples where 

POC concentration >300 mg/m3, total PM concentration ranged from 1,800 to 15,000 

mg/m3. The RMS errors of MNDCI were smaller than for NDCI (~ 33 versus 90 mg/m3 

where POC concentration >200 mg/m3). Samples with higher POC and PM 

concentrations were geographically constrained between the Mississippi River and 

Mobile Bay, an area highly influenced by input of inorganic particle.  

Although Ahn et al. (2006) identified different spectral responses of various 

water constituents in remotely sensed radiance (or reflectance), we cannot independently 

separate or extract the signal created by each component. Retrieval of compositional data 

becomes even more difficult in waters where the signal from a small quantity of POC is 

masked by the signal from a large quantity of inorganic particles or CDOM, which 
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constitutes ‘noise’ for our purposes. It is not always easy to optically differentiate 

CDOM from detrital material, as the two have similar absorption spectra (Carder et al., 

1999; Garver & Siegel, 1997; Maritorena et al., 2002; Roesler & Perry, 1995), although 

Hu et al. (2003) found very good correlations between CDOM and SeaWiFS data during 

the NEGOM cruises, Siegel et al. (2002) have developed algorithms for CDOM in the 

open ocean, and Gould et al. (2002) and Stavn and Richter (2008) have partitioned the 

contributions to optical properties from particulate organic and inorganic components in 

the Gulf of Mexico.  

 

3.5. POC Estimates in low %POC Waters 

Fig. 7 and Table 1 provide correlation plots and statistical data between discrete 

POC measurements and POC estimates obtained using four different algorithms 

(equations 2-5) using samples where POC >25%, <25%, and combined. To provide a 

quantitative algorithm evaluation, the mean ratio values between the in situ POC and 

POC estimates, as well as the corresponding standard deviation are calculated (Table 1). 

While these tests validate the fits of our data, it is not an independent verification of the 

algorithms. The root mean square errors (RMSE), mean ratio, and standard deviation for 

all algorithms were smaller for POC samples where POC >25% than for POC samples 

where POC <25%.  

The Normalized Difference Carbon Index (Fig. 5a, 5b, and Eq. 4) using two 

bands (Lwn(443) and Lwn(555)) greatly reduces scatter between predicted and sampled 

data compared to the single-wavelength algorithm (Lwn(555), Table 1). While NDCI 
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values are well correlated with POC whether POC is >25% or <25% (Fig. 7c and Table 

1), the Maximum Normalized Difference Carbon Index algorithm produced a slightly 

better correlation between in situ POC and derived POC values at all concentrations (Fig. 

5c, 5d, and Eq. 5). Furthermore, the slope, R2, RMSE, mean ratio, and standard deviation 

are more uniform for the MNDCI whether the %POC range was >25%, <25%, or all 

samples combined (Fig. 7d and Table 1).  

The potential errors of POC algorithms in low %POC waters could become 

unreasonably large because the presence of terrigenous sediments and CDOM creates an 

optically complex environment. Either we can develop different algorithms for 

high %POC and low %POC waters and have some means of classifying which type of 

water is being sampled, or we can develop more complex algorithms that can be applied 

in either high %POC or low %POC waters, and in waters transitional between the two. 

The results in Figs. 5, 6 and 7 suggest that obtaining the best POC estimates in complex 

waters requires complex algorithms using at least 2 wavelengths, and ideally 4 

wavelengths rather than a single wavelength, chlorophyll, or K490 as previously used for 

high %POC waters. The use of chlorophyll or K490 in an algorithm involves the use of 

the 2 wavelengths used to derive either of those parameters, thus using more than one 

wavelength. The wavelength ratios proposed by Stramski et al. (2008) also meet this 

criterion. 

Here we attempted to use data about the POC percentage of PM in samples to 

differentiate between high %POC and low %POC waters. However, one does not always 

have the luxury to measure total PM because of the volume of water required. One 
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important result from this study is that the POC estimates by both the NDCI and 

MNDCI algorithm give nearly the same %POC estimate regardless of whether POC in 

the samples is >25% or <25%, suggesting that both algorithms could be used in either 

high %POC or low %POC waters (Fig. 7 and Table 1).  

 

3.6. Seasonal Pattern of POC 

The original purpose of the NEGOM study was to investigate the spatial and 

temporal distribution of hydrographic variables to understand physical processes on the 

continental shelf and slope of the northern Gulf of Mexico. Although the NEGOM study 

significantly expanded our understanding of the distribution of POC based solely on 

bottle data, any study restricted to discrete shipboard water samples (especially in 

dynamic coastal waters) is highly limited because of the time and labor required for 

sampling. We need remote sensing approaches to assess the temporal and spatial 

variability of POC at much higher resolution to adequately understand and monitor 

complex marine environments. Thus, we used the available NEGOM data to develop the 

most accurate algorithms possible to assist us in this endeavor. We note here some of the 

major spatial/temporal observations and how the improved resolution from the MNDCI 

algorithm clarified POC distributions in the study area (compare Fig. 8 and 9).  

Maps of POC distribution in the Gulf of Mexico (Fig. 9) were created using the 

MNDCI algorithm and ocean color data collected by SeaWiFS. Note that the resolution 

of the maps in Fig. 9 is about 1.1 km, whereas the maps in Fig. 8 were contoured from ~ 

60 data points shown on each map, with station spacing from 10-100 km. In the MNDCI 
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POC algorithm, some data points which yield negative water-leaving radiance at shorter 

wavelengths and were removed from each map in Fig. 8. The close comparison with 

measured POC (Fig. 8) and the 0.99 correlation coefficient in Fig. 5c and 5d are strong 

evidence that spectral variations are more closely tied with POC concentration than other 

optical properties of sea water (Fig. 8 and 9). However, high resolution POC maps (Fig. 

9) show much more detailed spatial patterns of POC than are discernable in Fig. 8. 

The most notable difference between Figs. 8 and 9 is that with satellite coverage 

we are able to fill in both seaward and coastal areas which were excluded during 

shipboard sampling. Some of those coastal areas had high POC concentrations, but they 

were within the range of POC concentrations directly sampled around the Mississippi 

Delta region. One caveat about the estimates west of Florida is that Florida is a 

carbonate platform and the few rivers in that region are likely to carry much less 

siliciclastic sediment than is found west of the Florida panhandle. Filling in the seaward 

areas of the sampling region is highly justified given the large number of samples from 

regions with similar low concentrations.  

A second notable difference is the much greater spatial constraint of the 

boundaries of features (e.g. N3, N6 and N9; Fig. 8 and 9). During those summer cruises 

the loop current and eddies draw water from the Mississippi area out beyond the shelf 

into the open Gulf waters. These features are far more patchy than can be determined 

with coarse bottle sampling. It is obvious that even if bottle samples had been obtained 

in coastal areas, the patchiness exhibited along the Florida coast and around the 

Mississippi Delta using satellite data (e.g. N2 in Fig. 9) would not have been revealed. 
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A comparison of the range of POC concentrations between bottle and algorithm 

estimates for identical areas shows that the NEGOM bottle POC concentrations ranged 

from 15 to 771 mg/m3, while the range of MNDCI POC concentrations within the area 

circumscribed by the bottle stations was 13 to 984 mg/m3 (area in Fig. 8). Higher POC 

concentrations were generally observed during the summer (May-August cruises) and 

lower values occurred during the fall (November cruises; Fig. 8 and 9). This is even 

more apparent in Fig. 9 by excluding the coastal values made possible with satellite data. 

The geometric mean based on 60 POC bottle stations per cruise was 139 ± 51 mg/m3 for 

all summer seasons and 64 ± 17 mg/m3 for all fall seasons. After mapping the area using 

MNDCI-based POC, the geometric mean for all pixels within the area circumscribed by 

the bottle stations was 150 ± 56 mg/m3 for the summer seasons and 90 ± 43 mg/m3 for 

the fall seasons, suggesting that the bottle estimates were low for the fall seasons 

probably due to artifacts of sampling coverage.  

The 1998 summer mean for bottle POC values (167 mg/m3) was far greater than 

the mean for all 9 cruises (100 ± 44 mg/m3). Likewise, the 1998 summer MNDCI mean 

(175 mg/m3) was greater than the MNDCI mean for all 9 cruises (113 ± 42 mg/m3). The 

variations of surface POC concentrations roughly corresponded with those of surface 

particulate matter (PM) and varied seasonally in a similar fashion, although the 

variations were slightly greater for bottle PM than for bottle POC (Son, 2006). 

During all seasons, surface POC concentrations of over 100 mg/m3 occurred over 

the inner shelf across the entire region. Concentrations significantly greater than 100 

mg/m3 were confined to the inner shelf along the midsection and eastern portion of the 



 26

study area but extended over the narrow outer shelf near the Mississippi delta. Over the 

rest of the outer shelf and the upper slope, concentrations dropped off rapidly, to <100 

mg/m3 at the seaward of the study area (Figs. 8 and 9). Fresh-water input from all major 

rivers, which lowered surface salinity (<33), was greater during 1997 and 1998 than 

during 1999 and 2000 and was associated with higher surface POC concentrations 

during 1997 and 1998 (Son, 2006), presumably resulting from increased nutrients and 

primary production.  

Interannual variability in the spatial distribution of POC was much smaller in the 

fall and spring cruises than during summer cruises (Fig. 8 and 9). During the summer, a 

patchy swath of elevated surface POC waters (>300 mg/m3) stretched from the shelf east 

of the Mississippi River over the upper slope in a northwest-southeast direction (Fig. 8 

and 9). River inputs from the Mississippi and Alabama regions during the summer of 

1998 were higher compared to 1999 and 2000 (N6 and N9) (Son, 2006). Lower surface-

salinity waters extended out of the upper slope in the midsection of the study area and 

this spatial pattern was inversely correlated with surface temperature (Son, 2006). Hu et 

al. (2003) noted that during the summers of 1998 and 1999, a warm-core eddy was 

centered east of the Mississippi River delta that entrained low salinity, high chlorophyll 

and high CDOM surface waters. These waters were also high in POC. 
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4. Conclusions 

Estimates of upper ocean parameters using remote sensing data are increasingly 

made by developing empirical algorithms because shipboard sampling will always be 

inadequate for studying dynamic surface processes due to limited resolution on both 

spatial and temporal scales. Using a large 3-year, seasonal data set that included in situ 

measurements and satellite-derived ocean color products, we tested several simple 

empirical approaches to derive POC concentrations based on data from SeaWiFS’s 

chlorophyll, K490, and radiance measured at six wavelengths in the visible spectral range 

using least-squares fit regressions. Two SeaWiFS products (chlorophyll concentration 

and K490) were reasonably well correlated with temporal and spatial variations of surface 

POC concentrations. 

Our analysis of the spectral response demonstrated that the radiance was 

significantly dependent on POC concentration, and that the radiance peak shifted 

significantly from violet-blue wavelengths to green wavelengths as POC concentration 

increased. Based on this spectral dependence, it was demonstrated that using multiple 

wavelength radiances was more sensitive to complex marine environments than those 

using single wavelength radiance or blue-to-green ratios, and provided more reliable 

estimates over a wide range of surface POC concentrations. This also suggests that a 

multispectral approach might improve correlations between in situ cp and POC. 

In this study, the best estimates for POC concentrations were achieved with the 

Maximum Difference Carbon Index algorithm (R2=0.99). It is significant that the 

accuracy of the multi-spectral MNDCI algorithm was not significantly different whether 
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used in high or low %POC waters. Not having to determine whether waters of interest 

are high %POC versus low %POC waters is an important advance. This approach is 

promising for mapping POC concentrations regionally based on remote sensing data 

because such algorithms clearly reproduce the seasonal cycles and spatial distribution in 

the Gulf of Mexico at much greater resolution than is possible using just bottle samples 

or POC-calibrated optical profiles of cp at ship stations. This is particularly important for 

interpreting POC cycling in dynamic waters such as those in the Gulf of Mexico. While 

these algorithms are regionally tuned, our analysis approach should be useful for 

developing algorithms elsewhere for estimating and monitoring changes in POC 

concentrations at regional, to perhaps global scales, including low %POC shelf waters. 
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Fig. 1. Northeastern Gulf of Mexico (NEGOM) sampling grid occupied during 9 

cruises from November 1997 to August 2000 (11 sampling tracks and 60 sampling 

stations).  
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Fig. 2. (a) Surface POC concentration as a function of beam attenuation 

coefficient due to particles (cp) during 9 NEGOM cruises. Scatter increased at high POC 

concentrations. (b) POC- cp regressions from this and other studies. Separating samples 

by the percent of organic matter >25% (c) and <25% (d) revealed a very high correlation 

between POC and cp with high percentages of organic matter and considerable scatter 

when inorganic particles were more abundant.   
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Fig. 3. A least-squares fit regression between NEGOM POC and (a) chlorophyll 

concentration and (b) diffuse attenuation coefficient at 490 nm. For comparison, our 

POC algorithm and four different algorithms from data in different areas are shown; 

Loisel and Morel (1998) - North Atlantic and Pacific open ocean; Mishonov et al. (2003) 

–South Atlantic open ocean; Stramska and Stramski (2005) –polar North Atlantic ocean, 

and Gardner et al. (2006) - Southern Pacific Ocean and Gulf of Mexico.  
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Fig. 4. (a) Normalized water-leaving radiance (Lwn) versus 6 SeaWiFS 

wavelengths averaged over areas with 18 different binned ranges of POC concentrations 

(1-750 mg/m3) from all nine NEGOM cruises. Error bars are one standard deviation 

from the mean. The radiance peak shifts toward longer wavelengths as POC 

concentration increases. Radiance variation as a function of POC concentration is 

minimal at 510 nm. (b) Lwn versus averaged POC concentration from (a) at six spectral 

wave-bands. 
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Fig. 5. Least-squares regressions between POC and (a, b) NDCI and between 

POC and (c, d) MNDCI. The NDCI uses two wavelengths, while the MNDCI uses the 

wavelength among 412, 443 and 490 nm with maximum radiance. Data points in (a) and 

(b) are the same, but are marked by the percent organic carbon in (a) and by the 

maximum wavelength band in (b). Data points in (c) and (d) are the same, but are 

marked by the percent organic carbon in (c) and by the maximum wavelength band ratio 

in (d). The MNDCI algorithm is more accurate at mid to higher POC concentrations than 

the NDCI algorithm. 
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Fig. 6. Comparisons between NDCI and MNDCI POC algorithms.  
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Fig. 7. Comparisons between in situ POC and estimated POC using four different 

algorithms based on SeaWiFS data and products. Data are delineated by percent 

particulate organic carbon >25% and <25%. All correlation statistics are in Table 1. 
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Fig. 8. Surface particulate organic matter concentration (mg/m3) contoured from 

bottle samples collected at ~60 stations during each NEGOM hydrographic cruise. 

Cruises N1/N4/N7 were completed during fall, N2/N5/N8 - during spring, and 

N3/N6/N9 - during summer.  
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Fig. 9. Estimated POC concentration (mg/m3) in the Northeastern Gulf of 

Mexico. Each map is compiled using the MNDCI (equation 5). POC estimates are well 

correlated with in situ data at both lower and higher POC concentrations (compare with 

Fig. 8, but note that maps in Fig. 8 used only ~60 points per image, whereas these 

images are based on a 1.1 km grid of data points). 
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Table 1. Regression (Type II) of in-situ POC versus estimated POC from 

algorithms: 
1

))_(10log)_(10(log 2

−

−−
= ∑

N
POCsituinPOCestimate

RMSE ,  

mean ratio= ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− )_(10log

)_(10log1
POCsituin
POCestimate

N
, and the corresponding standard deviations 

are calculated with POC >25%, <25%, and combined POC samples.  

 
Percent 

POC 
 

slope intercept R2 RMSE Mean 
Ratio 

Standard 
Deviation N 

>25% POC 0.521 0.908 0.635 0.184 1.020 0.099 26
<25% POC 0.715 0.611 0.662 0.250 1.005 0.109 32Lwn(555)* 
combined 0.700 0.612 0.700 0.223 1.012 0.104 58
>25% POC 1.035 -0.064 0.965 0.040 0.999 0.023 26
<25% POC 0.966 0.072 0.966 0.051 1.000 0.025 32Eq. 2: 

Chl-a combined 0.987 0.026 0.967 0.046 1.000 0.024 58
>25% POC 1.045 -0.081 0.952 0.054 1.001 0.031 26
<25% POC 0.936 0.139 0.944 0.082 1.001 0.037 32Eq. 3: 

K(490) combined 0.969 0.064 0.950 0.071 1.001 0.034 58
>25% POC 0.978 0.040 0.964 0.056 1.000 0.029 26
<25% POC 0.953 0.104 0.961 0.085 1.003 0.038 32Eq. 4: 

NDCI combined 0.967 0.067 0.968 0.073 1.002 0.034 58
>25% POC 0.972 0.052 0.986 0.035 1.001 0.020 26
<25% POC 0.997 0.008 0.991 0.040 1.000 0.020 32Eq. 5: 

MNDCI combined 0.992 0.017 0.991 0.038 1.001 0.020 58
(* : Statistics for Lwn(555) not plotted in figures but are included here to 

emphasize the difference between single-wavelength and multiple wavelength 

approaches). 

 


