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Abstract 
 

Hydrographic data, including particulate organic carbon (POC) from the Northeastern 

Gulf of Mexico (NEGOM) study, were combined with remotely-sensed SeaWiFS data to 

estimate POC concentration using principal component analysis (PCA). The spectral radiance 

was extracted at each NEGOM station, digitized, and averaged. The mean value and spurious 

trends were removed from each spectrum. De-trended data included 6 wavelengths at 58 

stations. The correlation between the weighting factors of the first six eigenvectors and POC 

concentration were applied using multiple linear regression. PCA algorithms based on the 

first three, four, and five modes accounted for 90, 95, and 98% of total variance and yielded 

significant correlations with POC with R2=0.89, 0.92, and 0.93. These full waveband 

approaches provided robust estimates of POC in various water types.   

Three different analyses (root mean square error, mean ratio, standard deviation) 

showed similar error estimates, and suggest that spectral variations in the modes defined by 

just the first four characteristic vectors are closely correlated with POC concentration, 

resulting in only negligible loss of spectral information from additional modes. The use of 

POC algorithms greatly increases the spatial and temporal resolution for interpreting POC 

cycling and can be extrapolated throughout and perhaps beyond the area of shipboard 

sampling. 

 

Index Term: 25 and 28 

 

Keywords. POC, PCA, Remote Sensing Algorithm 
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1. Introduction 

The Gulf of Mexico, a semi-enclosed basin with passages at the Yucatan Channel and 

the Florida Straits, is biologically productive in the continental shelf regions and has a 

physically complex regional and mesoscale circulation system (Vastano et al 1995; Walker 

1996; Ohlmann et al 2005). Several river systems on the surrounding land provide a large 

mass of fresh water to the shelf along with suspended sediments, organic and inorganic 

matter, and pollutants. Higher levels of materials in the Gulf of Mexico have a different 

spatial and temporal variability influenced by the seasonal and inter-annual variations of the 

local shelf and mesoscale circulations (Lohrenz et al 1990; Redalje et al 1994; Rabalais et al 

1996; Walker 1996). These conditions can sometimes cause negative impacts resulting from 

high productivity and subsequent carbon export, which may contribute to the formation of 

“dead zones” of hypoxia such as along the Gulf Coast. The North-East Gulf of Mexico 

(NEGOM), Louisiana-Texas Shelf Physical Oceanography Program (LATEX), and hypoxia 

studies have provided useful information for characterizing the oceanic environment of the 

northern Gulf of Mexico region (Redalje et al 1994; Cho et al 1998; DiMarco and Reid 1998). 

These studies have greatly expanded our knowledge on many parameters of the carbon pool 

as well as hydrography. However, carbon measurements have been made in a limited number 

of programs. 

Particulate organic carbon (POC) plays a key role in the transport of carbon in the 

ocean through the biological pump. While CO2 and dissolved organic carbon (DOC) move 

with the water, POC can settle through the water column, across isopycnals, scavenging or 

aggregating other particles and transporting carbon and associated elements to deeper waters. 

Thus POC is a key component in the ocean’s role in sequestering and isolating carbon from 

the atmosphere. Because POC is produced/cycled on day-to-week time scales, a synoptic 

picture of POC changes can only be obtained employing remote sensing techniques. To 

investigate more components of the carbon cycle, empirical approaches have been recently 

developed based on optical closure relationships using single or multiple spectral 

wavelengths and provide a reasonable assessment of particulate organic carbon (POC) 

distribution on regional to global scales (Stramski et al 1999, 2008; Loisel et al 2001; 

Mishonov et al 2003; Stramska et al 2005; Gardner et al 2006; Son 2006; Son et al 

submitted). Several empirical approaches have been used for estimating chlorophyll 

concentration in ocean color studies, as well as using model-based approaches based on 

orthogonal vector analyses, using remote sensing data (Mueller 1976; Gower et al 1984; 
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Fischer et al 1986; Sathyendranath et al 1989; Neumann et al 1995) but the latter approaches 

have not been studied sufficiently for POC concentration.  

Principal component analysis (PCA), one of the model-based approaches to estimate 

water constituents, is generally used to produce a reduced variance for the analysis of 

information in multi-dimensional data sets. PCA is used to analyze information from 

empirical or modeled data sets and to separate the signal from noise (Mueller 1976; Neumann 

et al 1995; IOCCG 2000). In ocean color studies a characteristic vector analysis method 

using multiple wavelengths has been introduced to determine the relationship between 

chlorophyll concentrations and spectral wavelengths, and enhance the potential 

discrimination and reconstruction accuracy of constituents present (Mueller 1976; Gower et 

al 1984; Fischer et al 1986; Sathyendranath et al 1989; Neumann et al 1995; IOCCG 2000). 

In this study the main idea is to develop accurate and efficient POC algorithms using a 

model-based approach employing multiple wavelengths and in situ measurements. This 

method can be optimized to take into account regional or seasonal variations by applying 

regional optical models to derive the weighting coefficients for the estimator. It is important 

for quantifying the time-varying evolution of POC in surface waters to monitor, and 

eventually model, the impact of climate change on surface water biomass and productivity 

(Son 2006). 
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2.  Data and Methods 

2.1. In situ Shipboard Data 

In order to understand the spatial and temporal physical processes in the northern Gulf 

of Mexico, the Northeastern Gulf of Mexico (NEGOM) project conducted nine cruises from 

November 1997 to August 2000 along the same eleven track lines. Each seasonal cruise was 

completed along lines normal to the coastline between mid-Florida and the Mississippi River, 

starting from about 20 m water depth on the shelf and moving out to the 1000 m isobath 

(figure 1). This area spans a wide range of particle concentrations and types, from turbid river 

runoff to clear and open-ocean waters. 

POC samples were collected from rosette water bottles at about half of the stations 

(~60 sampling points). Prior to each cruise, 25-mm diameter GF-75 (approximately 0.7-μm 

pore size) glass-fiber filters were combusted in a Thermolyne Type 1300 furnace along with 

aluminum foil squares to oxidize any organic traces on the filters and foil (Gordon 1969; 

Sharp 1974; JGOFS 1996). During each cruise, water samples (1~3 liters) including all 

organic particles were filtered to determine concentrations of POC at each of the ~60 stations. 

The filters were then wrapped in aluminum foil and placed in a drying oven under low heat, 

approximately 30°C, for 3-4 hours (Bernal 2001). After each cruise the filters were acidified 

to remove carbonates and combusted, converting the organic carbon to CO2, which was then 

measured by thermal conductivity (JGOFS 1996). Blank (unused and pre-combusted filters) 

corrections were applied and results were given in concentration of mg/m3. 

 

2.2. Satellite Data 

Daily SeaWiFS satellite images (Level 1A) covering the Gulf of Mexico were 

obtained from the NASA Goddard Space Flight Center DAAC archives 

(http://oceancolor.gsfc.nasa.gov/). L1A Images were processed to Level 2 using the SeaWiFS 

Data Analysis System (SeaDAS) (Baith et al 2001; McClain et al 2004) software. The 

spectral normalized water-leaving radiance (Lwn) were derived from the SeaWiFS Level 2 

(geolocated, geophysical values, L2) data using the SeaDAS standard correction algorithm 

for all eight spectral channels. The derived six visible wavelengths (412, 443, 490, 510 555, 

and 670 nm) data were used to develop an algorithm to estimate POC.  

 

2.3. Model-Based Approach 
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A match-up data set between in situ measurements and satellite data synchronously 

obtained from the same cruise time was generated. The empirical match-up analysis adopted 

the NASA Ocean Biology Processing Group’s (OBPG) approach (Bailey et al 2000, 2006). 

In our study we used 3×3 pixel grid (i.e., > 4 valid pixels) instead of a 5×5 pixel grid. 58 POC 

sub-samples, which totaled about 11 % of the total 526 POC samples, and were matched with 

the SeaWiFS spectral data within ± 3 hours of POC sampling and within ± 3 hours of local 

noon.  

In this study principal component analysis (PCA) was used to determine the 

information from empirical data sets, to transform the data in a manner suitable for analysis, 

and to separate a useful signal from noise in the data. This correlated data set was used to 

determine the spectral dimensionality of the data, and the weighting of each spectral channel 

required to estimate the variables of interest (Gower et al 1984; Sathyendranath et al 1989; 

IOCCG 2000).  

We first removed the calculated mean value µ(λ) from each normalized water leaving 

radiance (λ). We also computed and removed any linear trend existing in the record deemed 

to be spurious. The resulting de-meaned series of D(λ) are termed standardized as;  

Dn(λ) = [ ])()(
1 1

jji

n

i

m

j
L λμλ −∑∑

= =

      (1) 

where L is the spectral remote sensing data set of original N × M matrix, i is the observation 

number and j is the measurement at the given spectral wavelength.  

The computationally efficient singular value decomposition (SVD) of a matrix is 

applied to calculate eigenvectors and eigenvalues. SVD is based on the concept that any 

rectangular N × M matrix Dn(λ) can be written as the product of three matrices: an N × N 

matrix U, a N × M diagonal matrix Γ with positive or zero elements, and the transposition 

(V†) of the M × M matrix V.  

Dn(λ) = U × Γ × V†         (2) 

Matrix Γ is a rectangular N × M matrix with zero elements outside the diagonal and 

positive or zero elements on the diagonal. The scalars on the diagonal, γk, are called the 

singular values and are typically placed in decreasing order of magnitude. Again, there is a 

maximum of k ≤ min (N, M) non-zero singular values, which defines the maximum number 

of PCA modes we can determine, so that the effective dimension of matrix Γ is k × k. 

An original observation vector, L, may be transformed into its characteristic system 

representation through the k equations.  
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; i = 1, 2, ....., k and j = 1, 2, ....., N    (3) 

where PCi is called the ith principal component of Di and characteristic vector eij is the ith 

characteristic vector. Thus, we effect the transformation 

(D1, D2, ….., DN)   (PC1, PC2, … PCk), 

where k is less than or equal to N to retain the desired proportion of sample variance.
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3. Results and Discussions 

 3.1. A Model-Based Approach (Principal Component Analysis) 

The spectral normalized water-leaving radiances at 6 wavelengths for 58 stations 

were analyzed using PCA analysis to obtain the eigenvalues and eigenvectors of the 

dimensionally reduced data. The principal components (PCs) of the first six characteristic 

vectors were calculated. The correlation between these PCs and POC concentrations was 

determined using multiple linear regression and added weighting factors. This approach 

reduced the data to a small number of orthogonal vectors and the corresponding weight 

factors for each sample. The reduced data set simplifies the task of information extraction and 

interpretation (Mueller 1976; Gower et al 1984; Sathyendranath et al 1989). 

In the first approach, we compared discrete POC concentration with averaged 

radiance data from each NEGOM cruise. Figure 2a graphically shows the total variance 

calculated by PCA. The first and second modes (54 and 27 %) were clearly dominant, 

followed by a steep drop in variance of the third and fourth modes, which accounted for 10 

and 4 % of the total variance respectively. The first three, four, and five modes accounted for 

90, 94, and 98 % of total variance.  

In figure 2b, the peak in the mean spectral radiance occurred at the shorter 

wavelengths and rapidly dropped off in the green and red wavelengths. In examining 

individual eigenvectors, the first eigenvector showed a small maximum at 555 nm. The 

maximum in the second eigenvector occurred at the shortest wavelength measured – 412 nm, 

and the third eigenvector maximum was at 490 nm (figure 2c). The other three eigenvectors 

had double maxima but lower eigenvalues (< 4 % of total variance, figure 2d).  

The first eigenvector shows high values at longer wavelengths, perhaps due to 

increased scattering from elevated concentrations of nonliving and living organic particles. 

The maximum of the second vector is shifted to shorter wavelengths, violet-blue wavelengths, 

which is characteristic of increasing radiance due to low absorption. The third vector appears 

to be a combination of moderate concentrations of nonliving and living organic particles at 

490 nm (figure 2c). The fourth and fifth vectors show lower radiance peaks at 670 nm and the 

sixth vector has a high value at 670 nm. The shapes of vectors reveal that spectral response 

depends on absorption/scattering of nonliving and living organic particles (Gower et al 1984, 

figures 2c and 2d).  

We can observe the patterns of characteristic eigenvectors from the spectral response 

curve (Son 2006; Son et al submitted). When the POC concentration in the surface water 
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increased, the radiance peak shifted from the shorter wavelengths (412 and 443 nm, violet-

blue band) to longer wavelengths (555 nm, green band). Radiance at 510 nm remained at a 

relatively constant value over a wide range of POC concentrations (< 20 to > 550 mg/m3). 

One would expect that at lower POC concentration, the spectral curve maximum would shift 

to shorter wavelengths, since blue water-leaving radiance should increase (relative to longer 

wavelengths were light doesn’t penetrate as deeply). When POC concentration increases, the 

radiance peak shifts toward longer wavelengths as radiance from particles dominates the 

signal.  

However, a fixed number of spectral radiances in model-based approaches does not 

yield an equal number of independent constituents affecting the radiance because of the 

similarity in the spectral response generated by different oceanic constituents (Fischer 1985), 

i.e. the spectral response of different constituents in the water is not unique. Therefore, only a 

small number of spectral measurements yield independent information about water 

constituents of interest. The degree of interdependence between radiances measured at 

different wavelengths can be determined with an eigenvalue analysis (Twomey 1977). The 

orthogonality of the radiance signals of the individual components will determine our ability 

to recover these components from the total radiance spectrum.  

A least-squares fit of the principal component (PC) values to POC concentrations 

using the multiple-linear regression method showed that POC estimates (mg/m3) were related 

to each principal component of the SeaWiFS visible wavelengths by the equation: 
)054.2474.066.01.0( 32110 +×+×+×−= PCPCPCPOC        (4) 

where PC 1,2,3 are the principal components of the first three modes using surface POC and 

averaged radiance data from each NEGOM cruise. 

Equation 4 demonstrates that weighting vectors 2 and 3 contributed roughly equally to 

describing the effects of POC concentration but vector 1 anti-correlated with POC (negative 

exponent for PC1). Figure 3a and Table 1 show the scatter plot between in situ surface POC 

measurements and POC estimates using equation 4. This multiple regression was well 

correlated with lower POC concentration but scattered at higher POC concentration (R2 = 

0.89, N=58). To determine a quantitative algorithm evaluation, Son et al (submitted) provided 

a useful method to distinguish between samples dominated by organic and inorganic 

components based organic percent. Through empirical analysis they found that the 25% value 

best correlated POC/PM and beam attenuation coefficient due to particles at 660 nm, cp. This 

assessment demonstrated that POC was better related to cp when organic matter dominated 
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the total mass of particles, as one would expect (organic matter ~2×POC). We applied this 

relationship between the measured and estimated POC to our study. Figure 3 and Table 1 

provide correlation plots and statistical data between discrete POC measurements and POC 

estimates obtained with three different algorithms (equations 4-6) using samples where 

organic percent >25%, <25%, and combined POC samples. The root mean square error 

(RMSE), mean ratio values between the in situ POC and POC estimates, as well as the 

corresponding standard deviation were computed and tabulated in Table 1. The results of 

RMSE, mean ratio, and standard deviation where POC >25%, <25%, and combined POC 

samples were not significantly different; the regression slightly over-estimated when organic 

percent > 25% and under-estimated when organic percent < 25 % (Table 1).  

Equation 5 reveals that weighting vectors 2, 3, and 4 contributed similarly to 

describing the effects of POC concentration but vector 1 anti-correlated with POC. Fig. 3b 

shows the scatter plot between in situ surface POC measurements and POC estimates 

obtained with equation 5. The correlation revealed a good relationship between POC 

measurements and weighted spectral data (R2 = 0.92, N=58). The results of error analysis 

where >25%, <25%, and combined POC samples provided a closer correlation between in 

situ and estimated POC than the previous approach (equation 4).  
)054.284.0474.066.01.0( 432110 +×+×+×+×−= PCPCPCPCPOC       (5) 

where PC 1,2,3,4 are the principal components of the first four modes. 

 

Equation 6 demonstrates that weighting vectors 2, 3, and 4 contributed similarly to 

describing the effects of POC concentration but vectors 1 and 5 anti-correlated with POC 

(negative exponents). Fig. 3c and Table 1 show the scatter plot and statistics between in situ 

surface POC measurements and POC estimates using equation 6. This multiple regression 

reveals a significant correlation between POC measurements and weighted spectral data with 

R2 = 0.93 (N=58). Although this approach using equation 3 provided reasonable estimates of 

POC concentrations regardless of whether organic percent was >25%, <25%, or combined, 

the RMS error was not significantly different than with equation 5.  
)054.2693.084.0474.066.01.0( 5432110 +×−×+×+×+×−= PCPCPCPCPCPOC     (6) 

where PC 1,2,3,4,5 are the principal components of the first five modes. 

In figure 3 and Table 1, the first three, four, and five vectors demonstrated different 

weighting factors with varying POC concentrations showing similar effects of POC 

concentrations. Although the first three vectors accounted for about 90 % of the total variance, 
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the POC concentrations estimated using the first three vectors and weighting factors had a 

slightly higher error (Table 1). Adding the fourth or fifth vectors and weighting factors 

provided a better correlation over a wide range of surface POC concentrations. These higher 

vectors appear to provide more systematic information about high POC concentrations which 

are affected by strong absorption and scattering radiances. However, each vector provided 

reasonable POC estimates for turbid waters. One, or a combination, of the weighted 

eigenvalues reduced the noise levels from an optically complex environment. Although this 

linear approach does not accurately describe the physical relationship between principal 

components of the spectral radiance and POC concentration, the results of PCA demonstrate 

that using the first four vectors rather than all six lost virtually no information about the 

original constituents and provided a better correlation than using a single-wavelength ratio 

(Son 2006; Son et al submitted). In a previous study (Son 2006; Son et al submitted), the 

empirical POC approach used all wavelengths from blue to green to reduce the scatter of 

radiance signal. It was demonstrated that to obtain the best POC estimates in complex waters 

requires complex algorithms using 4-6 wavelength rather than a single wavelength or the 

simple blue-to-green ratios typically used for open ocean waters. The empirical and model-

based approaches employ full spectral radiance information and are well correlated with a 

broad range of POC concentrations. But still, further studies are necessary to establish a data 

bank of spectral signatures of different water constituents using multispectral, multivariate 

data (Gower et al 1984; Sathyendranath et al 1989; IOCCG 2000).  

Figure 4 is the reconstruction of estimated POC using the PCA algorithm (equation 4) 

and ocean color data collected by SeaWiFS Level 1A (1.1 km resolution). The PCA approach 

employed full spectral radiance information and was well correlated at lower and higher POC 

concentration. The most notable difference between maps constructed strictly from field data 

and POC maps from PCA analysis applied to SeaWiFS data, is the more detailed spatial 

pattern of POC, especially in coastal areas which were excluded during shipboard sampling. 

Cruises N1/N4/N7 were completed during fall, N2/N5/N8 - during spring, and N3/N6/N9 - 

during summer. The range of PCA POC concentrations within the area circumscribed by the 

bottle samples was 17 to 889 mg/m3. The geometric mean based on the PCA algorithm was 

121 ± 39 mg/m3 for the fall seasons, 124 ± 50 mg/m3 for the spring seasons, and 200 ± 41 

mg/m3 for the summer seasons. During the fall and early spring, elevated POC concentrations 

were confined to the inner shelf. During the late spring and summer, elevated POC 

concentrations extended out to the outer shelf and the upper slope. During those summer 
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cruises the Loop Current and eddies, drew water from the Mississippi area out beyond the 

shelf into the open Gulf of Mexico. However, the close fit between POC estimates for PCA 

and measured POC suggests that spectral variations in the modes defined by the first four 

characteristic vectors are more closely related to POC concentration than with other optically 

important properties of sea water such as phytoplankton, suspended inorganic matter or 

CDOM. Thus, this algorithm should be valid in waters with both high and low %POC (i.e. 

coastal and open-ocean waters). Since the accuracy of the PCA was similar in high and 

low %POC waters, it opens the question of whether this algorithm could be applied to larger 

regions of even globally. We tested the PCA using a few samples from other oceans with 

promising results, but more data and testing are required. 

Son et al (submitted) presented more detailed information about the difference 

between the bottle measurements and estimated POC. A later paper will use multivariate 

analysis to examine the distribution of POC and many other environmental factors (wind, 

temperature, chlorophyll, river runoff, etc.) that influence those distributions based on the 

work of Son (2006). 
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4. Conclusions 

Using large data sets that include in situ measurements and ocean color products, the 

classical approach for estimating POC with high spatial resolution over wide areas is to 

develop empirical or model-based algorithms. From our analysis of the spectral response 

curve, we found that the peak spectral radiance was significantly dependent on POC 

concentration (Gower et al 1984; Sathyendranath et al 1989). Three different model-based 

PCA approaches using the spectral dependence were developed for POC estimates from 

normalized water-leaving radiances at six wavelengths. The characteristic eigenvalues and 

eigenvectors were derived from the reduced dimension of the spectral radiances. Nearly the 

entire variability of spectral radiances for POC estimates could be explained by the first three, 

four, or five modes (90, 95, and 98 % of total variances). The first vector yielded information 

about higher POC concentrations. The second vector yielded information about lower POC 

concentrations. The third vector provided information about moderate POC concentrations. 

Other vectors did not yield further information about POC concentration, most likely because 

of optically complex conditions due to one or more influences of scattering and absorption 

conditions by phytoplankton, suspended inorganic matter or CDOM.  

Although the results of PCA algorithms tested by three different approaches reveal a 

significant relationship between in situ measurements and estimated POC, the POC algorithm 

which employed the first four modes showed that the derived relations were most sensitive 

when using all SeaWiFS wavelengths over the entire range of in situ POC concentrations. 

These algorithms are promising for mapping POC concentration regionally based on remote 

sensing data as it clearly reproduces the spatial distribution and seasonal cycles in the Gulf of 

Mexico. This approach for developing algorithms appears useful for estimating and 

monitoring POC concentrations at least on regional scales, and should be tested on even 

broader spatial scales. 
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Table 1 - Regression (Type II) of in-situ POC versus estimated POC from algorithms: 

1
))_(10log)_(10(log 2

−

−−
= ∑

N
POCsituinPOCestimate

RMSE ,  

mean ratio= ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− )_(10log

)_(10log1
POCsituin
POCestimate

N
, the corresponding standard deviations, bias are 

calculated with POC >, < 25%, and combined POC samples.  

 
Organic 

Percent 
Slope Intercept R2 RMSE

Mean 

Ratio 

Standard 

Deviation 
N 

>25% POC 0.924 0.166 0.852 0.118 1.016 0.068 26 

<25% POC 0.880 0.244 0.877 0.144 0.994 0.066 32 Eq. 4 

combined 0.889 0.228 0.889 0.133 1.004 0.067 58 

>25% POC 0.889 0.220 0.880 0.103 1.010 0.059 26 

<25% POC 0.932 0.140 0.916 0.119 0.997 0.056 32 Eq. 5 

combined 0.922 0.161 0.922 0.112 1.003 0.058 58 

>25% POC 0.930 0.142 0.905 0.092 1.009 0.053 26 

<25% POC 0.934 0.136 0.925 0.112 0.997 0.050 32 Eq. 6 

combined 0.933 0.138 0.933 0.103 1.002 0.052 58 
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Figure 1. Bathymetry and sampling stations in the Northeastern Gulf of Mexico (NEGOM) 

occupied during 9 cruises from November 1997 to August 2000 (11 sampling transects and 

60 POC sampling stations).  

 
Figure 2. PCA analysis using 58 samples and six wavelengths: (a) Total variance versus PCA 

mode number, (b) mean spectral radiance versus wavelength, and (c, d) the first six 

eigenvectors derived from NEGOM data. The first eigenvector showed that the maximum 

occurred at 555 nm, the second eigenvector shows maximum at 412 nm, and the third at 490 

nm. Eigenvectors 4-6 show double maxima. 

 
Figure 3. Comparisons between in situ POC and estimated POC using three different 

algorithms based on multiple linear regression and weighted PCA vectors. Data are 

delineated by percent organic carbon > and < 25%. The lines are 1:1 slopes. All correlation 

statistics are in Table 1. 

 
Figure 4.  Estimated POC concentration (mg/m3) in the Northeastern Gulf of Mexico. Each 

map is compiled using PCA equation 5. POC estimates are well correlated with in situ data at 

both low and high POC concentrations. 
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Figure 2. PCA analysis using 58 samples and six wavelengths: (a) Total variance versus PCA 

mode number, (b) mean spectral radiance versus wavelength, and (c, d) the first six 

eigenvectors derived from NEGOM data. The first eigenvector showed that the maximum 

occurred at 555 nm, the second eigenvector shows maximum at 412 nm, and the third at 490 
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Figure 4.  Estimated POC concentration (mg/m3) in the Northeastern Gulf of Mexico. Each 

map is compiled using PCA equation 5. POC estimates are well correlated with in situ data at 

both low and high POC concentrations. 

  


