430 research outputs found

    What drives the recent intensified vegetation degradation in Mongolia - Climate change or human activity?

    Get PDF
    This study examines the course and driving forces of recent vegetation change in the Mongolian steppe. A sediment core covering the last 55 years from a small closed-basin lake in central Mongolia was analyzed for its multi-proxy record at annual resolution. Pollen analysis shows that highest abundances of planted Poaceae and highest vegetation diversity occurred during 1977–1992, reflecting agricultural development in the lake area. A decrease in diversity and an increase in Artemisia abundance after 1992 indicate enhanced vegetation degradation in recent times, most probably because of overgrazing and farmland abandonment. Human impact is the main factor for the vegetation degradation within the past decades as revealed by a series of redundancy analyses, while climate change and soil erosion play subordinate roles. High Pediastrum (a green algae) influx, high atomic total organic carbon/total nitrogen (TOC/TN) ratios, abundant coarse detrital grains, and the decrease of δ13Corg and δ15N since about 1977 but particularly after 1992 indicate that abundant terrestrial organic matter and nutrients were transported into the lake and caused lake eutrophication, presumably because of intensified land use. Thus, we infer that the transition to a market economy in Mongolia since the early 1990s not only caused dramatic vegetation degradation but also affected the lake ecosystem through anthropogenic changes in the catchment area

    Magnetostratigraphy and Paleoenvironments of the Kuntila Lake Sediments, Southern Israel: Implications for Late Cenozoic Climate Variability at the Northern Fringe of the Saharo-Arabian Desert Belt

    Get PDF
    The Negev Desert in southern Israel hosts a number of late Cenozoic lacustrine and palustrine sedimentary sequences that attest for past wetter conditions in what today constitutes one of the driest deserts on Earth. These sequences are of special importance because the Negev Desert forms part of the Levantine Corridor, which was probably the only continental bridge that enabled initial out-of-Africa expansion of our genus Homo. Yet, the paleoclimatic significance of these sequences still remains unknown, mainly due to their uncertain (late Pliocene to early Pleistocene) age. Here we present a combined sedimentologic, paleontologic and magnetostratigraphic study of one of these sedimentary sequences, the so-called Kuntila Lake sediments, which was carried out at the 30 m-thick Kuntila Gate section in the Nahal Paran basin, southern Israel. Sedimentological evidence and ostracod faunas indicate that these sediments accumulated in a long-lasting lacustrine basin that underwent periodic lake-level variations. Magnetostratigraphic measurements enable the recognition of a normal (N1) and a reverse (R1) polarity zone in the lower and upper halves, respectively, of the Kuntila Gate section. Correlation of N1 to the Olduvai Subchron (1.778–1.945 Ma) appears as the most likely option in view of previously published 10Be ages derived for the uppermost part of the Kuntila Member in nearby sections. The large errors associated with these ages, however, suggest that correlation of N1 to Subchron C2An.1n (2.582–3.032 Ma) is also possible. Although our results do not resolve the age of the Arava Formation, they unequivocally relate the Kuntila Lake sediments with a long period of enhanced climatic variability because the tops of both subchrons are associated with 400 kyr eccentricity maxima. The inferred wetter conditions in the Negev Desert concurred, regardless of the age correlation, with periods of lake expansion in East Africa and clusters of short-lived expansions of the savannah throughout much of the Sahara. This would have facilitated the biogeographic connection between Africa and Eurasia, greening the path for the initial out-of-Africa dispersal of Homo. Further research on the Kuntila Lake sediments will be necessary to better determine the timing, extent and significance of such biogeographic connection

    The alwathba wetland reserve lake in Abu Dhabi, United Arab Emirates and its ostracod (seed shrimp) fauna

    Get PDF
    Al Wathba Wetland Reserve (AWWR) lake, in the United Arab Emirates (UAE), is an artificially created water body in a natural wetland region that experienced seasonal flooding before the establishment of the lake. The lake is mostly fed by treated waste water, and became a protected wetland reserve after the Greater Flamingo started to successfully breed in the area in 1998. Detailed monitoring of several hydrochemical parameters and water depth at nine stations and two inlets of treated water in the lake was conducted over a period of seven years starting in January 2010. As a result, the seed-shrimps (Ostracoda: Podocopida) Heterocypris salina, previously reported from a late Miocene location in the UAE, and Cyprinotus cingalensis were recorded for the modern fauna of the UAE for the first time. The presence of the ostracods only at the station with the lowest salinity in the AWWR Lake shows that their distribution is predominantly controlled by the salinity of the water which covered an extremely large range of more than two orders of magnitude (1.45-457%) at the different sampling sites and inlets during the monitoring period. Thus, the lake represents an interesting and important ecological research laboratory under semi-natural conditions

    The world’s earliest Aral-Sea type disaster: the decline of the Loulan Kingdom in the Tarim Basin

    Get PDF
    The presented data are accessible in the PANGAEA database, https://doi.pangaea.de/10.1594/PANGAEA.871173.Remnants of cities and farmlands in China’s hyperarid Tarim Basin indicate that environmental conditions were significantly wetter two millennia ago in a region which is barren desert today. Historical documents and age data of organic remains show that the Loulan Kingdom flourished during the Han Dynasty (206 BCE–220 CE) but was abandoned between its end and 645 CE. Previous archaeological, geomorphological and geological studies suggest that deteriorating climate conditions led to the abandonment of the ancient desert cities. Based on analyses of lake sediments from Lop Nur in the eastern Tarim Basin and a review of published records, we show that the Loulan Kingdom decline resulted from a man-made environmental disaster comparable to the recent Aral Sea crisis rather than from changing climate. Lop Nur and other lakes within the Han Dynasty realm experienced rapidly declining water levels or even desiccation whilst lakes in adjacent regions recorded rising levels and relatively wet conditions during the time of the Loulan Kingdom decline. Water withdrawal for irrigation farming in the middle reaches of rivers likely caused water shortage downstream and eventually the widespread deterioration of desert oases a long time before man initiated the Aral Sea disaster in the 1960s.Funding was provided by China’s NSF projects (40830420, 41471003), the State key project (2003BA612A-06–15) of the Ministry of Science and Technology of China and the German Research Foundation (DFG grant Mi 730/16-1). We thank two anonymous reviewers who provided very constructive comments on an earlier version of this paper.Peer Reviewe

    A Late Pleistocene Wetland Setting in the Arid Jurf ed Darawish Region in Central Jordan

    Get PDF
    Current conditions in the southern Levant are hyperarid, and local communities rely on fossil subsurface water resources. The timing of more favourable wetter periods and also their spatial characteristics are not yet well constrained. To improve our understanding of past climate and environmental conditions in the deserts of the southern Levant, sedimentary sections including artefact-bearing beds from Jurf ed Darawish on the Central Jordanian Plateau were investigated using sedimentological and micropalaeontological analyses and OSL dating. Grain-size analysis and structures of the clayey-silty sediments show that they mainly represent reworked loess deposits. The OSL ages suggest that these fine-grained sediments were accumulated during Marine Isotope Stages (MIS) 5-3. Recorded ostracod valves (mostly Potamocypris, Ilyocypris and Pseudocandona), remains of aquatic and terrestrial gastropod shells, and charophyte gyrogonites and stem encrustations indicate that an in-stream wetland existed at the location of Jurf ed Darawish during MIS 5-4 which was replaced by a vegetated alluvial plain in MIS 3. The prevailing aggradational setting was replaced by an erosional setting sometime after 30 ka. Abundant artefacts, distributed over a vertical range of up to 40 cm in a bed covered by a sedimentary sequence of 12-m thickness, provide evidence for the presence of humans in the region during a relatively long period from ca. 85 to 65 ka. The reconstruction of an in-stream wetland at Jurf ed Darawish, and the presence of humans at the site and in other desert regions of the Jordanian Plateau, the Wadi Arava/Araba, and the Negev and the Nefud deserts, show that the regional climate in the late MIS 5 and MIS 4 was significantly wetter than today and provided favourable conditions for humans in the Southern Levant and the northwestern Arabian Peninsula

    Ostracods from a Marmara Sea lagoon (Turkey) as tsunami indicators

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright @ Elsevier Ltd.A 352 cm long sediment core from Hersek Lagoon (Gulf of Ä°zmit) was investigated for its ostracod species composition in order to evaluate the potential of ostracods to detect tsunami deposits in coastal environments. The Gulf of Ä°zmit is the eastern bay of the Marmara Sea which is tectonically controlled by the North Anatolian Fault. Ostracod shells are rare in the lower third of the core, which probably represents a coastal wetland environment. According to radiocarbon dating of terrestrial plant remains, this unit was deposited between AD 500 and AD 800. Above, ostracod shells are abundant and dominantly monospecific, composed almost exclusively of the widespread brackish water ostracod Cyprideis torosa. This almost monospecific occurrence indicates the establishment and maintenance of the Hersek Lagoon after AD 800. Three distinct layers of mollusc shells and fragments contain ostracod shells of marine and to a lesser extent non-marine origin in addition to those of C. torosa. The shell layers are further characterized by significant maxima in total ostracod shell numbers. The high concentration of ostracod shells, the higher species numbers and the mixture of marine, lagoonal and non-marine ostracod shells shows that shell layers were formed as high-energy deposits resulting from tsunamis or large storms in the Marmara Sea. The partial occurrence of non-marine ostracod shells in the shell layers possibly indicates that tsunamis with extensive run-ups and significant backwash flows caused the high-energy deposits rather than large storms. The investigated sediments show that lagoonal ostracods can serve as good proxies for tsunamis or large storms through significant variations in total shell numbers, species numbers and the mixing of shells of different origin.Funding was provided by the European Union in the framework of the REL.I.E.F. (RELiable Information on Earthquake Faulting) project (EVG1-CT-2002-00069)

    Implications of submonthly oxygen and carbon isotope variations in late Pleistocene Melanopsis shells for regional and local hydroclimate in the upper Jordan River valley

    Get PDF
    Many water-stressed regions of the globe have a highly seasonal precipitation regime. However, seasonality in the past and under changing climates is little studied. Submonthly records of sclerochronological δ18O and δ13C values of Melanopsis shells from the Jordan River Dureijat archaeological site (JRD) in the upper Jordan River valley presented here document the hydrology of paleo-Lake Hula. These records were assessed for changes in seasonal hydrology in the lake and compared with modern shells collected from present-day waterbodies in northern Israel and with models of δ18Oshell. Results from shells in sediments dating from the last glacial maximum (LGM) to the Bolling-Allerod imply changes in waterbody size that qualitatively parallel changes in the late Pleistocene Lake Lisan levels; Hula Lake was well buffered when Lake Lisan stood at a high stand and poorly buffered when water levels were lower. Furthermore, data from shells dated to the LGM suggest inflowing water with lower δ18O values than local rainfall, providing evidence for a greater proportion of snow in the catchment than today. Reconstruction of water δ18O and mixing-model calculations suggest that snowmelt contribution to spring water during the LGM may have been more than twice the amount in the modern-day catchment

    Moisture-advection feedback supports strong early-to-mid Holocene monsoon climate on the eastern Tibetan Plateau as inferred from a pollen-based reconstruction

    Get PDF
    (Paleo-)climatologists are challenged to identify mechanisms that cause the observed abrupt Holocene monsoon events despite the fact that monsoonal circulation is assumed to be driven by gradual insolation changes. Here we provide proxy and model evidence to show that moisture-advection feedback can lead to a non-linear relationship between sea-surface and continental temperatures and monsoonal precipitation. A pollen record from Lake Ximencuo (Nianbaoyeze Mountains) indicates that vegetation from the eastern margin of the Tibetan Plateau was characterized by alpine deserts and glacial flora after the Last Glacial Maximum (LGM) (21–15.5 cal kyr BP), by alpine meadows during the Late Glacial (15.5–10.4 cal kyr BP) and second half of the Holocene (5.0 cal kyr BP to present) and by mixed forests during the first half of the Holocene (10.4–5.0 cal kyr BP). The application of pollen-based transfer functions yields an abrupt temperature increase at 10.4 cal kyr BP and a decrease at 5.0 cal kyr BP of about 3 °C. By applying endmember modeling to grain-size data from the same sediment core we infer that frequent fluvial events (probably originating from high-magnitude precipitation events) were more common in the early and mid Holocene. We assign the inferred exceptional strong monsoonal circulation to the initiation of moisture-advection feedback, a result supported by a simple model that reproduces this feedback pattern over the same time period

    Large-Scale Geographic Size Variability of Cyprideis torosa (Ostracoda) and Its Taxonomic and Ecologic Implications

    Get PDF
    Body-size variability results from a variety of extrinsic and intrinsic factors (environmental and biological influences) underpinned by phylogeny. In ostracodes it is assumed that body size is predominantly controlled by ecological conditions, but investigations have mostly focused on local or regional study areas. In this study, we investigate the geographical size variability (length, height, and width) of Holocene and Recent valves of the salinity-tolerant ostracode species Cyprideis torosa within a large geographical area (31°–51° latitude, and 12°–96° longitude). It is shown that distant local size clusters of Cyprideis torosa are framed within two large-scale geographical patterns. One pattern describes the separation of two different size classes (i.e., morphotypes) at around ∼42° N. The co-occurrence of both size morphotypes in the same habitats excludes an environmental control on the distribution of the morphotypes but rather could point to the existence of two differentiated lineages. Generally, correlations between valve size and environmental parameters (salinity, geographical positions) strongly depend on the taxonomic resolution. While latitude explains the overall size variability of C. torosa sensu lato (i.e., undifferentiated for morphotypes), salinity-size correlations are restricted to the morphotype scale. Another large-scale pattern represents a continuous increase in valve size of C. torosa with latitude according to the macroecological pattern referred as Bergmann trend. Existing explanations for Bergmann trends insufficiently clarify the size cline of C. torosa which might be because these models are restricted to intraspecific levels. The observed size-latitude relationship of C. torosa may, therefore, result from interspecific divergence (i.e., size ordered spatially may result from interspecific divergence sorting) while environmental influence is of minor importance. Our results imply that geographical body-size patterns of ostracodes are not straightforward and are probably not caused by universal mechanisms. Consideration of phylogenetic relationships of ostracodes is therefore necessary before attempting to identify the role of environmental controls on body size variability
    • …
    corecore