40 research outputs found

    Dimensional Stability, Decay Resistance, and Mechanical Properties of Veneer-Faced Low-Density Particleboards Made From Acetylated Wood

    Get PDF
    Veneer-faced low-density particleboards were made using four combinations of control and acetylated veneers and particles. These boards were tested for dimensional stability in both liquid water and water vapor, for decay resistance in standard soil-block tests with Tyromyces palustris and Trametes versicolor, for strength losses during attack by T. palustris, and for mechanical strength in bending-creep and mechanical tests. Boards made from acetylated veneers and acetylated core particles showed excellent dimensional stability in both liquid water and humidity tests and were resistant to attack by both fungi in an 8-week soil-block test. During the 150-day bending-creep test, the totally acetylated boards showed no strength or weight loss during exposure to T. palustris. Modulus of elasticity and modulus of rupture were slightly reduced for totally acetylated boards compared to boards with control veneers and control particles, and internal bond strength was reduced by about 30%. Screw-holding capacity of the totally acetylated boards and boards with control veneers and particles was essentially the same

    Fixation of Compressed Wood Using Melamine-Formaldehyde Resin

    Get PDF
    Methods to maximize wood hardness and dimensional stability include various combinations of compression, heating, and chemical treatment. In this study, wood was treated with increasing concentrations of a low molecular weight, water-soluble melamine-formaldehyde resin solution (mol wt 380) and compressed while heated. This method achieved a maximum bulking efficiency of 5% and an antishrink efficiency of 45%, showing that the chemical had not completely penetrated the cell wall. Once the wood was treated, its ability to retain the compressed state was tested by immersing wood specimens in water at different temperatures. Specimens treated with an 8% resin solution retained almost complete fixation when soaked in room-temperature water, while those treated with a 25% solution retained fixation in boiling water. Moreover, a 25% solution of resin and a compression of 54% increased hardness from 0.48 to 0.72 MPa

    Intra-cardiac echocardiography guided catheter ablation of a right posterior accessory pathway in a patient with Ebstein׳s anomaly

    Get PDF
    AbstractWe report a case of Ebstein׳s anomaly in which radiofrequency catheter ablation of an accessory pathway was successfully performed under intra-cardiac echocardiography. A 50-year-old woman was referred to our hospital for radiofrequency catheter ablation of a paroxysmal supraventricular tachycardia. A 12-lead surface electrocardiogram revealed ventricular pre-excitation associated with type B Wolff–Parkinson–White syndrome. In the baseline electrophysiological study, an orthodromic atrioventricular reciprocating tachycardia with a right posterior accessory pathway was induced. A phased-array intra-cardiac echo probe was positioned in the right atrium to visualize the atrioventricular junction. The key structures for catheter ablation, such as the atrialized right ventricle, atrioventricular junction, and tricuspid valve, were clearly visualized on intra-cardiac echocardiography. Radiofrequency current was successfully delivered at the atrioventricular junction, where a Kent potential was recorded. During a 6-month follow-up period, the patient was free from arrhythmias. The findings in this case suggest that phased-array intra-cardiac echocardiography is useful for ablation of right-sided accessory pathways in patients with Ebstein׳s anomaly

    Visualization of the radiofrequency lesion after pulmonary vein isolation using delayed enhancement magnetic resonance imaging fused with magnetic resonance angiography

    Get PDF
    AbstractBackgroundThe radiofrequency (RF) lesions for atrial fibrillation (AF) ablation can be visualized by delayed enhancement magnetic resonance imaging (DE-MRI). However, the quality of anatomical information provided by DE-MRI is not adequate due to its spatial resolution. In contrast, magnetic resonance angiography (MRA) provides similar information regarding the left atrium (LA) and pulmonary veins (PVs) as computed tomography angiography. We hypothesized that DE-MRI fused with MRA will compensate for the inadequate image quality provided by DE-MRI.MethodsDE-MRI and MRA were performed in 18 patients who underwent AF ablation (age, 60±9 years; LA diameter, 42±6mm). Two observers independently assessed the DE-MRI and DE-MRI fused with MRA for visualization of the RF lesion (score 0–2; where 0: not visualized and 2: excellent in all 14 segments of the circular RF lesion).ResultsDE-MRI fused with MRA was successfully performed in all patients. The image quality score was significantly higher in DE-MRI fused with MRA compared to DE-MRI alone (observer 1: 22 (18, 25) vs 28 (28, 28), p<0.001; observer 2: 24 (23, 25) vs 28 (28, 28), p<0.001).ConclusionsDE-MRI fused with MRA was superior to DE-MRI for visualization of the RF lesion owing to the precise information on LA and PV anatomy provided by DE-MRI

    Photoperiod Regulates Corticosterone Rhythms by Altered Adrenal Sensitivity via Melatonin-Independent Mechanisms in Fischer 344 Rats and C57BL/6J Mice

    Get PDF
    Most species living in temperate zones adapt their physiology and behavior to seasonal changes in the environment by using the photoperiod as a primary cue. The mechanisms underlying photoperiodic regulation of stress-related functions are not well understood. In this study, we analyzed the effects of photoperiod on the hypothalamic-pituitary-adrenal axis in photoperiod-sensitive Fischer 344 rats. We first examined how photoperiod affects diurnal variations in plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone. ACTH levels did not exhibit diurnal variations under long- and short-day conditions. On the other hand, corticosterone levels exhibited a clear rhythm under short-day condition with a peak during dark phase. This peak was not observed under long-day condition in which a significant rhythm was not detected. To analyze the mechanisms responsible for the photoperiodic regulation of corticosterone rhythms, ACTH was intraperitoneally injected at the onset of the light or dark phase in dexamethasone-treated rats maintained under long- and short-day conditions. ACTH induced higher corticosterone levels in rats examined at dark onset under short-day condition than those maintained under long-day condition. Next, we asked whether melatonin signals are involved in photoperiodic regulation of corticosterone rhythms, and rats were intraperitoneally injected with melatonin at late afternoon under long-day condition for 3 weeks. However, melatonin injections did not affect the corticosterone rhythms. In addition, photoperiodic changes in the amplitude of corticosterone rhythms were also observed in melatonin-deficient C57BL/6J mice, in which expression profiles of several clock genes and steroidgenesis genes in adrenal gland were modified by the photoperiod. Our data suggest that photoperiod regulates corticosterone rhythms by altered adrenal sensitivity through melatonin-independent mechanisms that may involve the adrenal clock

    Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.

    Get PDF
    The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP

    Improvement of left ventricular function assessment by global longitudinal strain after successful percutaneous coronary intervention for chronic total occlusion.

    No full text
    The benefit of revascularization of chronic total occlusion (CTO) in percutaneous coronary intervention (PCI) is controversial. On the other hand, left ventricular (LV) global longitudinal strain (GLS) is a more sensitive marker of LV myocardial ischemia and LV function than LV ejection fraction (EF). The purpose of this study was to investigate the impact of revascularization of CTO on LV function using LV GLS. A total of 70 consecutive patients (65.1±8.9 years, 59 males, LVEF 51.0±12.0%) with CTO who had a positive functional ischemia and underwent PCI, were included in this study. Echocardiography was performed before and 9 months after the procedure with conventional assessment including LV end-diastolic and end-systolic volume (LVEDV, LVESV), LVEF, and with 2DSTE analysis of GLS. Successful PCI was obtained in 60 patients (86%). There were no stent thromboses during follow-up. GLS showed a significant improvement 9 months after successful PCI (pre-PCI -12.4±4.1% vs. post-PCI -14.5±4.1%, P< 0.01), whereas in failed PCI group that did not change significantly (pre-PCI -13.2±4.2% vs. post-PCI -14.0±4.7%, P = 0.64). LVEF, LVEDV and LVESV did not change significantly during follow-up in both successful and failed groups. Successful PCI for CTO improved LV function, assessed by LV GLS

    Late gadolinium enhancement on cardiac magnetic resonance combined with 123I- metaiodobenzylguanidine scintigraphy strongly predicts long-term clinical outcome in patients with dilated cardiomyopathy.

    No full text
    Late gadolinium enhancement (LGE) on cardiac magnetic resonance (CMR) is limited in its ability to detect diffuse interstitial fibrosis, which is commonly found in idiopathic dilated cardiomyopathy (DCM). On the other hand, Washout rate (WR) by cardiac 123I- metaiodobenzylguanidine (123I-MIBG) scintigraphy which evaluates cardiac sympathetic nervous function, is a useful tool for predicting the prognosis in DCM. We investigated the predictive value of the combination of two different types of examinations, LGE on CMR and WR by 123I-MIBG scintigraphy for outcomes in DCM compared with LGE alone. One-hundred forty-eight DCM patients underwent CMR and 123I-MIBG scintigraphy. Patients were divided into 4 groups according to the presence or absence of LGE and WR cut-off value of 45% for predicting prognosis based on receiver operating characteristic curve analysis. Cardiac deaths, re-hospitalization for heart failure, implantation of a left ventricular assist device, and life-threatening ventricular arrhythmias were defined as clinical events. Forty-two DCM patients reached the clinical events during the median follow-up for 9.1 years (interquartile range, 8.0-9.2 years).Multivariable Cox regression analysis identified WR≥45%+LGE positive group as an independent predictor of cardiac events (HR 3.18, 95%CI 1.36-7.45, p = 0.008). Notably, there was no significance in the cardiac event-free survival rate between the WR<45%+LGE positive and WR≥45%+LGE negative groups (p = 0.89). The combination of WR by 123I-MIBG scintigraphy and LGE on CMR, which evaluate different type of cardiac deterioration, serves as a stronger predictor of long-term outcomes in DCM patients than LGE alone
    corecore