Dimensional Stability, Decay Resistance, and Mechanical Properties of Veneer-Faced Low-Density Particleboards Made From Acetylated Wood

Abstract

Veneer-faced low-density particleboards were made using four combinations of control and acetylated veneers and particles. These boards were tested for dimensional stability in both liquid water and water vapor, for decay resistance in standard soil-block tests with Tyromyces palustris and Trametes versicolor, for strength losses during attack by T. palustris, and for mechanical strength in bending-creep and mechanical tests. Boards made from acetylated veneers and acetylated core particles showed excellent dimensional stability in both liquid water and humidity tests and were resistant to attack by both fungi in an 8-week soil-block test. During the 150-day bending-creep test, the totally acetylated boards showed no strength or weight loss during exposure to T. palustris. Modulus of elasticity and modulus of rupture were slightly reduced for totally acetylated boards compared to boards with control veneers and control particles, and internal bond strength was reduced by about 30%. Screw-holding capacity of the totally acetylated boards and boards with control veneers and particles was essentially the same

    Similar works