85 research outputs found
Fatigue of continuous fiber reinforced metallic materials
The complex damage mechanisms that occur in fiber reinforced advanced metallic materials are discussed. As examples, results for several layups of SCS-6/Ti-15-3 composites are presented. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room and elevated temperatures. Test conditions included isothermal, non-isothermal, and simulated mission profile thermomechanical fatigue. Test results indicated that the stress in the 0 degree fibers is the controlling factor for fatigue life for a given test condition. An effective strain approach is presented for predicting crack initiation at notches. Fiber bridging models were applied to crack growth behavior
The perception of Agricultural Researchers about the Role of Nanotechnology in Achieving Food Security
Agricultural researchers in the Province of Isfahan were surveyed in order to explore their perception about role of nanotechnology in food security. The methodology used in this study involved a combination of descriptive and quantitative research and included the use of correlation, regression and descriptive analysis as data processing methods. The total population for this study was 76 agriculture researchers in the Isfahan Province. Data were collected through interview schedules. Based on the results of the mean score, researchers did not agree that nanotechnology could help in achieving food security, although they believed this technology could have more impact on affordability and safety of food products than other dimension of food security. As regression analysis showed, necessary conditions for application of nanotechnology, producing agricultural products, consuming nanotechnology products and constraints in application of nanotechnology caused 21% of variance on the perception of researchers regarding the role of nanotechnology in achieving food security. Based on the perception of respondents, the main constraint in application of nanotechnology in agricultural sector was regulatory constraints.Key words: Agricultural researchers, nanotechnology, Isfahan Province, food security
Modeling and life prediction methodology for Titanium Matrix Composites subjected to mission profiles
Titanium matrix composites (TMC) are being evaluated as structural materials for elevated temperature applications in future generation hypersonic vehicles. In such applications, TMC components are subjected to complex thermomechanical loading profiles at various elevated temperatures. Therefore, thermomechanical fatigue (TMF) testing, using a simulated mission profile, is essential for evaluation and development of life prediction methodologies. The objective of the research presented in this paper was to evaluate the TMF response of the (0/90)2s SCS-6/Timetal-21S subjected to a generic hypersonic flight profile and its portions with a temperature ranging from -130 C to 816 C. It was found that the composite modulus, prior to rapid degradation, had consistent values for all the profiles tested. A micromechanics based analysis was used to predict the stress-strain response of the laminate and of the constituents in each ply during thermomechanical loading conditions by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relation. In the analysis, the composite modulus degradation was assumed to result from matrix cracking and was modeled by reducing the matrix modulus. Fatigue lives of the composite subjected to the complex generic hypersonic flight profile were well correlated using the predicted stress in 0 degree fibers
Axial and torsional fatigue behavior of Waspaloy
The cyclic flow response and crack growth behavior of Waspaloy at room temperature and 650 C under tensile loading and torsional loading was studied, for two conditions of Waspaloy: fine grain, large gamma prime size; coarse grain, small gamma prime size. The fine grain material showed 5 to 10 percent hardening after about 10 percent of life, with sequent softening to failure at both themperature levels. The coarse grain material showed either stable response or monotonic softening to failure. Early crack initiation was observed on planes of maximum shear, with eventual branching to principle planes under torsional loading; cracks were always normal to load axis under tensile loading. Also, crack paths were intergranular at 650 C, mostly transgranular at room temperature
Effect of non-nutritional factors on nisin production
When attempting to improve production of nisin, understanding the effect of non-nutritional factors is essential owing to a lack of adequate information about these factors among various investigations. Inorder to assess some of non-nutritional factors and how they influence the nisin production in batch cultivation, a laboratory scale study was performed. Lactococcus lactis subsp. lactis ATCC 11454 produced nisin and Micrococcus luteus ATCC 10240 was used in bioassay measurement as the nisinsensitive strain. The age and size of inoculum, initial pH value of the medium and flask volume/medium volume (F/M) ratio, temperature as well as agitation were studied by changing one factor at a time whilekeeping others constant in de Man, Rogosa and Sharpe (MRS) medium. Our results implied that pH value was positively related to increase nisin production. Two other important factors for a maximum nisin production were found to be agitation and flask volume/medium volume (F/M) ratio. Inoculum size more than 2.5% (v/v) had no effect on nisin production. The most suitable condition for inoculum age was 32-hour-old culture (at the end of log phase) and 27°C temperature provided maximum nisinproduction
Analysis of thermomechanical fatigue of unidirectional titanium metal matrix composites
Thermomechanical fatigue (TMF) data was generated for a Ti-15V-3Cr-3Al-3Sn (Ti-15-3) material reinforced with SCS-6 silicon carbide fibers for both in-phase and out-of-phase thermomechanical cycling. Significant differences in failure mechanisms and fatigue life were noted for in-phase and out-of-phase testing. The purpose of the research is to apply a micromechanical model to the analysis of the data. The analysis predicts the stresses in the fiber and the matrix during the thermal and mechanical cycling by calculating both the thermal and mechanical stresses and their rate-dependent behavior. The rate-dependent behavior of the matrix was characterized and was used to calculate the constituent stresses in the composite. The predicted 0 degree fiber stress range was used to explain the composite failure. It was found that for a given condition, temperature, loading frequency, and time at temperature, the 0 degree fiber stress range may control the fatigue life of the unidirectional composite
THEORETICAL STUDY OF SOLVENT EFFECTS AND NMR SHIELDING TENSORS OF DLPC
The effect of the polarity of the environment on the conformation zwitterionic membrane dilauroyl phosphatidylcholine (DLPC) has been investigated with calculation at the Hatree-Fock level using the 6-31G* basis set with Onsager continuum solvation model. The ‘Gauge Including Atomic Orbital' (GIAO) approach is used to investigate Ab initio GIAO calculations of NMR chemical shielding tensors carried out within SCF-Hartree-Fock approximation are described. In order to compare the calculated chemical shifts with experimental ones, it is important to use consistent nuclear shielding for NMR reference compounds like TMS. Conformation of DLPC was evaluated with four different solvents with different dielectric constant (Water (ε = 78.39), Dimethyl Sulfoxide (ε = 46.7), Acetone (ε = 20.7) and Heptane (ε = 1.92). In concern with conformational energy, Water could be the most suitable solvent for DLPC. Moreover, as the polarity of the medium increase, the conformational stability of this molecule increases faster than that of DLPC in the gas phase. Consequently, the relative energy of DLPC also depends on the polarity of the environment. This subject was considered as well as the most variable in some dihedral angles degree and NMR isotropic shift were in the less dielectric constant (ε = 1.92). It could be in polar medium DLPC conformer becomes additionally stabilized by intermolecular ionic and hydrogen bond interactions with polar neighboring molecules. On the basis of this work it can be concluded that the effect of the polarity of the environment clearly are influenced on the isotropic values by geometry variation due to intermolecular motion in molecule.
Keywords: Onsager continuum model, DLPC ,NMR shielding, isotropic, solvent models, anisotropi
Prognostic significance of lung diffusion capacity and spirometric parameters in relation to hemodynamic status in heart transplant candidates
Introduction: Investigations have described a correlation between the severity of heart failure and the severity of pulmonary function abnormalities. In this study, we investigated the association of resting spirometric parameters, lung diffusion for carbon monoxide (DLCO), and the transfer coefficient (KCO) with hemodynamic variables and outcomes in a cohort of heart transplant candidates. Material and methods: Between January 2018 and January 2020, a total of 100 patients with advanced heart failure who were scheduled for right heart catheterization (RHC) as a pre-transplant evaluation measure were enrolled. Spirometry and DLCO were performed in all patients within 24 hours of their RHC. All selected patients were followed for a median (IQR) time of 6 (2�12) months. The end points of interest were heart failure-related mortality and a combined event involving HF-related mortality, heart transplantation (HTX), and need for the placement of a left ventricular assist device (LVAD). Results: Among 846 patients scheduled for RHC, a total of 100 patients (25 female) with a mean (SD) age of 38.5 (12.8) were enrolled. There was a significant correlation between FEV1/FVC and CVP (r = �0.22, p = 0.02), PCWP (r = �0.4, p < 0.001), mPAP (r = �0.45, p < 0.001), and PVR (r = �0.32, p = 0.001). The cardiac output correlated with DLCO (r = 0.3, p = 0.008). Spirometry parameters, DLCO parameters, and hemodynamic parameters did not correlate with the combined event. Among the several variables, only PVR had an independent association with the combined event. Conclusion: Both mechanical and gas diffusion parameters of the lung were not associated with outcomes in the homogeneous group of heart transplant candidates. © 2021 PTChP
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
- …