126 research outputs found

    Effets de la viscosité et de la capillarité sur les vibrations linéaires d'une structure élastique contenant un liquide incompressible.

    Get PDF
    Ce travail de recherche traite du couplage entre un liquide incompressible, irrotationnel et son contenant : une structure élastique. Cette interaction fluide-structure est traitée dans le cadre des petites déformations autour d'un état d'équilibre.Dans un premier temps, on présente une méthode d'introduction des sources dissipatives visqueuses dans le liquide à partir des équations du système couplé conservatif en s'appuyant sur une approche de type fluide potentiel généralement utilisée pour traiter les problèmes de couplage fluide-structure linéarisés non amortis. Un modèle d'amortissement diagonal est alors choisi pour le liquide et les effets dissipatifs de celui-ci sont pris en compte en calculant les coefficients d'amortissement modaux. Seuls les effets dissipatifs liées à la viscosité du liquide sont alors pris en compte. Le système couplé dissipatif obtenu possède une matrice d'amortissement non symétrique. Une résolution de ce système à amortissement non classique est alors présentée et les expressions des réponses fréquentielle et temporelle linéarisées sont données pour différents types d'excitations.Dans un deuxième temps, le liquide est supposé non visqueux et les forces de tension surfacique sont prises en compte. Cette configuration concerne principalement les satellites où le système couplé est en situation de microgravité. Une formulation du problème conservatif permettant de prendre en compte l'incompressibilité du fluide, la condition de continuité à l'interface fluide structure, les effets de capillarité du fluide ainsi que les effets éventuels de précontraintes statiques est alors établie. On se propose pour cela d'utiliser une méthode énergétique via le Principe de Moindre Action. La démarche est alors décomposée en deux étapes : une étude statique afin de déterminer la position de référence, puis une étude dynamique linéarisée autour de cette position d'équilibre. Cette formulation forme notamment une base pour l'introduction des sources dissipatives liées aux effets de capillarité via la méthode précédemment introduite.This study deals with the coupling between an incompressible, irrotational fluid and an elastic container in the context of small amplitude vibrations.Firstly, we present a method to introduce the viscous dissipative sources in the liquid directly from the equations of the conservative coupled problem using a fluid potential approach generally used to treat linear undamped problems. A diagonal damping model is chosen for the liquid and its dissipative effects are taken into account through modal damping coefficients. Only the viscous effects are considered here. The coupled system obtained has a non symmetric damping matrix. This system with non classical damping is solved and expressions of the frequency and linearized time responses are given for different load examples.Secondly, the liquid is supposed to be inviscid and surface tension forces are considered. This configuration is related to satellite applications where the coupled system is in microgravity conditions. A unified formulation of the conservative problem taking into account the fluid incompressibility, the contact condition at the fluid structure interface, capillarity and prestress effects is given. Thus, we propose to use an energy method via the Least Action Principle. The reasoning is then divided into two parts: a static study to determine the reference state and a linearized dynamic study around this equilibrium state. This formulation is a good framework to introduce the dissipative sources associated with the capillary effects by using the method previously introduced.PARIS-CNAM (751032301) / SudocSudocFranceF

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft

    Applying future Exascale HPC methodologies in the energy sector

    Get PDF
    The appliance of new exascale HPC techniques to energy industry simulations is absolutely needed nowadays. In this sense, the common procedure is to customize these techniques to the specific energy sector they are of interest in order to go beyond the state-of-the-art in the required HPC exascale simulations. With this aim, the HPC4E project is developing new exascale methodologies to three different energy sources that are the present and the future of energy: wind energy production and design, efficient combustion systems for biomass-derived fuels (biogas), and exploration geophysics for hydrocarbon reservoirs. In this work, the general exascale advances proposed as part of HPC4E and its outcome to specific results in different domains are presented.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imaging.Postprint (author's final draft

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus

    GluD1, linked to schizophrenia, controls the burst firing of dopamine neurons

    Get PDF
    Human mutations of the GRID1 gene encoding the orphan delta1 glutamate receptor-channel (GluD1) are associated with schizophrenia but the explicit role of GluD1 in brain circuits is unknown. Based on the known function of its paralog GluD2 in cerebellum, we searched for a role of GluD1 in slow glutamatergic transmission mediated by metabotropic receptor mGlu1 in midbrain dopamine neurons, whose dysfunction is a hallmark of schizophrenia. We found that an mGlu1 agonist elicits a slow depolarizing current in HEK cells co-expressing mGlu1 and GluD1, but not in cells expressing mGlu1 or GluD1 alone. This current is abolished by additional co-expression of a dominant-negative GluD1 dead pore mutant. We then characterized mGlu1-dependent currents in dopamine neurons from midbrain slices. Both the agonist-evoked and the slow postsynaptic currents are abolished by expression of the dominant-negative GluD1 mutant, pointing to the involvement of native GluD1 channels in these currents. Likewise, both mGlu1-dependent currents are suppressed in GRID1 knockout mice, which reportedly display endophenotypes relevant for schizophrenia. It is known that mGlu1 activation triggers the transition from tonic to burst firing of dopamine neurons, which signals salient stimuli and encodes reward prediction. In vivo recordings of dopamine neurons showed that their spontaneous burst firing is abolished in GRID1 knockout mice or upon targeted expression of the dominant-negative GluD1 mutant in wild-type mice. Our results de-orphanize GluD1, unravel its key role in slow glutamatergic transmission and provide insights into how GRID1 gene alterations can lead to dopaminergic dysfunctions in schizophrenia

    Can medical therapy mimic the clinical efficacy or physiological effects of bariatric surgery?

    Get PDF
    The number of bariatric surgical procedures performed has increased dramatically. This review discusses the clinical and physiological changes, and in particular, the mechanisms behind weight loss and glycaemic improvements, observed following the gastric bypass, sleeve gastrectomy and gastric banding bariatric procedures. The review then examines how close we are to mimicking the clinical or physiological effects of surgery through less invasive and safer modern interventions that are currently available for clinical use. These include dietary interventions, orlistat, lorcaserin, phentermine/topiramate, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, pramlintide, dapagliflozin, the duodenal–jejunal bypass liner, gastric pacemakers and gastric balloons. We conclude that, based on the most recent trials, we cannot fully mimic the clinical or physiological effects of surgery; however, we are getting closer. A ‘medical bypass' may not be as far in the future as we previously thought, as the physician's armamentarium against obesity and type 2 diabetes has recently got stronger through the use of specific dietary modifications, novel medical devices and pharmacotherapy. Novel therapeutic targets include not only appetite but also taste/food preferences, energy expenditure, gut microbiota, bile acid signalling, inflammation, preservation of β-cell function and hepatic glucose output, among others. Although there are no magic bullets, an integrated multimodal approach may yield success. Non-surgical interventions that mimic the metabolic benefits of bariatric surgery, with a reduced morbidity and mortality burden, remain tenable alternatives for patients and health-care professionals

    An Update on the Intracellular and Intercellular Trafficking of Carmoviruses

    Full text link
    [EN] Despite harboring the smallest genomes among plant RNA viruses, carmoviruses have emerged as an ideal model system for studying essential steps of the viral cycle including intracellular and intercellular trafficking. Two small movement proteins, formerly known as double gene block proteins (DGBp1 and DGBp2), have been involved in the movement throughout the plant of some members of carmovirus genera. DGBp1 RNA-binding capability was indispensable for cell-to-cell movement indicating that viral genomes must interact with DGBp1 to be transported. Further investigation on Melon necrotic spot virus (MNSV) DGBp1 subcellular localization and dynamics also supported this idea as this protein showed an actin-dependent movement along microfilaments and accumulated at the cellular periphery. Regarding DGBp2, subcellular localization studies showed that MNSV and Pelargonium flower break virus DGBp2s were inserted into the endoplasmic reticulum (ER) membrane but only MNSV DGBp2 trafficked to plasmodesmata (PD) via the Golgi apparatus through a COPII-dependent pathway. DGBp2 function is still unknown but its localization at PD was a requisite for an efficient cell-to-cell movement. It is also known that MNSV infection can induce a dramatic reorganization of mitochondria resulting in anomalous organelles containing viral RNAs. These putative viral factories were frequently found associated with the ER near the PD leading to the possibility that MNSV movement and replication could be spatially linked. Here, we update the current knowledge of the plant endomembrane system involvement in carmovirus intra-and intercellular movement and the tentative model proposed for MNSV transport within plant cells.This work was funded by grant BIO2014-54862-R from the Spanish Direccion General de Investigacion Cientifica y Tecnica (DGICYT) and the Prometeo Program GV2014/010 from the Generalitat Valenciana.Navarro Bohigues, JA.; Pallás Benet, V. (2017). An Update on the Intracellular and Intercellular Trafficking of Carmoviruses. Frontiers in Plant Science. 8:1-7. https://doi.org/10.3389/fpls.2017.01801S178Adams, M. J., Lefkowitz, E. J., King, A. M. Q., Harrach, B., Harrison, R. L., Knowles, N. J., … Davison, A. J. (2016). Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016). Archives of Virology, 161(10), 2921-2949. doi:10.1007/s00705-016-2977-6Blake, J. A., Lee, K. W., Morris, T. J., & Elthon, T. E. (2007). Effects of turnip crinkle virus infection on the structure and function of mitochondria and expression of stress proteins in turnips. Physiologia Plantarum, 129(4), 698-706. doi:10.1111/j.1399-3054.2006.00852.xBlanco-Pérez, M., Pérez-Cañamás, M., Ruiz, L., & Hernández, C. (2016). Efficient Translation of Pelargonium line pattern virus RNAs Relies on a TED-Like 3´-Translational Enhancer that Communicates with the Corresponding 5´-Region through a Long-Distance RNA-RNA Interaction. PLOS ONE, 11(4), e0152593. doi:10.1371/journal.pone.0152593Brandizzi, F., Frangne, N., Marc-Martin, S., Hawes, C., Neuhaus, J.-M., & Paris, N. (2002). The Destination for Single-Pass Membrane Proteins Is Influenced Markedly by the Length of the Hydrophobic Domain. The Plant Cell, 14(5), 1077-1092. doi:10.1105/tpc.000620Carrington, J. C., Heaton, L. A., Zuidema, D., Hillman, B. I., & Morris, T. J. (1989). The genome structure of turnip crinkle virus. Virology, 170(1), 219-226. doi:10.1016/0042-6822(89)90369-3Chandra-Shekara, A. C., Navarre, D., Kachroo, A., Kang, H.-G., Klessig, D., & Kachroo, P. (2004). Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. The Plant Journal, 40(5), 647-659. doi:10.1111/j.1365-313x.2004.02241.xCohen, Y., Gisel, A., & Zambryski, P. C. (2000). Cell-to-Cell and Systemic Movement of Recombinant Green Fluorescent Protein-Tagged Turnip Crinkle Viruses. Virology, 273(2), 258-266. doi:10.1006/viro.2000.0441Cohen, Y., Qu, F., Gisel, A., Morris, T. J., & Zambryski, P. C. (2000). Nuclear Localization of Turnip Crinkle Virus Movement Protein p8. Virology, 273(2), 276-285. doi:10.1006/viro.2000.0440Gao, F., Kasprzak, W., Stupina, V. A., Shapiro, B. A., & Simon, A. E. (2012). A Ribosome-Binding, 3′ Translational Enhancer Has a T-Shaped Structure and Engages in a Long-Distance RNA-RNA Interaction. Journal of Virology, 86(18), 9828-9842. doi:10.1128/jvi.00677-12García-Castillo, S., Sánchez-Pina, M. A., & Pallás, V. (2003). Spatio-temporal analysis of the RNAs, coat and movement (p7) proteins of Carnation mottle virus in Chenopodium quinoa plants. Journal of General Virology, 84(3), 745-749. doi:10.1099/vir.0.18715-0Genovés, A., Navarro, J. A., & Pallás, V. (2006). Functional analysis of the five melon necrotic spot virus genome-encoded proteins. Journal of General Virology, 87(8), 2371-2380. doi:10.1099/vir.0.81793-0Genovés, A., Navarro, J. A., & Pallás, V. (2009). A self-interacting carmovirus movement protein plays a role in binding of viral RNA during the cell-to-cell movement and shows an actin cytoskeleton dependent location in cell periphery. Virology, 395(1), 133-142. doi:10.1016/j.virol.2009.08.042Genoves, A., Pallas, V., & Navarro, J. A. (2011). Contribution of Topology Determinants of a Viral Movement Protein to Its Membrane Association, Intracellular Traffic, and Viral Cell-to-Cell Movement. Journal of Virology, 85(15), 7797-7809. doi:10.1128/jvi.02465-10Gómez-Aix, C., García-García, M., Aranda, M. A., & Sánchez-Pina, M. A. (2015). Melon necrotic spot virus Replication Occurs in Association with Altered Mitochondria. Molecular Plant-Microbe Interactions®, 28(4), 387-397. doi:10.1094/mpmi-09-14-0274-rGrangeon, R., Jiang, J., & Laliberté, J.-F. (2012). Host endomembrane recruitment for plant RNA virus replication. Current Opinion in Virology, 2(6), 683-690. doi:10.1016/j.coviro.2012.10.003Grangeon, R., Jiang, J., Wan, J., Agbeci, M., Zheng, H., & Laliberté, J.-F. (2013). 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00351Guilley, H., Carrington, J. C., Balàzs, E., Jonard, G., Richards, K., & Morris, T. J. (1985). Nucleotide sequence and genome organization of carnation mottle virus RNA. Nucleic Acids Research, 13(18), 6663-6677. doi:10.1093/nar/13.18.6663Hacker, D. L., Petty, I. T. D., Wei, N., & Morris, T. J. (1992). Turnip crinkle virus genes required for RNA replication and virus movement. Virology, 186(1), 1-8. doi:10.1016/0042-6822(92)90055-tHerrera-Vásquez, J. A., Córdoba-Sellés, M. C., Cebrián, M. C., Alfaro-Fernández, A., & Jordá, C. (2009). Seed transmission ofMelon necrotic spot virusand efficacy of seed-disinfection treatments. Plant Pathology, 58(3), 436-442. doi:10.1111/j.1365-3059.2008.01985.xJiang, J., & Laliberté, J.-F. (2016). Membrane Association for Plant Virus Replication and Movement. Current Research Topics in Plant Virology, 67-85. doi:10.1007/978-3-319-32919-2_3Kaido, M., Tsuno, Y., Mise, K., & Okuno, T. (2009). Endoplasmic reticulum targeting of the Red clover necrotic mosaic virus movement protein is associated with the replication of viral RNA1 but not that of RNA2. Virology, 395(2), 232-242. doi:10.1016/j.virol.2009.09.022Kawakami, S., Watanabe, Y., & Beachy, R. N. (2004). Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proceedings of the National Academy of Sciences, 101(16), 6291-6296. doi:10.1073/pnas.0401221101Krczal, G. (1995). Transmission of Pelargonium Flower Break Virus (PFBV) in Irrigation Systems and by Thrips. Plant Disease, 79(2), 163. doi:10.1094/pd-79-0163Lerch-Bader, M., Lundin, C., Kim, H., Nilsson, I., & von Heijne, G. (2008). Contribution of positively charged flanking residues to the insertion of transmembrane helices into the endoplasmic reticulum. Proceedings of the National Academy of Sciences, 105(11), 4127-4132. doi:10.1073/pnas.0711580105Lesemann, D.-E., & Adam, G. (1994). ELECTRON MICROSCOPICAL AND SEROLOGICAL STUDIES ON FOUR ISOMETRICAL PELARGONIUM VIRUSES. Acta Horticulturae, (377), 41-54. doi:10.17660/actahortic.1994.377.3Li, W., Qu, F., & Morris, T. J. (1998). Cell-to-Cell Movement of Turnip Crinkle Virus Is Controlled by Two Small Open Reading Frames That Functionin trans. Virology, 244(2), 405-416. doi:10.1006/viro.1998.9125Liu, C., & Nelson, R. S. (2013). The cell biology of Tobacco mosaic virus replication and movement. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00012Marcos, J. F., Vilar, M., Pérez-Payá, E., & Pallás, V. (1999). In VivoDetection, RNA-Binding Properties and Characterization of the RNA-Binding Domain of the p7 Putative Movement Protein from Carnation Mottle Carmovirus (CarMV). Virology, 255(2), 354-365. doi:10.1006/viro.1998.9596Martínez-Gil, L., Johnson, A. E., & Mingarro, I. (2010). Membrane Insertion and Biogenesis of the Turnip Crinkle Virus p9 Movement Protein. Journal of Virology, 84(11), 5520-5527. doi:10.1128/jvi.00125-10Martínez-Gil, L., Saurí, A., Vilar, M., Pallás, V., & Mingarro, I. (2007). Membrane insertion and topology of the p7B movement protein of Melon Necrotic Spot Virus (MNSV). Virology, 367(2), 348-357. doi:10.1016/j.virol.2007.06.006Martínez-Turiño, S., & Hernández, C. (2009). Inhibition of RNA silencing by the coat protein of Pelargonium flower break virus: distinctions from closely related suppressors. Journal of General Virology, 90(2), 519-525. doi:10.1099/vir.0.006098-0Martínez-Turiño, S., & Hernández, C. (2011). A membrane-associated movement protein of Pelargonium flower break virus shows RNA-binding activity and contains a biologically relevant leucine zipper-like motif. Virology, 413(2), 310-319. doi:10.1016/j.virol.2011.03.001Martínez-Turiño, S., & Hernández, C. (2012). Analysis of the subcellular targeting of the smaller replicase protein of Pelargonium flower break virus. Virus Research, 163(2), 580-591. doi:10.1016/j.virusres.2011.12.011Mello, A. F. S., Clark, A. J., & Perry, K. L. (2009). Capsid protein of cowpea chlorotic mottle virus is a determinant for vector transmission by a beetle. Journal of General Virology, 91(2), 545-551. doi:10.1099/vir.0.016402-0Miras, M., Sempere, R. N., Kraft, J. J., Miller, W. A., Aranda, M. A., & Truniger, V. (2013). Interfamilial recombination between viruses led to acquisition of a novel translation-enhancing RNA element that allows resistance breaking. New Phytologist, 202(1), 233-246. doi:10.1111/nph.12650Mochizuki, T., Hirai, K., Kanda, A., Ohnishi, J., Ohki, T., & Tsuda, S. (2009). Induction of necrosis via mitochondrial targeting of Melon necrotic spot virus replication protein p29 by its second transmembrane domain. Virology, 390(2), 239-249. doi:10.1016/j.virol.2009.05.012Morozov, S. Y., & Solovyev, A. G. (2003). Triple gene block: modular design of a multifunctional machine for plant virus movement. Journal of General Virology, 84(6), 1351-1366. doi:10.1099/vir.0.18922-0Mueller, S. J., & Reski, R. (2015). Mitochondrial Dynamics and the ER: The Plant Perspective. Frontiers in Cell and Developmental Biology, 3. doi:10.3389/fcell.2015.00078Navarro, J. A., Genovés, A., Climent, J., Saurí, A., Martínez-Gil, L., Mingarro, I., & Pallás, V. (2006). RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins. Virology, 356(1-2), 57-67. doi:10.1016/j.virol.2006.07.040Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B., … Bendahmane, A. (2006). AneIF4Eallele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. The Plant Journal, 48(3), 452-462. doi:10.1111/j.1365-313x.2006.02885.xOhki, T., Akita, F., Mochizuki, T., Kanda, A., Sasaya, T., & Tsuda, S. (2010). The protruding domain of the coat protein of Melon necrotic spot virus is involved in compatibility with and transmission by the fungal vector Olpidium bornovanus. Virology, 402(1), 129-134. doi:10.1016/j.virol.2010.03.020Panavas, T., Hawkins, C. M., Panaviene, Z., & Nagy, P. D. (2005). The role of the p33:p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of Cucumber necrosis tombusvirus. Virology, 338(1), 81-95. doi:10.1016/j.virol.2005.04.025Powers, J. G., Sit, T. L., Qu, F., Morris, T. J., Kim, K.-H., & Lommel, S. A. (2008). A Versatile Assay for the Identification of RNA Silencing Suppressors Based on Complementation of Viral Movement. Molecular Plant-Microbe Interactions®, 21(7), 879-890. doi:10.1094/mpmi-21-7-0879Qu, F., Ren, T., & Morris, T. J. (2003). The Coat Protein of Turnip Crinkle Virus Suppresses Posttranscriptional Gene Silencing at an Early Initiation Step. Journal of Virology, 77(1), 511-522. doi:10.1128/jvi.77.1.511-522.2003Riviere, C. J., & Rochon, D. M. (1990). Nucleotide sequence and genomic organization of melon necrotic spot virus. Journal of General Virology, 71(9), 1887-1896. doi:10.1099/0022-1317-71-9-1887Romero-Brey, I., & Bartenschlager, R. (2014). Membranous Replication Factories Induced by Plus-Strand RNA Viruses. Viruses, 6(7), 2826-2857. doi:10.3390/v6072826Russo, M., & Martelli, G. P. (1982). Ultrastructure of turnip crinkle- and saguaro cactus virus-infected tissues. Virology, 118(1), 109-116. doi:10.1016/0042-6822(82)90324-5Saurí, A., Saksena, S., Salgado, J., Johnson, A. E., & Mingarro, I. (2005). Double-spanning Plant Viral Movement Protein Integration into the Endoplasmic Reticulum Membrane Is Signal Recognition Particle-dependent, Translocon-mediated, and Concerted. Journal of Biological Chemistry, 280(27), 25907-25912. doi:10.1074/jbc.m412476200Serra-Soriano, M., Antonio Navarro, J., & Pallás, V. (2016). Dissecting the multifunctional role of the N-terminal domain of theMelon necrotic spot viruscoat protein in RNA packaging, viral movement and interference with antiviral plant defence. Molecular Plant Pathology, 18(6), 837-849. doi:10.1111/mpp.12448Serra-Soriano, M., Pallás, V., & Navarro, J. A. (2014). A model for transport of a viral membrane protein through the early secretory pathway: minimal sequence and endoplasmic reticulum lateral mobility requirements. The Plant Journal, 77(6), 863-879. doi:10.1111/tpj.12435Shi, Y., Ryabov, E. V., van Wezel, R., Li, C., Jin, M., Wang, W., … Hong, Y. (2009). Suppression of local RNA silencing is not sufficient to promote cell-to-cell movement ofTurnip crinkle virusinNicotiana benthamiana. Plant Signaling & Behavior, 4(1), 15-22. doi:10.4161/psb.4.1.7573Teakle, D. S. (1980). FUNGI. Vectors of Plant Pathogens, 417-438. doi:10.1016/b978-0-12-326450-3.50021-8Thomas, C. L., Leh, V., Lederer, C., & Maule, A. J. (2003). Turnip crinkle virus coat protein mediates suppression of RNA silencing in nicotiana benthamiana. Virology, 306(1), 33-41. doi:10.1016/s0042-6822(02)00018-1Tilsner, J., Linnik, O., Louveaux, M., Roberts, I. M., Chapman, S. N., & Oparka, K. J. (2013). Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. Journal of Cell Biology, 201(7), 981-995. doi:10.1083/jcb.201304003Verchot, J. (2011). Wrapping membranes around plant virus infection. Current Opinion in Virology, 1(5), 388-395. doi:10.1016/j.coviro.2011.09.009Vilar, M., Esteve, V., Pallás, V., Marcos, J. F., & Pérez-Payá, E. (2001). Structural Properties of Carnation Mottle Virus p7 Movement Protein and Its RNA-binding Domain. Journal of Biological Chemistry, 276(21), 18122-18129. doi:10.1074/jbc.m100706200Vilar, M., Saurí, A., Marcos, J. F., Mingarro, I., & Pérez-Payá, E. (2005). Transient Structural Ordering of the RNA-Binding Domain of Carnation Mottle Virus p7 Movement Protein Modulates Nucleic Acid Binding. ChemBioChem, 6(8), 1391-1396. doi:10.1002/cbic.200400451Vilar, M., Saurı́, A., Monné, M., Marcos, J. F., von Heijne, G., Pérez-Payá, E., & Mingarro, I. (2002). Insertion and Topology of a Plant Viral Movement Protein in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 277(26), 23447-23452. doi:10.1074/jbc.m202935200Von Heijne, G. (2007). Formation of Transmembrane Helices In Vivo—Is Hydrophobicity All that Matters? Journal of General Physiology, 129(5), 353-356. doi:10.1085/jgp.200709740Wada, Y., Tanaka, H., Yamashita, E., Kubo, C., Ichiki-Uehara, T., Nakazono-Nagaoka, E., … Tsukihara, T. (2007). The structure of melon necrotic spot virus determined at 2.8 Å resolution. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 64(1), 8-13. doi:10.1107/s1744309107066481Wobbe, K. K., Akgoz, M., Dempsey, D. A., & Klessig, D. F. (1998). A Single Amino Acid Change in Turnip Crinkle Virus Movement Protein p8 Affects RNA Binding and Virulence onArabidopsis thaliana. Journal of Virology, 72(7), 6247-6250. doi:10.1128/jvi.72.7.6247-6250.1998Zhang, X., Zhang, X., Singh, J., Li, D., & Qu, F. (2012). Temperature-Dependent Survival of Turnip Crinkle Virus-Infected Arabidopsis Plants Relies on an RNA Silencing-Based Defense That Requires DCL2, AGO2, and HEN1. Journal of Virology, 86(12), 6847-6854. doi:10.1128/jvi.00497-12Zhou, Y., Ryabov, E., Zhang, X., & Hong, Y. (2008). Influence of viral genes on the cell-to-cell spread of RNA silencing. Journal of Experimental Botany, 59(10), 2803-2813. doi:10.1093/jxb/ern14

    Mapping and assessment of forest ecosystems and their services - Applications and guidance for decision making in the framework of MAES

    Get PDF
    The aim of this report is to illustrate by means of a series of case studies the implementation of mapping and assessment of forest ecosystem services in different contexts and geographical levels. Methodological aspects, data issues, approaches, limitations, gaps and further steps for improvement are analysed for providing good practices and decision making guidance. The EU initiative on Mapping and Assessment of the state of Ecosystems and their Services (MAES), with the support of all Member States, contributes to improve the knowledge on ecosystem services. MAES is one of the building-block initiatives supporting the EU Biodiversity Strategy to 2020.JRC.H.3-Forest Resources and Climat

    Regional variability in peatland burning at mid- to high-latitudes during the Holocene

    Get PDF
    Acknowledgements This work developed from the PAGES (Past Global Changes) C-PEAT (Carbon in Peat on EArth through Time) working group. PAGES has been supported by the US National Science Foundation, Swiss National Science Foundation, Swiss Academy of Sciences and Chinese Academy of Sciences. We acknowledge the following financial support: UK Natural Environment Research Council Training Grants NE/L002574/1 (T.G.S.) and NE/S007458/1 (R.E.F.); Dutch Foundation for the Conservation of Irish Bogs, Quaternary Research Association and Leverhulme Trust RPG-2021-354 (G.T.S); the Academy of Finland (M.V); PAI/SIA 80002 and FONDECYT Iniciación 11220705 - ANID, Chile (C.A.M.); R20F0002 (PATSER) ANID Chile (R.D.M.); Swedish Strategic Research Area (SRA) MERGE (ModElling the Regional and Global Earth system) (M.J.G.); Polish National Science Centre Grant number NCN 2018/29/B/ST10/00120 (K.A.); Russian Science Foundation Grant No. 19-14-00102 (Y.A.M.); University of Latvia Grant No. AAp2016/B041/Zd2016/AZ03 and the Estonian Science Council grant PRG323 (TrackLag) (N.S. and A.M.); U.S. Geological Survey Land Change Science/Climate Research & Development Program (M.J., L.A., and D.W.); German Research Foundation (DFG), grant MA 8083/2-1 (P.M.) and grant BL 563/19-1 (K.H.K.); German Academic Exchange Service (DAAD), grant no. 57044554, Faculty of Geosciences, University of Münster, and Bavarian University Centre for Latin America (BAYLAT) (K.H.K). Records from the Global Charcoal Database supplemented this work and therefore we would like to thank the contributors and managers of this open-source resource. We also thank Annica Greisman, Jennifer Shiller, Fredrik Olsson and Simon van Bellen for contributing charcoal data to our analyses. Any use of trade, firm, or product name is for descriptive purposes only and does not imply endorsement by the U.S. Government.Peer reviewedPostprin
    corecore