70 research outputs found

    Electrochemical Properties of Al2O3-Fe/Si Composites Prepared by High-Energy Mechanical Milling

    Get PDF
    open accessThe growing demand in the manufacture of advanced materials with desired and unique properties (e.g. high mechanical strength, durability, good corrosion resistance and low cost of maintenance/replacing) is one of reasons to motivate the researchers to pay special attention in Ceramics as high performance materials for industrial applications. This is because conventional materials cannot meet the engineering requirements during their service that is why the need for advanced ceramic materials to achieve these industrial requirements. In the present work a study was made on Al2O3-matrix ceramic composites reinforced with 2%wt. or 5% wt. of Fe/Si particulates that were produced using a mechanical ball milling at high-energy condition. The electrochemical behavior of these ceramics was investigated by anodic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in a solution containing 0.5N NaCl, whereas the morphology and microstructural features were examined by optical or Scanning Electron Microscopy (SEM)

    Alumina-Based Composites Reinforced With Silver Particles

    Get PDF
    Al2O3/Ag composite ceramics were fabricated by the use of mechanical milling and pressureless sintering. Al2O3 + 10 wt.% Ag were mixed and milled during 12 h at 300 rpm in a horizontal mill, then with the powder mixture it was conformed cylindrical samples by uniaxial pressing using 300 MPa. The pressed samples were sintered during 1 h in an electrical furnace at 1300, 1400 and 1500°C respectively. Sinter was performed using an argon atmosphere inside the furnace in order to inhibit silver oxidation. XRD results established that silver retains its crystalline structure. On the other hand, density of samples is better with increments in temperature. However, the final relative density is small and about of 91%. Scanning electron microscopy observations show alumina’s microstructure with very fine and homogeneous distributions of silver particles. Increments in sintering temperature are reflected as enhancements of the density and consequently of the fracture toughness of the Al2O3/Ag composite ceramics

    Determination of Allura Red and Tartrazine in Food Samples by Sequential Injection Analysis Combined with Voltammetric Detection at Antimony Film Electrode

    Get PDF
    An antimony film electrode prepared on-line and installed as part of a sequential injection system, was used as an electrochemical detector to determine azo dyes in food samples.The influence of several flow varia-bles were evaluated using a centra lcomposite design.In optimal conditions, the linear range of the calibration curve varied from 1–5 mM, with a limit of detection limit of 0.3 mM. The relative standard deviation of analytical repeatability was < 5.0 %.The method was validated by comparing the results obtained with those provided by HPLC; no significant difference were seen.Junta de Castilla y León Proyecto VA171U1

    Synthesis and Electrical Characterization of PLZT Piezoelectric-Ceramic

    Get PDF
    This research describes the synthesis of an outstanding ceramic-composite piezoelectric CCP (lead-lanthanum-zirconate-titanate, PLZT) by means of powders technique procedures. Full dense CCP compacts were obtained with a platinum wire implanted in the center of the piezoelectric, which were used to investigate the microstructural and opto-thermal properties. The microstructural details of this ceramic were investigated by optical microscopy; whereas the opto-thermal characterization was performed by measuring the electrical signal in a bidimensional setup under four different temperatures: 20°C, 35°C, 50°C and 75°C. A 160mW/cm2 LASER beam was used in order to produce the optical energy which is detected by the CCP. A total of one hundred of measurements were registered. Measurements showed that, in the explored thermal range, the CCP signal magnitude increased from 87.2 to 147.2 pA. About the microstructural analysis, the microstructure obtained show different phases as characteristic of the processing method, including porosity. The peculiar optical and thermal properties observed in the piezoelectric ceramic are promising for possible applications in temperature-controlled optical devices that require electrical outputs

    Microstructural Study of a Zn-Ni Alloy Prepared by Ball Milling Using Two Different Devices

    Get PDF
    Metallic zinc (Zn) has ben extensively used as protective coating of iron and steel for decades, but problems related with its high permeability has reduced its application. It was found that the corrosion resistance of zinc in form of alloys is increased by adding some transition metals. Recently, the Zn-Ni system is under research as an efficient alternative as anticorrosion coating for metals. Zn-Ni is mostly prepared by electroplating or thermal spray technologies, but there are some problems like: (i) fluctuation of Zn-Ni contents, (ii) the pollution caused by plating solutions and (iii) irregular thickness of the coating. The mechanical alloying (MA) technique can be used to fulfill the above issues because this route facilitates the synthesis of homogeneous materials from powder mixtures . Also, MA is frequently employed for the preparation of new materials based on mechanochemical reactions performed at room temperature, while avoiding the conventional ingot metallurgy [3]. This work deals with the preparation and study of a Zn-Ni alloy prepared by MA using two types of milling devices: a planetary which works manly through abrasion and impact of grinding balls and the Spex which works through the high-energy impact of balls. Zn-Ni was prepared from pure Ni and Zn powders, the equiatomic compositions were weighed and milled for 4 hours followed by sintering at 357°C during 1h
    corecore