18,361 research outputs found
Absence of conventional quantum phase transitions in itinerant systems with disorder
Effects of disorder are examined in itinerant systems close to quantum
critical points. We argue that spin fluctuations associated with the long-range
part of the RKKY interactions generically induce non-Ohmic dissipation due to
rare disorder configurations. This dissipative mechanism is found to
destabilize quantum Griffiths phase behavior in itinerant systems with
arbitrary symmetry of the order parameter, leading to the formation of a
"cluster glass" phase preceding uniform ordering.Comment: 4+epsilon pages, 1 figure. Phys. Rev. Lett., in press (2005
Electron-polaron--electron-polaron bound states in mass-gap graphene-like planar quantum electrodynamics: -wave bipolarons
A Lorentz invariant version of a mass-gap graphene-like planar quantum
electrodynamics, the parity-preserving massive QED,
exhibits attractive interaction in low-energy
electron-polaron--electron-polaron -wave scattering, favoring quasiparticles
bound states, the -wave bipolarons.Comment: 6 pages, two figures, references adde
Valence-bond theory of highly disordered quantum antiferromagnets
We present a large-N variational approach to describe the magnetism of
insulating doped semiconductors based on a disorder-generalization of the
resonating-valence-bond theory for quantum antiferromagnets. This method
captures all the qualitative and even quantitative predictions of the
strong-disorder renormalization group approach over the entire experimentally
relevant temperature range. Finally, by mapping the problem on a hard-sphere
fluid, we could provide an essentially exact analytic solution without any
adjustable parameters.Comment: 5 pages, 3 eps figure
A Stress/Displacement Virtual Element Method for Plane Elasticity Problems
The numerical approximation of 2D elasticity problems is considered, in the
framework of the small strain theory and in connection with the mixed
Hellinger-Reissner variational formulation. A low-order Virtual Element Method
(VEM) with a-priori symmetric stresses is proposed. Several numerical tests are
provided, along with a rigorous stability and convergence analysis
Magnetically-controlled impurities in quantum wires with strong Rashba coupling
We investigate the effect of strong spin-orbit interaction on the electronic
transport through non-magnetic impurities in one-dimensional systems. When a
perpendicular magnetic field is applied, the electron spin polarization becomes
momentum-dependent and spin-flip scattering appears, to first order in the
applied field, in addition to the usual potential scattering. We analyze a
situation in which, by tuning the Fermi level and the Rashba coupling, the
magnetic field can suppress the potential scattering. This mechanism should
give rise to a significant negative magnetoresistance in the limit of large
barriers.Comment: 4 pages, 2 figure
Massive Black Hole Binary Systems in Hierarchical Scenario of Structure Formation
The hierarchical scenario of structure formation describes how objects like
galaxies and galaxy clusters are formed by mergers of small objects. In this
scenario, mergers of galaxies can lead to the formation of massive black hole
(MBH) binary systems. On the other hand, the merger of two MBH could produce a
gravitational wave signal detectable, in principle, by the Laser Interferometer
Space Antenna (LISA). In the present work, we use the Press-Schechter
formalism, and its extension, to describe the merger rate of haloes which
contain massive black holes. Here, we do not study the gravitational wave
emission of these systems. However, we present an initial study to determine
the number of systems formed via mergers that could permit, in a future
extension of this work, the calculation of the signature in gravitational waves
of these systems.Comment: to match the published version in International Journal of Modern
Physics
Random Antiferromagnetic SU(N) Spin Chains
We analyze random isotropic antiferromagnetic SU(N) spin chains using the
real space renormalization group. We find that they are governed at low
energies by a universal infinite randomness fixed point different from the one
of random spin-1/2 chains. We determine analytically the important exponents:
the energy-length scale relation is , where
, and the mean correlation function is given by
, where . Our analysis shows
that the infinite-N limit is unable to capture the behavior obtained at any
finite N.Comment: 4 pages, 3 figure
- …