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Abstract – We present a large-N variational approach to describe the magnetism of insulating
doped semiconductors based on a disorder-generalization of the resonating-valence-bond theory
for quantum antiferromagnets. This method captures all the qualitative and even quantitative
predictions of the strong-disorder renormalization group approach over the entire experimentally
relevant temperature range. Finally, by mapping the problem on a hard-sphere fluid, we could
provide an essentially exact analytic solution without any adjustable parameters.

Copyright c© EPLA, 2009

The metal-insulator transition (MIT) in doped semicon-
ductors (DS) [1] is one of the most fundamental, yet theo-
retically less understood problems in condensed matter
physics. Even aside from their pivotal technological role,
the DS have long been recognized as a bellwether system
for the study of quantum criticality at the MIT. Careful
transport experiments have revealed sharply defined crit-
ical behavior, although with exponents inconsistent with
early theoretical predictions [2].
What are the basic physical processes that drive this

transition and localize the electrons? Important clues
have been provided by the thermodynamic response on
the insulating side. Here, no magnetic ordering has been
experimentally observed down to the lowest tempera-
tures, while both the spin susceptibility and the specific
heat display signatures of randomly interacting local-
ized magnetic moments [1,3]. This puzzling behavior was
largely explained by the Bhatt-Lee (BL) theory [4] of
random singlet (RS) formation, using a strong-disorder
renormalization group (SDRG) approach [5].
The remarkable success of the BL theory provides

strong support to the early ideas of Mott [6], who first
emphasized that strong Coulomb repulsion may localize
the electrons by converting them into localized magnetic
moments. According to this picture, the MIT in DS should
be viewed as a disordered version of the Mott transition,

(a)E-mail: jh146@phy.duke.edu

a phenomenon dominated by strong correlation effects.
An appropriate theory should then be able to describe
both the local moment magnetism in the insulator and
the transmutation of these local moments into conduction
electrons on the metallic side of the MIT. Unfortunately,
the SDRG approach of BL, which was so successful in the
insulator, is difficult to extend across the transition.
The essential challenge, therefore, is to develop an

alternative approach to Mott localization in a strongly
disordered situation, one that at the very least can repro-
duce the RS physics of Bhatt and Lee. An attractive
avenue to describe strong correlations has emerged in the
last twenty years from studies of various Mott systems,
based on resonating-valence bond (RVB) ideas of Ander-
son [7] and others. At the mean field level, these theories
provide variational wave functions for quasiparticle states,
which become exact in appropriate large-N limits [8]. Very
recent work has extended similar variational studies to
disordered systems, providing a description of phenomena
such as disorder-induced non-Fermi liquid behavior [9],
but did not address the physics of inter-site spin corre-
lations central to the BL paradigm.
In this letter we examine an appropriate t-J model

capable of describing the Mott transition in a disordered
environment. While the large-N limit of this model gener-
ally reduces to an RVB-like variational problem, here we
concentrate on the localized (t→ 0) limit in the presence
of strong positional disorder modeling the insulating DS.
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We show that: i) the large-N formulation quantitatively
reproduces all the key features of the RS regime; ii) an
accurate analytic solution of the variational problem can
be thus obtained, providing closed form expressions for
various physical quantities; and iii) the approach can be
directly extended to the metallic side, eliminating the
main stumbling block in attacking the MIT in DS.

Model and large-N formulation. – We start with
the large-N formulation of the two-orbital t-J model,

H =
∑
k,σ

(εk+ εo)c
†
kσckσ +

∑
i�=j,σ

tij f̃
†
iσ f̃jσ

+
1

2N

∑
i�=j
JijSi ·Sj + V√

N

∑
i,k,σ

(eik·ric†kσ f̃iσ +H.c.),

(1)

under the constraint of no double occupancy on the
f̃ -orbital. Here each lattice site corresponds to a donor
or acceptor which is randomly distributed in a periodic-
boundary 3D cube of volume V0 =N0/ρ0, where N0
is the number of dopant sites and ρ0 is the doping
concentration. We stay at half-filling for the uncom-
pensated DS,

∑
k,σ c

†
kσckσ +

∑
iσ f̃

†
iσ f̃iσ =N0N/2. The c-

orbital represents the semiconductor conduction band
with dispersion εk, lying at an energy εo above the hydro-
genic 1s impurity bound state (the f̃ -orbital), and V is
the hybridization between them. Si is the SU(N) spin
operator of the f̃i-orbital. The hopping between the
hydrogenic bound states [10] falls off exponentially with
distance rij = |ri− rj |, tij = t0exp(−rij/a) for rij� a, the
Bohr radius of the bound state. Consequently, the anti-
ferromagnetic super-exchange coupling

Jij = J0 exp(−2rij/a), (2)

where J0 ∼ t20 (see footnote 1). The projected Hilbert
space of the f̃ -orbital can be treated in the slave-boson
formalism f̃†iσ = bif

†
iσ enslaved to a constraint on each site∑

σ f
†
iσfiσ + b

†
i bi =N/2.

In this letter, we focus on the insulating side of

the uncompensated DS ρ0 < ρc (ρ
1/3
c a≈ 0.25 for Si : P)

where the average inter-site distance Λ= ρ
−1/3
0 � a,

which implies that tij→ 0. In this limit, the effective
hybridization bV goes to zero as b→ 0, and the electrons
become Mott localized on singly occupied f̃ -orbitals. This
results in an effective Heisenberg Hamiltonian for the
insulating uncompensated DS, H= 1

2N

∑
i�=j JijSi ·Sj .

The magnetic behavior of such a disordered Heisenberg
system was largely explained by Bhatt and Lee via

1It is well known (and expected) that corrections to Jij exist
due to anisotropy and other effects. For instance, in d= 3 there is an
additional factor of (rij/a)

5/2 multiplying Jij when rij� a [10]. For
our purposes, these corrections can be safely neglected in face of the
highly disordered character of the dilute (insulating) regime. They
only provide subleading (logarithmic) corrections as we confirmed
numerically. Furthermore, this allows us to directly compare our
results with those of the Bhatt-Lee theory [4], which also neglects
them.
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Fig. 1: (Colour on-line) Normalized magnetic susceptibility of
highly disordered 3D Heisenberg magnets evaluated with the
Bhatt-Lee method [4], the large-N self-consistent theory (for
systems withN0 = 512 spins (see footnote

2), and the geometric
decimation procedure at concentrations n= 4π

3
ρ0a

3 = 0.004,
0.04, and 0.16.

the SDRG method. Here we investigate the system
within the large-N theory [8,11], which leads to an
effective mean-field Hamiltonian through the saddle-point
approximation,

H=−N
16

∑
i�=j
Jij

(
∆∗ij∆̂ij +H.c.− |∆ij |2

)
,

with the constraint
∑
σ f
†
iσfiσ =N/2 (of self-conjugate

spins) implemented through the local Lagrange multi-

plier λi. Here, ∆̂ij = 2
∑
σ f
†
iσfjσ/N are valence bond

(VB) operators and ∆ij = 〈∆̂ij〉 are variational parame-
ters which minimize the free energy. They are solved self-
consistently at N →∞, for a given sample realization and
temperature. The results are then averaged over 20 sample
realizations.

Numerical large-N solution. – At any finite temper-
ature, our large-N solution finds two types of spins: local-
ized and VB spins. The localized spins are those isolated
from all other ones, i.e., ∆= 0 for all bonds connecting
to them; their contribution to the magnetic susceptibil-
ity is simply a Curie term χc(T ) = µ

2
B/kBT . In contrast,

each VB spin forms a singlet bond (∆ 	= 0) with another
spin; their contribution can be neglected at low tempera-
tures. The low-T magnetic susceptibility is, therefore, well
approximated by

χ(T ) = ρ(T )χc(T ), (3)

where ρ(T ) is the density of localized/free spins at
temperature T . Figure 1 shows the normalized magnetic
susceptibility χ(T )/χ(J0) = J0ρ(T )/Tρ0 at concentrations
n= 4π3 ρ0a

3 = 0.004, 0.04, and 0.16 (see footnote 2). The
susceptibility diverges at low temperatures, consistent

2We have carefully verified that all our numerical results are
robust with respect to finite-size effects.
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with the SDRG results of BL [4]. This divergence is
usually fitted by a power law in experiments, but we
shall show later that it should be viewed as a logarithmic
correction to the Curie law. The higher the doping concen-
tration, the larger this correction since couplings among
spins are stronger. At extremely low concentrations, all
spins are essentially free and the magnetic susceptibility
follows the Curie law.

Geometric decimation procedure. – The large-
N ground state at zero temperature of such a highly
disordered Heisenberg system is essentially a RS state,
in which most spins form inert singlets (∆= 1) with
another spin and do not correlate with any other spin.
To highlight this, we considered a simple four-spin cluster
with antiferromagnetic couplings Jij > 0, and J23� Jij
for all (i, j) 	= (2, 3). The large-N calculation shows that
for T > J23, all bonds are zero and all four spins are
free. As we lower the temperature to J23, spins S2 and
S3 start to form a VB singlet, ∆23 	= 0, and no longer
contribute to χ(T ). Further reducing the temperature to
J14, spins S1 and S4 form another VB singlet. There
is no resonance between the (2,3) and the (1,4) VB
singlets. In contrast to the Bhatt-Lee SDRG method,
in which there appears a renormalized coupling between
SU(2) spins connected to a strong singlet pair, this
effect can be shown to be of order 1/N between SU(N)
spins [12], and thus drops out in the large-N limit. While
this simplification makes our large-N model amenable to
closed form solution, we shall demonstrate that it hardly
affects the quantitative predictions of the model within
the experimentally relevant temperature range (as shown
in fig. 1).
This also allows us to state a very simple geometric

decimation procedure. We i) search for the most strongly
coupled spin pair, or equivalently, the shortest one (see
eq. (2)), ii) remove it from the system by coupling the
spins in an inert singlet, and iii) repeat steps i) and ii)
until the desired energy (temperature) scale is reached.
We should emphasize that no other renormalizations are
involved during this decimation procedure. The density
of free (undecimated) spins in eq. (3) is then given by

ρ(T ) = ρ0
∫ T
0
Q(J)dJ , where Q(J) is the distribution of

the decimated couplings, shown in fig. 2(a) for n= 0.16.
The distribution of nearest-neighbor couplings, P (J), is
also plotted for comparison. Note the dramatic difference
between P (J) and Q(J) which stems from the fact that,
during the decimation procedure, longer-distance nearest
pairs are unavoidably generated. Therefore, Q(J) will
always be singular yielding the divergence of χ(T ) at low
temperatures. As depicted in fig. 1, this simple geometric
decimation procedure captures the essential physics of the
large-N theory in describing the magnetic susceptibility
of strongly disordered Heisenberg spin systems.

Analytic solution. – The geometric decimation
procedure will give us a long-sought analytic
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Fig. 2: (Colour on-line) (a) The distributions of the nearest-
neighbor couplings P (J) and of decimated couplings Q(J) at
concentration n= 0.16. (b) Numerical results for the packing
fraction η= ρv as a function of decimation length L for d= 1,
2, and 3; Λ= ρ

−1/d
0 . (c) Comparison between the numerical

and analytic (eq. (5)) results for the free spin density in the
geometric decimation procedure for d= 3. Here, systems with
N0 = 4096 spins averaged over 3000 samples were used (see
footnote 2).

description [13,14] of the magnetic properties of insu-
lating DS if one can keep track of ρ as a function of
the energy scale Ω=max{Jij} (defined as the coupling
to be decimated) or, equivalently, the length scale
L=min{rij} (the distance between the spins in the pair
to be decimated). Although the pair approximations [13]
considerably simplify the calculations as compared to the
SDRG and numerical cluster calculations, they fail to
yield an analytic expression for ρ. On the other hand, the
analytic formula proposed by Ponomarev et al. involves
a tunable parameter [14]. Here we present an accurate
analytic solution without any adjustable parameters for a
general d-dimensional system.
Since we remove hierarchically the closest spin pair,

we can imagine each spin as a hard sphere of diameter
L, which naturally incorporates the constraint that no
spin pair is closer than L (see footnote 3). By removing
the spheres that are touching each other, we continuously
increase L until the next closest pair of spins touch each
other. The rate equation governing the density of free spins
is given by

dρ=−2dρ2gdv, where g(ρ) = (1−αρv)(1− ρv)−d (4)

is the radial distribution function [15] of a hard-sphere
fluid: it gives the ratio of the density of particles at
distance r by the mean density, given that there is a
particle at the origin. Here, α is a constant which depends
only on dimensionality (α= 0, 0.436, and 0.5 for d= 1, 2

3In the following, we neglect any other correlations beyond those
imposed by the hard-sphere constraint.
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and 3, respectively) [15], and v is the excluded volume of
each hard sphere. The negative sign comes from the fact
that ρ decreases as L increases, and the decrease in ρ is
proportional to the density of available spins ρ times the
probability that two spins (hard spheres) touch each other,
i.e., 2dρgdv. The 2d factor converts the radius of the hard
sphere (raised to the power d) into its diameter.
The solution of eq. (4) can be reduced to a quadrature,

from which we can deduce that the packing fraction η= ρv
increases monotonically with L, saturating at large length
scales at ηc (
 0.333, 0.182, and 0.0968, respectively, for
d= 1, 2 and 3). The results of a numerical solution of
the decimation procedure are shown in fig. 2(b), from
which we obtain ηc 
 0.2810(5), 0.156(1), and 0.082(2) for
d= 1, 2 and 3 (see footnote 4). Since η� 1 throughout
the decimation procedure, our hard-sphere liquid remains
moderately correlated (away from the strong coupling
regime in the vicinity to close packing). This provides a
dramatic simplification, since we are now well justified
in using the virial expansion g−1 ≈ 1− (d−α)ρv (this
linearized expression is exact [15] in d= 1), and find a
closed form solution

2dγρv= 1− (ρ/ρ0)γ , with γ = 1+ (d−α)/2d, (5)

which satisfies the initial condition ρ= ρ0 at v= 0.
The magnetic susceptibility in eq. (3) is readily
obtained by relating temperature and L via eq. (2),
i.e., 2L= aln(J0/T ). In the L, v→∞ (T → 0) limit, the
density decays asymptotically as ρ∼ v−1 ∼L−d. Thus,
the magnetic susceptibility diverges at low temperatures
according to

χ(T )∼ J0

T [ln (J0/T )]
d
, (6)

which can be viewed as a logarithmic correction to the
Curie law instead of the power-law divergence usually
fitted to experiments. The free spin density ρ extracted
from eq. (5) is plotted in fig. 2(c) as a function of
L, in excellent agreement with the numerical result of
the decimation procedure. Therefore, eq. (5) provides
an accurate analytic solution, without any adjustable
parameters, to the large-N theory of the insulating DS.

Comparison between SDRG and large-N . – It is
now natural to ask how reliable the large-N theory is. To
address this issue, we compare the well-known RS solution
of the 1D random Heisenberg system obtained by the
SDRG method [16,17] with the analytic solution, eq. (5),
of the large-N theory. For randomly distributed spins,
the length distribution of the nearest-neighbor bonds is
a Poissonian P (L) = ρ0exp(−ρ0L), which gives rise to a
power-law initial coupling constant distribution

P0(J) = θ(J)θ(J0−J)ρ0a
2J0

(
J0

J

)1−ρ0a/2
. (7)

4Small differences between the analytic and the numerical values
of ηc reflect the higher-order correlations we have neglected (see
footnote 3).
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Fig. 3: (Colour on-line) Comparisons between the densities
of free (undecimated) spins as functions of the length scale
L obtained by the SDRG (ρ′) and the large-N (ρ) methods,
i.e., the geometric solution, in d= 1. The vertical dotted line
highlights the breakdown temperature T ∗ (47mK for aρc =
a/Λc = 0.25 (see footnote

5)).

In this case, the SDRG flow can be followed exactly
through all energy scales, yielding [17]

ρ′ = ρ0
[
1+
ρ0a

2
ln (J0/Ω)

]−2
= ρ0 (1+ ρ0L)

−2
, (8)

where the prime is added to distinguish this SDRG density
from the large-N result in eq. (5). In the asymptotic
L→∞ limit, ρ′ ∼L−2, different from the L−d behavior
of the large-N theory as shown in fig. 3(a). However,
upon close inspection, the L-dependences of ρ and ρ′ (see
fig. 3(b)) reveal that the breakdown occurs only above a
length scale L∗ = 1/ρ0 =Λ, corresponding to a breakdown
temperature

T ∗ = J0 exp(−2Λ/a) (9)

below which the renormalized couplings become impor-
tant in the SDRG procedure. Above T ∗, however, the
SDRG theory can be reduced to the simple geometric
decimation procedure. The smaller the concentration ρ0,
the lower T ∗ is. Since T ∗ concerns only the energy scale
at which the renormalized couplings become important,
eq. (9) straightforwardly holds in higher dimensions. Inter-
estingly, this result implies that a large class of highly
disordered systems can be described by the random singlet
picture above T ∗ even though their ground states are
completely different (as they are in refs. [18]). For instance,

T ∗ ≈ 47mK when aρ1/30 = aρ
1/3
c = a/Λc = 0.25, assuming

J0 = 140K from ref. [19]
5. Remarkably, the temperature

window relevant for experiments is above the breakdown

5Corrections to Jij in eq. (2) may be important in order to
compute the precise value of T ∗. If one naively inserts the factor
of (rij/a)

5/2, one gets that T ∗ = J0(Λ/a)5/2exp(−2Λ/a) instead
of eq. (9), which increases T ∗ by a factor of 32 at the critical
concentration. However, note that Λ/a= 4 is not much greater
than 1. Thus, subleading corrections of order (rij/a)

2 [10] become
important. To our knowledge, they are not known at the present
moment.
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temperature (left of the dotted line in fig. 3), which also
explains the success of the BL theory.
Finally, we would like to call attention to a caveat on

eq. (6). As shown in fig. 3, the experiments take place in a
temperature range above T ∗ in which both the SDRG and
the geometric decimation solutions coincide and before
their asymptotic regimes have been reached. It is thus very
clear that either the numerical solution or the analytic one
in eq. (5) compare well with experiments. In d= 1 and
above T ∗, eq. (5) can be well approximated by eq. (8).
Again, it is clear that the apparent power-law divergence
of the susceptibility seen in experiments should instead be
interpreted as a logarithmic correction to the Curie law.

Summary and outlook. – We have shown how a vari-
ational large-N method provides a physically transparent
and quantitatively accurate description of inter-site spin
correlations on the insulating side of DS. In the presence of
strong positional disorder, each localized spin forms a VB
singlet with a rather uniquely defined partner, allowing for
a closed-form solution of the problem in the large-N limit.
Even more importantly, this approach opens a very

attractive avenue to describe the behavior across the
MIT. It is known that the large-N RVB approach
correctly describes the high density Fermi liquid state [8].
As we established that it also works in the opposite
(insulating/Bhatt-Lee) limit, then it will also provide
a valid description of the transition by examining the
two-orbital t-J model of eq. (1) with finite inter-site
hopping tij . Each f̃ -spin now has more than one choice:
to still form a VB singlet with another localized moment,
or to undergo Kondo screening by conduction electrons.
Similarly as in the large-N solution of the two-impurity
Kondo problem [11], we expect Kondo-screened sites to
contribute to the formation of a coherent Fermi liquid,
while VB singlet pairs to “drop out” from the conduction
sea and remain Mott localized. Such gradual conversion of
the correlated electron fluid into a localized VB solid may
provide a microscopic underpinning for the phenomeno-
logical “two-fluid” model [3] —possibly the key missing
link for cracking the metal-insulator transition in doped
semiconductors.
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