83 research outputs found

    Automated composition of Galician Xota — tuning RNN-based composers for specific musical styles using deep Q-learning

    Get PDF
    Music composition is a complex field that is difficult to automate because the computational definition of what is good or aesthetically pleasing is vague and subjective. Many neural network-based methods have been applied in the past, but they lack consistency and in most cases, their outputs fail to impress. The most common issues include excessive repetition and a lack of style and structure, which are hallmarks of artificial compositions. In this project, we build on a model created by Magenta—the RL Tuner—extending it to emulate a specific musical genre—the Galician Xota. To do this, we design a new rule-set containing rules that the composition should follow to adhere to this style. We then implement them using reward functions, which are used to train the Deep Q Network that will be used to generate the pieces. After extensive experimentation, we achieve an implementation of our rule-set that effectively enforces each rule on the generated compositions, and outline a solid research methodology for future researchers looking to use this architecture. Finally, we propose some promising future work regarding further applications for this model and improvements to the experimental procedure

    Specific SHP-2 partitioning in raft domains triggers integrin-mediated signaling via Rho activation

    Get PDF
    Copyright © by The Rockefeller University PressCell signaling does not occur randomly over the cell surface, but is integrated within cholesterol-enriched membrane domains, termed rafts. By targeting SHP-2 to raft domains or to a non-raft plasma membrane fraction, we studied the functional role of rafts in signaling. Serumdepleted, nonattached cells expressing the raft SHP-2 form, but not non-raft SHP-2, display signaling events resembling those observed after fibronectin attachment, such as 1 integrin clustering, 397 Y-FAK phosphorylation, and ERK activation, and also increases Rho-GTP levels. Expression of C the dominant negative N19Rho abrogates raft-SHP-2–induced signaling, suggesting that Rho activation is a downstream event in SHP-2 signaling. Expression of a catalytic inactive SHP-2 mutant abrogates the adhesion-induced feedback inhibition of Rho activity, suggesting that SHP-2 contributes to adhesion-induced suppression of Rho activity. Because raft recruitment of SHP-2 occurs physiologically after cell attachment, these results provide a mechanism by which SHP-2 may influence cell adhesion and migration by spatially regulating Rho activity.Peer reviewe

    Application of a new protocol for providing obstetric care in an outpatient service during the COVID-19 pandemic in a public hospital in Madrid, Spain.

    Get PDF
    Objective: To evaluate the clinical implementation of a preventive COVID-19 protocol regarding re-organization of appointments and documented infections among health workers in an obstetric outpatient service. Methods: Descriptive analysis of the antenatal care at our obstetric outpatient service and infection rates among health care providers from March 19th to May 22nd, 2020. Appointments were divided into telephone calls or face-to-face examinations. A pre-consultation triage was implemented to identify suspected SARS-CoV2 infected women to reschedule them 14 days later or, if the consultation was non-delayable, to use complete Personal Protective Equipment (PPE). Firstly, the number of face-to-face appointments, telephone appointments, and COVID-19 diagnoses in pregnant women were analyzed. Secondly, the number of obstetricians and nurses diagnosed with SARS-CoV2 infection and their serologic status during universal screening in May 2020 were recorded. Results: One thousand eight hundred forty-two obstetric appointments were scheduled during this period, including 432 (23.5%) telephone appointments (96.53% according to clinical protocol, 1.62% symptomatic patients advised to stay at home, and 1.85% COVID-19 confirmed cases), and 1,410 (76.5%) face-to-face appointments (9.7% did not attend due to fear of getting the infection, 3.1% were lost-to-follow-up, 0.5% were rescheduled due to COVID-19 symptoms and 86.7% who did attend). Of the 1,223 women attending their hospital appointment, 3.6% screened positive at the triage (72.7% rescheduled and 27.3% seen with PPE). 43 rRT-PCR-SARS-CoV2 tests were performed, and two tested positive. No COVID-19 symptoms were reported among health workers at the outpatient obstetric service, and only one nurse presented immunoglobulin (Ig)G anti-SARS-CoV2. Conclusion: A prompt implementation of a preventive protocol in a hospital obstetric outpatient service, including triage, hygienic and preventive measurements, and rescheduling pregnancy appointments, reduces the percentage of health workers affected by SARS-CoV2.post-print369 K

    Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis

    Get PDF
    Spatially restricted activation of signaling molecules governs critical aspects of cell migration; the mechanism by which this is achieved nonetheless remains unknown. Using time-lapse confocal microscopy, we analyzed dynamic redistribution of lipid rafts in chemoattractant-stimulated leukocytes expressing glycosyl phosphatidylinositol–anchored green fluorescent protein (GFP-GPI). Chemoattractants induced persistent GFP-GPI redistribution to the leading edge raft (L raft) and uropod rafts of Jurkat, HL60, and dimethyl sulfoxide–differentiated HL60 cells in a pertussis toxin–sensitive, actin-dependent manner. A transmembrane, nonraft GFP protein was distributed homogeneously in moving cells. A GFP-CCR5 chimera, which partitions in L rafts, accumulated at the leading edge, and CCR5 redistribution coincided with recruitment and activation of phosphatidylinositol-3 kinase γ in L rafts in polarized, moving cells. Membrane cholesterol depletion impeded raft redistribution and asymmetric recruitment of PI3K to the cell side facing the chemoattractant source. This is the first direct evidence that lipid rafts order spatial signaling in moving mammalian cells, by concentrating the gradient sensing machinery at the leading edge

    Blocking of HIV-1 Infection by Targeting CD4 to Nonraft Membrane Domains

    Get PDF
    Human immunodeficiency virus (HIV)-1 infection depends on multiple lateral interactions between the viral envelope and host cell receptors. Previous studies have suggested that these interactions are possible because HIV-1 receptors CD4, CXCR4, and CCR5 partition in cholesterol-enriched membrane raft domains. We generated CD4 partitioning mutants by substituting or deleting CD4 transmembrane and cytoplasmic domains and the CD4 ectodomain was unaltered. We report that all CD4 mutants that retain raft partitioning mediate HIV-1 entry and CD4-induced Lck activation independently of their transmembrane and cytoplasmic domains. Conversely, CD4 ectodomain targeting to a nonraft membrane fraction results in a CD4 receptor with severely diminished capacity to mediate Lck activation or HIV-1 entry, although this mutant binds gp120 as well as CD4wt. In addition, the nonraft CD4 mutant inhibits HIV-1 X4 and R5 entry in a CD4+ cell line. These results not only indicate that HIV-1 exploits host membrane raft domains as cell entry sites, but also suggest new strategies for preventing HIV-1 infection

    Utilidad del color para clasificar los zumos de naranja según su elaboración

    Get PDF
    En este trabajo se caracteriza el color de los zumos de naranja comerciales y se explora la utilidad de las coordenadas cromáticas para diferenciarlos según su proceso de elaboración. Se concluye que es posible la discriminación de los zumos elaborados a base de concentrado de los procedentes de naranjas exprimidas, a partir de los parámetros L* y C*ab.Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía): proyecto P08- AGR-0378

    Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: ErbB2-positive breast cancer is characterized by highly aggressive phenotypes and reduced responsiveness to standard therapies. Although specific ErbB2-targeted therapies have been designed, only a small percentage of patients respond to these treatments and most of them eventually relapse. The existence of this population of particularly aggressive and non-responding or relapsing patients urges the search for novel therapies. The purpose of this study was to determine whether cannabinoids might constitute a new therapeutic tool for the treatment of ErbB2-positive breast tumors. We analyzed their antitumor potential in a well established and clinically relevant model of ErbB2-driven metastatic breast cancer: the MMTV-neu mouse. We also analyzed the expression of cannabinoid targets in a series of 87 human breast tumors. RESULTS: Our results show that both Delta9-tetrahydrocannabinol, the most abundant and potent cannabinoid in marijuana, and JWH-133, a non-psychotropic CB2 receptor-selective agonist, reduce tumor growth, tumor number, and the amount/severity of lung metastases in MMTV-neu mice. Histological analyses of the tumors revealed that cannabinoids inhibit cancer cell proliferation, induce cancer cell apoptosis, and impair tumor angiogenesis. Cannabinoid antitumoral action relies, at least partially, on the inhibition of the pro-tumorigenic Akt pathway. We also found that 91% of ErbB2-positive tumors express the non-psychotropic cannabinoid receptor CB2. CONCLUSIONS: Taken together, these results provide a strong preclinical evidence for the use of cannabinoid-based therapies for the management of ErbB2-positive breast cancer

    CCR5 Expression Influences the Progression of Human Breast Cancer in a p53-dependent Manner

    Get PDF
    Chemokines are implicated in tumor pathogenesis, although it is unclear whether they affect human cancer progression positively or negatively. We found that activation of the chemokine receptor CCR5 regulates p53 transcriptional activity in breast cancer cells through pertussis toxin–, JAK2-, and p38 mitogen–activated protein kinase–dependent mechanisms. CCR5 blockade significantly enhanced proliferation of xenografts from tumor cells bearing wild-type p53, but did not affect proliferation of tumor xenografts bearing a p53 mutation. In parallel, data obtained in a primary breast cancer clinical series showed that disease-free survival was shorter in individuals bearing the CCR5Δ32 allele than in CCR5 wild-type patients, but only for those whose tumors expressed wild-type p53. These findings suggest that CCR5 activity influences human breast cancer progression in a p53-dependent manner

    Specific SHP-2 partitioning in raft domains triggers integrin-mediated signaling via Rho activation

    Get PDF
    Cell signaling does not occur randomly over the cell surface, but is integrated within cholesterol-enriched membrane domains, termed rafts. By targeting SHP-2 to raft domains or to a non-raft plasma membrane fraction, we studied the functional role of rafts in signaling. Serum-depleted, nonattached cells expressing the raft SHP-2 form, but not non-raft SHP-2, display signaling events resembling those observed after fibronectin attachment, such as β(1) integrin clustering, (397)Y-FAK phosphorylation, and ERK activation, and also increases Rho-GTP levels. Expression of the dominant negative N19Rho abrogates raft-SHP-2–induced signaling, suggesting that Rho activation is a downstream event in SHP-2 signaling. Expression of a catalytic inactive SHP-2 mutant abrogates the adhesion-induced feedback inhibition of Rho activity, suggesting that SHP-2 contributes to adhesion-induced suppression of Rho activity. Because raft recruitment of SHP-2 occurs physiologically after cell attachment, these results provide a mechanism by which SHP-2 may influence cell adhesion and migration by spatially regulating Rho activity
    corecore