114 research outputs found

    Estimation of User's Orientation via Wearable UWB

    Get PDF
    User's orientation in indoor environments is an important part of her context. Orientation can be useful to understand what the user is looking at, and thus to improve the interaction between her and the surrounding environment. In this paper, we present a method based on wearable UWB-enabled devices. The position of the devices in space is used to estimate the user's orientation. We experimentally evaluated the impact of some operational parameters, such as the distance between worn devices, or some environmental conditions, such as the position of the user in the room. Results show that the accuracy of the method suits the needs of a wide range of practical purposes

    Kita Driven Expression of Oncogenic HRAS Leads to Early Onset and Highly Penetrant Melanoma in Zebrafish

    Get PDF
    Melanoma is the most aggressive and lethal form of skin cancer. Because of the increasing incidence and high lethality of melanoma, animal models for continuously observing melanoma formation and progression as well as for testing pharmacological agents are needed.Using the combinatorial Gal4-UAS system, we have developed a zebrafish transgenic line that expresses oncogenic HRAS under the kita promoter. Already at 3 days transgenic kita-GFP-RAS larvae show a hyper-pigmentation phenotype as earliest evidence of abnormal melanocyte growth. By 2-4 weeks, masses of transformed melanocytes form in the tail stalk of the majority of kita-GFP-RAS transgenic fish. The adult tumors evident between 1-3 months of age faithfully reproduce the immunological, histological and molecular phenotypes of human melanoma, but on a condensed time-line. Furthermore, they show transplantability, dependence on mitfa expression and do not require additional mutations in tumor suppressors. In contrast to kita expressing melanocyte progenitors that efficiently develop melanoma, mitfa expressing progenitors in a second Gal4-driver line were 4 times less efficient in developing melanoma during the three months observation period.This indicates that zebrafish kita promoter is a powerful tool for driving oncogene expression in the right cells and at the right level to induce early onset melanoma in the presence of tumor suppressors. Thus our zebrafish model provides a link between kita expressing melanocyte progenitors and melanoma and offers the advantage of a larval phenotype suitable for large scale drug and genetic modifier screens

    Characterization of the Regulatory Region of the Zebrafish Prep1.1 Gene: Analogies to the Promoter of the Human PREP1

    Get PDF
    Prep1 is a developmentally essential TALE class homeodomain transcription factor. In zebrafish and mouse, Prep1 is already ubiquitously expressed at the earliest stages of development, with important tissue-specific peculiarities. The Prep1 gene in mouse is developmentally essential and has haploinsufficient tumor suppressor activity [1]. We have determined the human Prep1 transcription start site (TSS) by primer extension analysis and identified, within 20 bp, the transcription start region (TSR) of the zebrafish Prep1.1 promoter. The functions of the zebrafish 5′ upstream sequences were analyzed both by transient transfections in Hela Cells and by injection in zebrafish embryos. This analysis revealed a complex promoter with regulatory sequences extending up to −1.8, possibly −5.0 Kb, responsible for tissue specific expression. Moreover, the first intron contains a conserved tissue-specific enhancer both in zebrafish and in human cells. Finally, a two nucleotides mutation of an EGR-1 site, conserved in all species including human and zebrafish and located at a short distance from the TSS, destroyed the promoter activity of the −5.0 Kb promoter. A transgenic fish expressing GFP under the −1.8 Kb zebrafish promoter/enhancer co-expressed GFP and endogenous Prep1.1 during embryonic development. In the adult fish, GFP was expressed in hematopoietic regions like the kidney, in agreement with the essential function of Prep1 in mouse hematopoiesis. Sequence comparison showed conservation from man to fish of the sequences around the TSS, within the first intron enhancer. Moreover, about 40% of the sequences spread throughout the 5 Kbof the zebrafish promoter are concentrated in the −3 to −5 Kb of the human upstream region

    The Tumor Suppressor PRDM5 Regulates Wnt Signaling at Early Stages of Zebrafish Development

    Get PDF
    PRDM genes are a family of transcriptional regulators that modulate cellular processes such as differentiation, cell growth and apoptosis. Some family members are involved in tissue or organ maturation, and are differentially expressed in specific phases of embryonic development. PRDM5 is a recently identified family member that functions as a transcriptional repressor and behaves as a putative tumor suppressor in different types of cancer. Using gene expression profiling, we found that transcriptional targets of PRDM5 in human U2OS cells include critical genes involved in developmental processes, and specifically in regulating wnt signaling. We therefore assessed PRDM5 function in vivo by performing loss-of-function and gain-of-function experiments in zebrafish embryos. Depletion of prdm5 resulted in impairment of morphogenetic movements during gastrulation and increased the occurrence of the masterblind phenotype in axin+/− embryos, characterized by the loss of eyes and telencephalon. Overexpression of PRDM5 mRNA had opposite effects on the development of anterior neural structures, and resulted in embryos with a shorter body axis due to posterior truncation, a bigger head and abnormal somites. In situ hybridization experiments aimed at analyzing the integrity of wnt pathways during gastrulation at the level of the prechordal plate revealed inhibition of non canonical PCP wnt signaling in embryos overexpressing PRDM5, and over-activation of wnt/β-catenin signaling in embryos lacking Prdm5. Our data demonstrate that PRDM5 regulates the expression of components of both canonical and non canonical wnt pathways and negatively modulates wnt signaling in vivo

    Outcomes among oropharyngeal and oral cavity cancer patients treated with postoperative volumetric modulated arctherapy

    Get PDF
    BackgroundPresently, there are few published reports on postoperative radiation therapy for oropharyngeal and oral cavity cancers treated with IMRT/VMAT technique. This study aimed to assess the oncological outcomes of this population treated with postoperative VMAT in our institution, with a focus on loco-regional patterns of failure.Material and methodsBetween 2011 and 2019, 167 patients were included (40% of oropharyngeal cancers, and 60% of oral cavity cancers). The median age was 60 years. There was 64.2% of stage IV cancers. All patients had both T and N surgery. 34% had a R1 margin, 42% had perineural invasion. 72% had a positive neck dissection and 42% extranodal extension (ENE). All patients were treated with VMAT with simultaneous integrated boost with three dose levels: 66Gy in case of R1 margin and/or ENE, 59.4-60Gy on the tumor bed, and 54Gy on the prophylactic areas. Concomittant cisplatin was administrated concomitantly when feasible in case of R1 and/or ENE.ResultsThe 1- and 2-year loco-regional control rates were 88.6% and 85.6% respectively. Higher tumor stage (T3/T4), the presence of PNI, and time from surgery >45 days were significant predictive factors of worse loco-regional control in multivariate analysis (p=0.02, p=0.04, and p=0.02). There were 17 local recurrences: 11 (64%) were considered as infield, 4 (24%) as marginal, and 2 (12%) as outfield. There were 9 regional recurrences only, 8 (89%) were considered as infield, and 1 (11%) as outfield. The 1- and 2-year disease-free survival (DFS) rates were 78.9% and 71.8% respectively. The 1- and 2-year overall survival (OS) rates were 88.6% and 80% respectively. Higher tumor stage (T3/T4) and the presence of ENE were the two prognostic factors significantly associated with worse DFS and OS in multivariate analysis.ConclusionOur outcomes for postoperative VMAT for oral cavity and oropharyngeal cancers are encouraging, with high rates of loco-regional control. However, the management of ENE still seems challenging

    Live Imaging of Innate Immune Cell Sensing of Transformed Cells in Zebrafish Larvae: Parallels between Tumor Initiation and Wound Inflammation

    Get PDF
    Live imaging and genetic studies of the initial interactions between leukocytes and transformed cells in zebrafish larvae indicate an attractant role for H2O2 and suggest that blocking these early interactions reduces expansion of transformed cell clones

    Study of pallial neurogenesis in shark embryos and the evolutionary origin of the subventricular zone

    Get PDF
    The dorsal part of the developing telencephalon is one of the brain areas that has suffered most drastic changes throughout vertebrate evolution. Its evolutionary increase in complexity was thought to be partly achieved by the appearance of a new neurogenic niche in the embryonic subventricular zone (SVZ). Here, a new kind of amplifying progenitors (basal progenitors) expressing Tbr2, undergo a second round of divisions, which is believed to have contributed to the expansion of the neocortex. Accordingly, the existence of a pallial SVZ has been classically considered exclusive of mammals. However, the lack of studies in ancient vertebrates precludes any clear conclusion about the evolutionary origin of the SVZ and the neurogenic mechanisms that rule pallial development. In this work, we explore pallial neurogenesis in a basal vertebrate, the shark Scyliorhinus canicula, through the study of the expression patterns of several neurogenic markers. We found that apical progenitors and radial migration are present in sharks, and therefore, their presence must be highly conserved throughout evolution. Surprisingly, we detected a subventricular band of ScTbr2-expressing cells, some of which also expressed mitotic markers, indicating that the existence of basal progenitors should be considered an ancestral condition rather than a novelty of mammals or amniotes. Finally, we report that the transcriptional program for the specification of glutamatergic pallial cells (Pax6, Tbr2, NeuroD, Tbr1) is also present in sharks. However, the segregation of these markers into different cell types is not clear yet, which may be linked to the lack of layering in anamniotesThis work was supported by the Spanish Ministerio de Economía y Competitividad-FEDER (BFU2014-5863-1P)S

    Comparative Oncogenomic Analysis of Copy Number Alterations in Human and Zebrafish Tumors Enables Cancer Driver Discovery

    Get PDF
    The identification of cancer drivers is a major goal of current cancer research. Finding driver genes within large chromosomal events is especially challenging because such alterations encompass many genes. Previously, we demonstrated that zebrafish malignant peripheral nerve sheath tumors (MPNSTs) are highly aneuploid, much like human tumors. In this study, we examined 147 zebrafish MPNSTs by massively parallel sequencing and identified both large and focal copy number alterations (CNAs). Given the low degree of conserved synteny between fish and mammals, we reasoned that comparative analyses of CNAs from fish versus human MPNSTs would enable elimination of a large proportion of passenger mutations, especially on large CNAs. We established a list of orthologous genes between human and zebrafish, which includes approximately two-thirds of human protein-coding genes. For the subset of these genes found in human MPNST CNAs, only one quarter of their orthologues were co-gained or co-lost in zebrafish, dramatically narrowing the list of candidate cancer drivers for both focal and large CNAs. We conclude that zebrafish-human comparative analysis represents a powerful, and broadly applicable, tool to enrich for evolutionarily conserved cancer drivers.Kathy and Curt Marble Cancer Research FundArthur C. MerrillNational Institutes of Health (U.S.) (Grant CA106416)National Institutes of Health (U.S.) (Grant ROI RR020833)National Institutes of Health (U.S.) (Grant 1F32GM095213-01

    Lhx2 and Lhx9 Determine Neuronal Differentiation and Compartition in the Caudal Forebrain by Regulating Wnt Signaling

    Get PDF
    Initial axial patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs during gastrulation. After this patterning phase, further diversification within the brain is thought to proceed largely independently in the different primordia. However, mechanisms that maintain the demarcation of brain subdivisions at later stages are poorly understood. In the alar plate of the caudal forebrain there are two principal units, the thalamus and the pretectum, each of which is a developmental compartment. Here we show that proper neuronal differentiation of the thalamus requires Lhx2 and Lhx9 function. In Lhx2/Lhx9-deficient zebrafish embryos the differentiation process is blocked and the dorsally adjacent Wnt positive epithalamus expands into the thalamus. This leads to an upregulation of Wnt signaling in the caudal forebrain. Lack of Lhx2/Lhx9 function as well as increased Wnt signaling alter the expression of the thalamus specific cell adhesion factor pcdh10b and lead subsequently to a striking anterior-posterior disorganization of the caudal forebrain. We therefore suggest that after initial neural tube patterning, neurogenesis within a brain compartment influences the integrity of the neuronal progenitor pool and border formation of a neuromeric compartment
    • …
    corecore