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Abstract—User’s orientation in indoor environments is an
important part of her context. Orientation can be useful to
understand what the user is looking at, and thus to improve
the interaction between her and the surrounding environment. In
this paper, we present a method based on wearable UWB-enabled
devices. The position of the devices in space is used to estimate
the user’s orientation. We experimentally evaluated the impact of
some operational parameters, such as the distance between worn
devices, or some environmental conditions, such as the position
of the user in the room. Results show that the accuracy of the
method suits the needs of a wide range of practical purposes.

Index Terms—ultra-wideband, orientation, wearable device,
context-awareness.

I. INTRODUCTION

Methods for estimating the position of the user in indoor

environments received significant attention during the last

years. The position of the user is, in fact, one of the most

relevant information sources in context-aware systems and

services [1]–[3]. When the user is located in a specific room,

for instance, the set of possible activities the user may be

carrying out can be restricted to a relatively small set (if she

is in the kitchen, she may be cooking but not having a shower).

This, in a smart-home scenario, generally improves the inter-

action between the user and the surrounding environment. The

position of the user is also fundamental for applications in the

e-health domain. Examples include recognition of a sedentary

lifestyle, remote monitoring of elderly people, and detection

of declining physical conditions [4]–[6].

Significant less attention has been devoted to recognizing

the orientation of the user in indoor environments. However,

this information can be extremely useful in several applica-

tion domains. For example, in a museum, the orientation of

the user could be fused with her position to automatically

provide information about the painting/sculpture she is cur-

rently looking at. In a smart-home setting, orientation can

be important to identify the appliance she wants to interact

with. In general, orientation is a relevant component of the

user’s context, and thus can be useful to improve context-

aware services and applications [7]–[9]. An easy way to

obtain orientation information is my means of the magnetic

sensor available on common smartphones and smartwatches.

However, magnetic sensors are known to suffer from cali-

bration problems and are negatively affected by the presence

of ferromagnetic objects [10]. In addition, magnetic sensors

provide orientation information with respect to the cardinal
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directions. As a consequence, in many cases, such information

has to be converted according to a building-based reference

system, because the latter is generally used at the application

level. Another possibility is to use the gyroscope available

on smartphones and other wearable devices: angular velocity

with respect to the vertical axis can be integrated to obtain

the orientation of the user. However, this approach, similarly

to other dead-reckoning techniques, suffers from accumula-

tion of errors during the integration phase, thus requiring a

periodic acquisition of additional information from external

sources [11], [12].

In this paper, we explore the use of Ultra-WideBand (UWB)

localization methods for estimating the orientation of the user.

UWB-based localization systems are gaining popularity to

obtain positioning information in GPS-denied environments,

such as buildings and factories. A UWB-based localization

system generally relies on a set of devices with known and

fixed position, called anchors. Anchors are able to estimate

the distance between themselves and mobile nodes, called

tags, with good accuracy (the distance estimation error can

be in the order of 10 cm). Tags can be carried by users, e.g.

embedded in smartphones, smart-wristbands or other smart-

devices, or they can be attached to other mobile elements that

have to be localized, e.g. robots in a factory. We suppose

that the user is equipped with two tags, whose position is

used to infer the user’s orientation. Besides implementing a

prototype, we studied the effects on the accuracy of estimation

of a number of factors, such as the position of the user and

the distance between the tags. Experimental results show that

user’s orientation can be estimated with adequate accuracy,

and that the method can be compatible with the requirements

of a large class of applications.

II. RELATED WORK

The problem of estimating the orientation of the user has

been generally faced by relying on Inertial Measurement Units

(IMUs), possibly in combination with magnetic sensors.

The smartphone-based approach for indoor localization

and tracking described in [13] uses an Improved Pedestrian

Dead Reckoning (IPDR) algorithm to determine the route

and the orientation of a person walking in a museum. IPDR

detects steps when the acceleration magnitude exceeds a

dynamic threshold; step length is estimated with a model

which considers step frequency and acceleration variance;

orientation is computed as a function of angular displacement

and acceleration with respect to the vertical axis. The method

also uses magnetic information: when the user stops in front
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Fig. 1. The distances between tags and anchors are estimated via UWB;
the position of tags is computed on the horizontal plane; the two devices are
supposed to be positioned on the left-side of the body (L) and on the right-side
(R).

of an artpiece, the magnetic sensor measures the magnetic

flux densities in parallel and vertical directions with respect

to the artpiece. Measurements are compared with previously

recorded magnetic maps collected at fixed positions, then a

matching algorithm finds the point with minimum error.

The somehow similar problem of finding the distance of the

user from an object and the heading angle between the user’s

current moving direction and the object is studied in [14].

Two possible technologies, Bluetooth Low Energy (BLE) and

UWB, are considered, as well as some configurations (with 6

objects or 1 object). Ranging information from the object, in

case of BLE, is obtained by means of received signal strength.

Ranging information is then fused with pedestrian dead reck-

oning to compute the desired output (the user is supposed to

carry a smartphone). Results show that, when using 6 objects

equipped with UWB transceivers, the orientation error is below

30◦in approximately 80% of the cases.

An accurate estimate of the position and pose of a human

operator is essential to guarantee safety in human-robot inter-

action environments. In [15], a GypsyGyro-18 inertial motion

capture system is used to determine the operator’s pose and

position. An additional UWB localization system is used to

correct the error accumulation caused by the integration of

acceleration data. In particular, UWB measurements are fused

with inertial information by means of a Kalman filter.

A user tracking system for indoor scenarios, based on

UWB and IMUs, is presented in [16]. Inaccuracies in UWB

ranging are mitigated by means of information produced by

accelerometers and gyroscopes. The system is able to produce

a continuous trajectory by filling the gaps when not enough

data are present.

A technique useful to estimate the posture of the user with

UWB was presented in [17]. The distances between a set of

wearable devices were processed to extract a set of feature

and then given as input to a classifier, trained to recognize the

current posture of the user (standing, sitting, walking, etc).

Other examples of applications relying on wearable devices

equipped with UWB also include [18], [19].

III. METHOD AND PROTOTYPE

The user is supposed to wear two (or more) devices

equipped with UWB transceivers. The distance of such devices

Fig. 2. Examples of possible configurations.
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Fig. 3. We suppose that orientation is equal to 0◦when the user looks in the
same direction of the y-axis. Orientation increases up to +180◦when rotating
clockwise, and the opposite when rotating anti-clockwise.

from the anchors is used to compute their position in the

adopted reference system. Then, their projected positions on

the horizontal plane are used to estimate the orientation of the

user (Fig. 1). The devices are supposed to be attached to the

user’s body and their mutual distances must be approximately

constant. In addition, the worn devices must be separated by

a non negligible distance on the horizontal plane. Possible

configurations include a pair of smart-glasses, or a pair of

smart-shoes equipped with two UWB transceivers (Fig. 2). The

technique can also be applied to a user wearing a smartwatch

on one of her wrists and carrying a smartphone in a pocket on

the opposite side of her body. Let us call L and R the device

on the left-side and right-side of the body, respectively.

The distances between anchors and tags are estimated with

period T . Since the position of anchors in the considered

reference system is known, the coordinates of the tags can

be computed using multi-lateration. Once the position of the

two devices is known, it is possible to compute the orientation

of the segment connecting them (the dashed line from L to R

in Fig. 1) and then the orientation of the user. In the above

mentioned examples, the devices are placed at the sides of

the user’s body, thus the orientation of the user is orthogonal

with respect to the segment connecting L and R. However,

nothing prevents adapting the method to scenarios where the

orientation is not orthogonal to the L-R segment. The only

requirement is, from this point of view, that the position of the

devices remains approximately fixed with respect to the body.

When tags are worn on limbs (e.g. at the wrist, or at the feet),

they are subject to spurious movements. To reduce the impact

of spurious movements, a low-pass filter can be applied to the

position of tags. This obviously reduces the rate of orientation

estimates (≤ 1/T ), as multiple values must be aggregated

to produce a single output. Beside spurious movements, the

position of tags is generally affected by errors, introduced by

inaccurate range estimates. Thus, the adoption of a low-pass

filter is going to be beneficial also from this point of view.
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Fig. 4. Positions considered in the rooms.

In this paper, orientation is computed according to the

reference frame illustrated in Fig. 3. Let us indicate the real

orientation of the user as θ, and the estimated orientation as θ̂.

The difference e = θ− θ̂ is the estimation error. The proposed

method is rather simple but, as far as we know, it was not

explored in the past.

We built a prototype of the system using the Decawave

MDEK1001 development kit. The kit includes 12 development

boards, equipped with a UWB transceiver compatible with

the IEEE 802.15.4-2011 standard. Each board is controlled

by a Nordic nRF52832 MCU, which also provides Bluetooth

connectivity (which can be used to communicate with smart-

phones and/or tablets). Four boards were used as anchors and

were placed at the corners of a room. Other two boards were

used as tags, according to the proposed scheme. Each anchor

estimated the distance from the tags with T = 0.1 s. Distances

were transmitted to a sink where they were used to estimate

the positions of the tags in the room coordinate system. Data

was logged and then analyzed offline.

IV. EXPERIMENTAL EVALUATION

We experimentally evaluated the performance of the method

in two scenarios, the static scenario and the mobile scenario.

Static Scenario. The goal was to evaluate the accuracy of

the system when varying i) the distance between the two

tags, ii) the position of the user in the room. The rationale

for the evaluation of the impact of the L-R distance comes

from considering the geometrical nature of the problem: if

the position of a tag is affected by some error, then the error

in the orientation estimate is going to be larger for small L-

R distances than with large L-R distances. We decided to

evaluate the performance of the system when varying the

position of the user in the room because the distance estimation

phase, between tags and anchors, is known to be slightly

influenced by the presence of obstacles and/or walls.

Experiments were carried out in two rooms. The first (room

1), had size XDIM = 3.6 m and YDIM = 3.6 m, the second

(room 2) had size XDIM = 6.39 m and YDIM = 6.56 m (Fig.

4). Anchors were placed at the corners, attached to walls 2 m

from the ground, in both rooms. Two tag nodes were placed

on a table equipped with alignment guides. The tags were 0.79

m from the ground. The tags were accurately placed to have

θ equal to 0◦. The table, with the two tags, was placed in the

four positions illustrated in Fig. 4. The four positions were

selected according to the following reasons: D is the center of

the room, B involves a shift towards one of the sides of the

room, wheres A and C are aimed at understanding the behavior

of the system when the user is close to one of the corners.

We decided to include both A and C to understand if the

symmetry of placement was preserved in terms of estimation

errors. For every considered position (A, B, C, and D) we

collected data using different L-R distances. In particular, for

each position the L-R distances in the [10 cm, 50 cm] interval

were considered (with step 10 cm). Thirty seconds of data

were collected for each position and L-R distance. Fig. 4

shows also the L-R segment and the orientation of the user

as an arrow. Figures 5a and 5b show the mean absolute

orientation error (avg(|e|)) when varying the distance between

the two tags, in room 1 and 2 respectively. In general, when the

distance between the two tags increases, the estimation error

becomes smaller. When the distance between the tags is in the

40-50 cm range, the absolute estimation error is in the order of

10◦. Figures 5c and 5d show the absolute orientation error at

the considered locations, for the two rooms. In this case, there

is no clear picture: the method is slightly influenced by the

position of the user in the room, but without a defined pattern.

In fact, despite being geometrically better placed1, position

D does not provide significantly better orientation estimates.

Moreover, the differences between room 1 and 2 may suggest

that the system is somehow affected by the environment of

operation.

Mobile Scenario. The experiment involving a real mobile user

was carried out in room 2. The user wore the L device at the

left wrist and the R device in the right pocket. The user moved

back and forth along a straight line parallel to the x-axis. U-

turns were always carried out clockwise. Fig. 6 shows the

estimated orientation of the user when walking according to

the previously illustrated scheme. The orientation is correctly

estimated as +90◦ when walking towards the right-hand side

of the room (i.e. with the same orientation of the x-axis).

Similarly, the orientation is correctly estimated as −90◦ when

walking in the opposite direction. The rising spike at the end of

each +90◦ plateau is due to the clockwise rotation of the user,

when performing the u-turn at the right-hand side of the room:

the orientation increases up to +180◦, then goes to −180◦, and

finally increases to −90◦ when the rotation is complete. Then

the user starts walking in the opposite direction. Spikes do

not reach the ±180◦ values just because of the relatively low

sampling rate. The u-turn performed on the left-hand side of

the room does not present discontinuities, as the orientation

goes from −90◦ to +90◦.

V. CONCLUSION

UWB is increasingly used in consumer electronics as an

effective solution of the indoor localization problem, which, as

known, cannot be faced using GPS and similar technologies.

The availability of an UWB chip in recent iPhone models

1Being the anchors placed at the corners of the room, central position are
characterized by a better Geometric Dilution of Precision.
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Fig. 5. Orientation estimation error when varying the distance between tags (5a, 5b: average value ± standard deviation), and when changing position in the
rooms (5c, 5d).
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Fig. 6. Orientation of a user walking back and forth.

demonstrates that this technology is ready for mass-market

adoption. In this paper, we propose to use UWB not only

as a technology useful for localizing the user, but also for

estimating his/her orientation in indoor environments. Orien-

tation is an important element of users’ context, and can be

useful in a wide range of application scenarios. Experimental

evaluation of the proposed method shows that the accuracy is

adequate for the considered applications, with errors as low as

∼ 10◦. It is important to highlight that such results have been

obtained without any calibration, without changes to distance-

estimation mechanisms, and just processing the output of the

localization system. It is thus reasonable to suppose that there

is space for further improvements, e.g. by tuning the low-

level mechanisms to the specific goal or by using antennas

that are specifically designed to be used in proximity of the

human body [20], [21]. The experiments involving a mobile

user demonstrate that, despite the spurious movements caused

by walk, the method still provides good results.
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