19 research outputs found

    Raw date

    No full text
    Raw dat

    Data from: Facile synthesis of porous Mo2C/C composites by using luffa sponge-derived carbon template in molten salt media

    No full text
    Herein, we report the synthesis of a new type of porous Mo2C/C composite by using luffa sponge-derived carbon template, and ammonium molybdate ((NH4)6Mo7O24•4H2O) in the molten NaCl-KCl salts media. The product exhibits a higher specific surface area and three-dimensional porous structure, including macrochannels, micropores, and mesopores. The desirable porous structure is resulted from the carbon template structure and formed Mo2C coating

    Data from: Facile synthesis of porous Mo2C/C composites by using luffa sponge-derived carbon template in molten salt media

    No full text
    Herein, we report the synthesis of a new type of porous Mo2C/C composite by using luffa sponge-derived carbon template, and ammonium molybdate ((NH4)6Mo7O24•4H2O) in the molten NaCl-KCl salts media. The product exhibits a higher specific surface area and three-dimensional porous structure, including macrochannels, micropores, and mesopores. The desirable porous structure is resulted from the carbon template structure and formed Mo2C coating

    Sufficiency of the Central Provident Fund in meeting healthcare and retirement needs : a comparison with selected countries.

    No full text
    This paper aims to ascertain the adequacy of Singapore’s Central Provident Fund in providing for the healthcare and retirement needs of Singaporeans by comparing it with schemes in other countries. Through this, we hope to get a better picture of the robustness of the current CPF system, and generate practical recommendations to improve it

    Additive manufacturing of flexible polymer-derived ceramic matrix composites

    No full text
    It remains challenging to broaden the application fields of ceramics, largely because the hardness and brittleness of ceramics mean that they cannot undergo shape reconfiguration. In this study, we developed an ultraviolet light-curable preceramic polymer slurry, and this slurry was used for digital light processing printing of flexible green parts in designed shapes. These parts were subsequently transformed into complex structures by an assisted secondary molding strategy that enabled the morphology of their green and pyrolyzed forms to be well controlled. The collapse of bulk pyrolyzed parts was avoided by impregnating their precursors with silicon nitride (Si3N4) particles. The effects of different proportions of Si3N4 on the weight loss, shrinkage, density, porosity, and mechanical properties of the pyrolyzed composites were investigated, and the bending strength and Vickers hardness of the composites with 10 wt.% Si3N4 were found to be 130.61 ± 16.01 MPa and 6.43 ± 0.12 GPa, respectively

    A New Algorithm of Atmospheric Boundary Layer Height Determined from Polarization Lidar

    No full text
    Accurately determining the atmospheric boundary layer height (ABLH) is needed when one is addressing the air quality-related issues in highly urbanized areas, as well as when one is investigating issues that are related to the emission and transport of dust aerosols over the source region. In this study, we propose a new ABLH retrieval method, which is named ADEILP (ABLH that is determined by polarization lidar); it is based on the short-term polarized lidar observation that took place during the intensive field campaign in July 2021 in Tazhong, the hinterland of Taklimakan Desert. Furthermore, we conducted comparisons between the ABLH that was identified using a radiosonde (ABLHsonde), the ABLH that was identified by ERA5 (ABLHERA5) and the ABHL that was identified by ADELIP (ABLHADELIP), and we discussed the implications of the dust events. The ADELIP method boasts remarkable advancements in two parts: (1) the lidar volume linear depolarization ratio (VLDR) that represented the aerosol type was adopted, which is very effective in distinguishing between the different types of boundary layers (e.g., mixing layer and residual layer); (2) the idea of breaking up the entire layer into sub-layers was applied on the basis of the continues wavelet transform (CWT) method, which is favorable when one is considering the effect of fine stratification in an aerosol layer. By combining the appropriate height limitations, these factors ensured that there was good robustness of the ADELIP method, thereby enabling it to deal with complex boundary layer structures. The comparisons revealed that ABLHADELIP shows good consistency with ABLHsonde and ABLHERA5 for non-dust events. Nevertheless, the ADELIP method overestimated the stable boundary layer and underestimated the heights of the mixing layer. The dust events seem to be a possible reason for the great difference between ABLHERA5 and ABLHsonde. Thus, it is worth suggesting that the influence that is caused by the differences of the vertical profile in the ERA5 product should be carefully considered when the issues on dust events are involved. Overall, these findings support the climatological analysis of the atmosphere boundary layer and the vertical distribution characteristics of aerosols over typical climatic zones

    A New Algorithm of Atmospheric Boundary Layer Height Determined from Polarization Lidar

    No full text
    Accurately determining the atmospheric boundary layer height (ABLH) is needed when one is addressing the air quality-related issues in highly urbanized areas, as well as when one is investigating issues that are related to the emission and transport of dust aerosols over the source region. In this study, we propose a new ABLH retrieval method, which is named ADEILP (ABLH that is determined by polarization lidar); it is based on the short-term polarized lidar observation that took place during the intensive field campaign in July 2021 in Tazhong, the hinterland of Taklimakan Desert. Furthermore, we conducted comparisons between the ABLH that was identified using a radiosonde (ABLHsonde), the ABLH that was identified by ERA5 (ABLHERA5) and the ABHL that was identified by ADELIP (ABLHADELIP), and we discussed the implications of the dust events. The ADELIP method boasts remarkable advancements in two parts: (1) the lidar volume linear depolarization ratio (VLDR) that represented the aerosol type was adopted, which is very effective in distinguishing between the different types of boundary layers (e.g., mixing layer and residual layer); (2) the idea of breaking up the entire layer into sub-layers was applied on the basis of the continues wavelet transform (CWT) method, which is favorable when one is considering the effect of fine stratification in an aerosol layer. By combining the appropriate height limitations, these factors ensured that there was good robustness of the ADELIP method, thereby enabling it to deal with complex boundary layer structures. The comparisons revealed that ABLHADELIP shows good consistency with ABLHsonde and ABLHERA5 for non-dust events. Nevertheless, the ADELIP method overestimated the stable boundary layer and underestimated the heights of the mixing layer. The dust events seem to be a possible reason for the great difference between ABLHERA5 and ABLHsonde. Thus, it is worth suggesting that the influence that is caused by the differences of the vertical profile in the ERA5 product should be carefully considered when the issues on dust events are involved. Overall, these findings support the climatological analysis of the atmosphere boundary layer and the vertical distribution characteristics of aerosols over typical climatic zones
    corecore