36 research outputs found

    Elastodynamics of Failure in a Continuum

    Get PDF
    A general treatment of the elastodynamics of failure in a prestressed elastic continuum is given, with particular emphasis on the geophysical aspects of the problem. The principal purpose of the study is to provide a physical model of the earthquake phenomenon, which yields an explicit description of the radiation field in terms of source parameters. The Green's tensor solution to the equations of motion in a medium with moving boundaries is developed. Using this representation theorem, and its specialization to the scalar case by means of potentials, it is shown that material failure in a continuum can be treated equivalently as a boundary value problem or as an initial value problem. The initial value representation is shown to be preferable for geophysical purposes, and the general solution for a growing and propagating rupture zone is given. The energy balance of the phenomenon is discussed with particular emphasis on the physical source of the radiated energy. It is also argued that the flow of energy is the controlling factor for the propagation and growth of a failure zone. Failure should then be viewed as a generalized phase change of the medium. The theory is applied to the simple case of a growing and propagating spherical failure zone. The model is investigated in detail both analytically and numerically. The analysis is performed in the frequency domain and the radiation fields are given in the form of multipolar expansions. The necessary theorems for the manipulation of such expansions for seismological purposes are proved, and their use discussed on the basis of simple examples. The more realistic ellipsoidal failure zone is investigated. The static problem of an arbitrary ellipsoidal inclusion under homogeneous stress of arbitrary orientation is solved. It is then shown how the analytical solution can be combined with numerical techniques to yield more realistic models. The conclusion is that this general approach yields a very flexible model which can be adapted to a wide variety of physical circumstances. In spite of the simplicity of the model, the predicted radiation field is rather complex; it is discussed as a function of source parameters, and scaling laws are derived which ease the interpretation of observed spectra. Preliminary results in the time domain are also shown. It is concluded that the model can be compared favorably both with the observations, and with results obtained from purely numerical models

    P_n velocity anisotropy in Southern California

    Get PDF
    We analyze P_n propagation as a function of azimuth across a 28-station, 150-km aperture subarray of the SCARLET network centered near the central Transverse Ranges, California. We selected signals from 81 earthquakes and explosions with epicentral distances ranging from 150 to 400 km, covering all azimuths except a 40° gap from the southwest and a lesser gap from the northeast direction. For each source the apparent velocity of P_n was determined using a one-norm measure of misfit. The apparent P_n velocity does not show any systematic variation with epicentral distance but exhibits a strong azimuthal dependence. Our preferred interpretation calls for a slightly dipping (2° to N40W) planar moho, with 3 to 4 per cent anisotropy of subcrustal material. Transverse isotropy with a nearly horizontal symmetry axis is sufficient to explain the data; the direction of sagittal symmetry is N50W. The isotropic velocity of P_n is 7.8 km/sec. In contrast, a higher (8.1 km/sec) P_n velocity is found in the Mojave block, with no indication of anisotropy. These observations are consistent with a subcrustal model of the Pacific-North America plate boundary where ductile flow is characterized by simple shear in a vertical plane with strike parallel to the direction of relative plate motion

    The Algorithm Theoretical Basis Document for Tidal Corrections

    Get PDF
    This Algorithm Theoretical Basis Document deals with the tidal corrections that need to be applied to range measurements made by the Geoscience Laser Altimeter System (GLAS). These corrections result from the action of ocean tides and Earth tides which lead to deviations from an equilibrium surface. Since the effect of tides is dependent of the time of measurement, it is necessary to remove the instantaneous tide components when processing altimeter data, so that all measurements are made to the equilibrium surface. The three main tide components to consider are the ocean tide, the solid-earth tide and the ocean loading tide. There are also long period ocean tides and the pole tide. The approximate magnitudes of these components are illustrated in Table 1, together with estimates of their uncertainties (i.e. the residual error after correction). All of these components are important for GLAS measurements over the ice sheets since centimeter-level accuracy for surface elevation change detection is required. The effect of each tidal component is to be removed by approximating their magnitude using tidal prediction models. Conversely, assimilation of GLAS measurements into tidal models will help to improve them, especially at high latitudes

    Mapping the Landscape of Citizen Science in Africa: Assessing its Potential Contributions to Sustainable Development Goals 6 and 11 on Access to Clean Water and Sanitation and Sustainable Cities

    Get PDF
    Data are vital for and creating knowledge-based solutions to development challenges facing Africa. As a result of gaps in government-funded data collection, and in the interest of promoting community engagement, there is a global movement towards consideration of nontraditional sources of data, including citizen science (CS) data. These data are particularly valuable when collected at a high resolution over large spatial extents and long time periods. CS projects and infrastructure are abundant and well documented in the Global North, while needs for participatory projects to fill environmental monitoring gaps may be greater in the Global South. The paper explores the contributions of citizen science projects originating in Africa for two Sustainable Development Goals (SDGs), namely SDG 6, and SDG 11 which are particularly important to the millions of low-income residents of cities across Africa. Using a mixed methods approach that involves online surveys, interviews, expert conference panels, and a desk review, we analyze a total of 53 CS projects focusing on water, sanitation, and urban planning. The paper addresses CS in Africa and CS for SDGs, and documents evidence for participatory and CS data collection in Africa. It also describes the survey methods, including approaches to training of volunteers, sources of funding, data collection methods, and objectives of the tools and projects. Finally, it provides reflections on the challenges of integrating CS into official statistics in Africa, and some lessons learnt from CS projects in Africa. This paper recommends the establishment of an open-source database, creation of a network of CS projects for communication and collaboration, the uptake of citizen-generated data, and continuous funding for such projects in Africa

    The Algorithm Theoretical Basis Document for the Derivation of Range and Range Distributions from Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights

    Get PDF
    The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Systematic Global Testing of Intermediate-Term Earthquake Prediction Algorithms

    No full text
    The systematic testing of intermediate-term earthquake prediction algorithms is faced with the difficulties of (1) the limited time spanned by instrumental catalogs of seismicity in most areas of the world, and (2) the relative arbitrariness of the selection of the region and time interval over which to apply the algorithm. We offer a systematic method which uses worldwide seismicity to compute the Receiver Operating Characteristic (ROC) curve of such an algorithm and permits a quantitative test of the null hypothesis that the algorithm samples space time no better than a random process with uniform probability distribution. We use the "M8" algorithm as an example. Introduction The Receiver Operating Characteristic (ROC) curve for an arbitrary detector is simply a plot of a measure of success of the detector in terms of the fraction of signals correctly detected, as a function of the volume of parametric space in which a signal is claimed to exist. For a prediction algorithm ..
    corecore