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ABSTRACT

A general treatment of the elastodynamics of failure in a
prestressed elastic continuum is given, with particular emphasis on the
geophysical aspects of the problem. The principal purpose of the study
is to provide a physical model of the earthquake phenomenon, which
yields an explicit description of the radiation field in terms of source
parameters.

The Green's tensor solution to the equations of motion in a medium
with moving boundaries is developed. Using this representation theorem,
and its specialization to the scalar case by means of potentials, it is
shown that material failure in a continuum can be treated equivalently
as a boundary value problem or as an initial value problem. The initial
value representation is shown to be preferable for geophysical purposes,
and the general solution for a growing and propagating rupture zone is
given.

The energy balance of the phenomenon is discussed with particular
emphasis on the physical source of the radiated energy. It is also
argued that the flow of energy is the controlling factor for the
propagation and growth of a failure zone. Failure should then be
viewed as a generalized phase change of the medium.

The theory is applied to the simple case of a growing and propa-
gating spherical failure zone. The model is investigated in detail
both analytically and numerically. The analysis is performed in the
frequency domain and the radiation fields are given in the form of

multipolar expansions. The necessary theorems for the manipulation of
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such expansions for seismological purposes are proved, and their use
discussed on the basis of simple examples.

The more realistic ellipsoidal failure zone is iﬁvestigated. The
static problem of an arbitrary ellipsoidal inclusion under homogeneous
stress of arbitrary orientation is solved. It is then shown how the
analytical solution can be combined with numerical techniques to yield
more realistic models.

The conclusion is that this general approach yields a very flexible
model which can be adapted to a wide variety of physical circumstances.
In spite of the simplicity of the model, the predicted radiation field
is rather complex; it is discussed as a function of source parameters,
and scaling laws are derived which ease the interpretation of observed
spectra. Preliminary results in the time domain are also shown. It is
concluded that the model can be compared favorably both with the

observations, and with results obtained from purely numerical models.
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GENERAL INTRODUCTION

The branch of Seismology covered by the general denomination of
"earthquake modeling" has received considerable impetus during the last
decade. The reasons are several. One of the principal reasons is that
the earthquake phenomenon, although not yet thoroughly understood, has
lost a lot of the aura of mystery which surrounded it in the past. In
particular, the theory of plate tectonics provides a broad frame in
which earthquakes find a natural place. Except for some intraplate
events, and for those events which are associated with volcanism, most
shallow earthquakes can be explained in a gross sense as a manifestation
of the relative motions of the plates. Similarly deep focus earthquakes
may, in general, be associated with downgoing slabs at trenches.

Another impetus was given to this line of research by the advent
of underground nuclear explosions, and the possibility that such tests
might trigger a seismic event. Also, the necessity of being able to
discriminate between underground explosions and spontaneous seismic
events made it necessary to try and characterize earthquakes more
completely than by their magnitude only. Finally, the more accurately
earthquakes are modeled, the better we understand their mechanism, and
thus the greater our chances are to eventually predict their occurrence.

Because earthquakes occur spontaneously, they should give us some
information about the physical conditions under which they occur. This
includes, for example, information about the thermodynamic state of
earth materials, and about the state of stress of the Earth in earth-

quake zones. How much of this information can be retrieved from
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observations of the radiation field depends on how well parameters such
as rupture size, rupture velocity, etc., can be estimated. It also
depends on how well the rupture phenomenon is understood. For that
reason, it is desirable to construct a model of an earthquake which
depends explicitly on the parameters of interest, and which is flexible
enough to be adaptable to a wide range of situations. Two main classes
of models can be found in the seismological literature: kinematic models
and dynamic models.

The most popular of the kinematic models is the dislocation model
(e.g., Haskell, 1964; Savage, 1966): a displacement dislocation is
created along the rupture surface, with a time history which is
arbitrarily chosen and is hopefully at least approximately correct.
Although very convenient to use, these models lack what may be the most
fundamental property of an earthquake: its spontaneity. In additionm,
they lead to a representation in which the energy radiated emanates
from a surface (the rupture boundary). The same is true of the widely
used two dimensional model of Brune (1970), wherein a stress dislocation
is created along the fault surface.

In contrast, elastodynamic relaxation models (e.g., Archambeau,
1964) take full advantage of the spontaneity of the phenomenon. The
only assumption is then that the material is in an initial state of
stress, and that rupture takes place in a given region. Such models
lead to a representation where the radiated energy comes explicitly
from where it was stored in the first place, that is, from the Streséed
material surrounding the rupture zone. Because elastodynamic models

lead to a more complicated mathematical formulation, their development
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has not been as rapid as for simpler models, and their use is not as
widely spread.

In the present study we shall investigate some fundamental
properties of the various models, with particular emphasis on elasto-
dynamic relaxation models.

The principal contribution of this work to the field of earthquake
seismology is that a general, self-consistent formulation of the seismic
source problem is constructed which encompasses all of the general model
classes (Chapter I). We can then compare the various models, and show
in what sense they are fundamentally equivalent, in spite of their
different mathematical treatments (Chapter II). We can further assess
the trade-off between the degree of convenience offered by these models,
and the capability that they possess to approximate various realistic
physical situations, and also give a precise evaluation of the approxi-
mations involved.

The question of the energy released by an earthquake is discussed
in detail, and, more specifically, we discuss the problem of where this
energy finds its source (Chapter III). The energetics of the failure
phenomenon are introduced as particularly important to a more profound
understanding of the physical processes involved. We propose that
material failure can be regarded as a generalized phase transformation
of the medium, so that rupture propagation is essentially controlled
by the conservation equations of continuum mechanics, suitably
generalized to allow for the presence of discontinuities. We also
suggest that the problem of incipient failure in a continuum could be

treated in a similar frame.



iy

A complete treatment of the elastodynamic source model is then
given for a particular geometry--that of a spherical rupture (Chapter IV).
This includes an extensive investigation of the properties of the
radiation field predicted by this model. The analysis is performed in
the spectral domain, and the dependence of the radiation spectra on
the source parameters is obtained on the basis of both analytical and
numerical results (Chapters IV and VII). It is argued that, in spite
of the particular geometry that we adopted, this model provides us with
a "standard" against which observations can be compared and thus inter-
preted, and also against which other models can be tested. These
include, for example, simpler models of the dislocation type, as well
as more realistic models derived by a combination of analytical and
numerical techniques. To obtain such a "standard" model constitutes, of
dourse, the principal motivation for a thorough investigation. The
attractiveness of amalytical solutions, especially for the study of the
most general properties of the model, leads us to justify sacrificing
geometrical realism for a greater mathematical tractability. The
spherical model also serves to illustrate the use of general multipolar
representations of the radiation field. A special effort is made to
develop the necessary mathematical tools for the manipulation of multi-
polar fields in seismological applications, and we also indicate how
time domain information (e.g., synthetic seismograms) can be retrieved
from them (Chapter V).

The model is generalized to include a more realistic geometry--
that of an ellipsoidal rupture zone (Chapter VI). Particularly

interesting in this respect is the illustration of how the analytical
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approach may be combined with numerical techniques, both by necessity
and for reasons of convenience. This combination opens the possibility
of constructing very sophisticated models, which might take into
account some of the complications encountered in physical situations
(e.g., geological structure, complicated rupture geometries, etc.).

The final contribution of this study consists of a number of
useful results which were proved in the context of this particular
problem, but possess greater generality. Such results include the
Green's temsor solution fo the equations of motion of an elastic
continuum with moving boundaries, and transformation theorems for
multipolar expansions under rotation and translation of the coordinate
system. Further, the complete static solution to the problem of an
arbitrary ellipsoidal inclusion embedded in a matrix subjected to a
uniform stress of arbitrary orientation is given in Chapter VI. The
results should find applications in fields other than geophysics as
well. In this context a large number of identities between ellipsoidal
harmonics and elliptic functions were proved and are given in Appendices.

Of course, such a work cannot be expected to be the final word on
the problem. Indeed, as usual, it seems that more questions are raised
for each question which is answered, more doors opened for each door
closed. In view of the results that we obtained in this study, let us
briefly focus on some of the issues raised which would constitute a
natural extension of our research.

The most challenging, because the least understood, of these
problems is to try and develop a fairly general theory of material

failure valid for phenomena on a scale comparable to that of an
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earthquake. We suggest that an approach using the thermodynamic theory
of materials with memory of Coleman (1964) might be quite fruitful,

when combined with the ideas presented in Chapter III. At the same
time, one should keep in mind that such a continuum theory should be
tied with the observations of rock mechanics, in particular, concerning
rock dilatancy in the context of earthquake prediction (e.g., Whitcomb
et al., 1973)

Another promising aspect of elastodynamic source theory is con-
cerned with the further construction of realistic models obtained by
coupling numerical near-source calculations with the analytical
treatment. This can be done by the methods proposed in the present
study. Comparison of the theoretically predicted radiation field with
the observations, both in the spectral domain and in the time domain,
should yield invaluable information on the physical processes involved
in an earthquake. The recovery of this information need not be done
by trial and error, since a number of inversion techniques have been
developed in geophysics (e.g., Jordan, 1972). However, the '"seismic
source inverse problem" has yet to be formulated in the general case.

Only by combining a better understanding of the failure phenomenon
with a realistic modeling method can we hope to sort out the complex
information hidden in the observed radiation field. Of critical
importance in the long range is the determination of the absolute state
of stress of the Earth. Possible applications to the seismic prediction
problem, to the driving mechanism of plate tectonics, etc., come to
mind immediately and need not be discussed here. The literature quoted

here, altough by no means comprehensive, should be helpful in that respect.



Chapter I

GREEN'S TENSOR SOLUTIONS IN ELASTODYNAMICS

Introduction

The equations controlling the flow of a continuum--in particular
the conservation equations--are nonlinear. In fact most materials,
especially those commonly encountered in Earth Sciences, do not behave
linearly. For example, many of the phenomena associated with the theory
of Plate Tectonics are anelastic, and diastrophic phenomena can hardly
be described by a linear mechanism. On the other hand, the fact
remains that when undergoing small strains, the rocks constituting the
crust and mantle of the Earth behave elastically to a good approximation.
This prompted Sir Harold Jeffreys to challenge the suggestion that
mantle rocks behave viscously:

"I am not suggesting that rocks behave as perfectly elastic

even under small stresses; it appears that under any stress

some elastic afterworking and hysteresis occur. What I say

is that 1) at numerous points the facts are contrary to

what we should expect if viscous flow was of dominating

importance; 2) they are at no point contrary to what we

should expect if the rocks at great depths have a non-zero

strength and flow is negligible unless the stress—differences

exceed the strength; and 3) the latter hypothesis leads

directly to explanations of many of the outstanding facts."

(The Earth, 5th editiom, 1970, p.431).

Thus, whereas the very phenomenon of rock fracture is not elastic, its
effects on the surrounding material and, in particular, the radiation
of seismic waves can be adequately described within the framework of
linearized elasticity.

Furthermore, because of the difficulties usually met in solving
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nonlinear problems, and because the mathematical theory of linear
equations is well developed, one tries in general to linearize a complex
problem in order to obtain at least approximate solutions. Certainly
the advent of high speed digital computers, in association with the
development of sophisticated numerical techniques gives us now the
capability of finding solutions to very nonlinear problems; but these
methods provide the investigator with the numerical answer to a specific
question. The dependence of this answer on the various parameters of
the problem must then be found through a tedious, and often costly,
parameter study. Linear problems are more likely to lend themselves to
analytical investigations. One of their major advantages is that the
principle of superposition of solutions can often be applied in one

form or another.

The concept of Green's tensor solutions (or Green's function
solutions in the scalar case) is a mere generalization of the principle
of superposition for linear problems. Morse and Feshbach (1953) use the
terminology of influence function, in analogy with electrostatic theory.
The analog in filter theory is the impulse response of a filter. The
basic idea is as follows: If a fixed observer knows the effect of an
impulsive point source as a function of the position of this source, he
can evaluate the effect of a distributed source by decomposing it into
a juxtaposition (in space and time) of weighted impulsive point sources,
and then superposing their effects. The superposition will be done by a
summation in the discrete case, and an integration in the continuous
case.

Green's tensor solutions have been widely used in elastostatics and
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elastodynamics (e.g., Love,ll927). Their introduction in seismology
has been mainly associated with the application of dislocation theory
to the modelling of earthquakes (e.g., Stekete, 1958; Maruyama, 1963;
Haskell, 1964). We shall show in this chapter how this formalism
permits us to isolate the effects of driving forces, of boundary condi-
tions, and of initial values. The case of moving boundaries with known
evolution is a generalization of the classical treatment. This
extension will be found particularly useful in the subsequent chapters
for the description of a growing rupture zone. For this purpose it was
necessary to generalize Reynolds' transport theorem in a continuum to
the case of moving boundaries. This is done in Appendix 1, and the
results are given in the first section of this chapter.

From the generalized transport theorem we first obtain the usual
conservation equations of continuum mechanics. Conservation conditions
at flow discontinuities are also obtained in this manner for moving
discontinuities. These conditions reduce to the Rankine-Hugoniot
equations when the discontinuity is a shock front in a fluid. The
conservation equations are generally nonlinear and can be satisfied by
very general flows in the continuum. Their linearization in the case
of a linearly elastic material is a well known procedure and will not
be dwelt upon.

The remainder of the chapter is devoted to the development of
Green's tensor solutions in elastodynamics. It is shown how the
generalized Green's theorem for the theory of elasticity--proved in
section I-2--leads to a formal Green's tensor solution, and how initial

énd boundary conditions are then explicitly used in this solution
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(section I-3). Finally, the scalar case (wave equation) is briefly
discussed.

Cartesian tensor notation is used throughout; so is Einstein's
summation convention. Conservation equations will be given both in
vector and in component form.

The proof of Green's theorem, in section I-2, is carried out in
what may seem superfluous detail: The rationale behind this is that we
hope to be able to generalize these results in future work, to include
more complex geometries such as Riemanian geometry. However, this does
not appear to be very easy, and lies beyond the scope of the present
work. We hope that the details presented here may provide some insight

into the difficulties ahead.
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I-1 Transport theorem and conservation equations

Reynolds’ transport theorem, proved in Appendix 1, furnishes an
expression for the material time derivative of the volume integral of a
flow function. Given a continuous flow in a continuum, of velocity V ,
and a continuous function of the flow F(X,t)-- F can be any tensorial

function--then we have

d = dF .
o de-f[dt+FV V]dv
V() V(t)

. oF . —1-
= f [a_t + V (FV)] dv (I-1-1)
V(t)

Here V(t) 4is an arbitrary volume of the continuum moving with the flow.
V(t) dis bounded by a closed surface S(t) , which is a material surface

(see Appendix 1), and we may apply Gauss' theorem and write

d oF A
—_— F = —_— + . . I-1-
at dv oy dv f F V- 14da (I-1-2)

V(L) V() S(t)

Here f i1s the outward unit normal vector to S(t) .

The theorem (I-1-2) is generalized in Appendix 1 to the case
where the flow and the function F have a discontinuity across an
internal boundary of the medium moving with the velocity U . If I(t)
denotes the portion of this internal boundary lying within V(t) , the

generalized transport theorem reads
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%EfF dv=f[—g—i—‘+v . (FV)] dv+f I]:F(V-—U) -ﬁz]]zda

V(t) V(t) Z(t)

(I-1-3)

The notation [FB 5 is used to represent the jump of the function F
across ZXZ(t) . The boundary ZI(t) may represent a shock front or a
phase boundary, and a positive unit normal ﬁz may be defined arbitrar-
ily. We shall assume without loss of genmerality that U-* ﬁz is
positive. The jump I]:F]] 5 is then the difference between the limiting
values of F when X 1s approached from its positive and negative
sides successively. |

Note that the presence of the third term in (I-1-3) 1is required
in order to satisfy boundary conditions on Z . This term disappears
if I 4is not a discontinuity, for the jump appearing in the integrand
vanishes in that case. This term also disappears if on both sides of
Z(t) the vector V-U is tangential to Z : din this circumstance there
is no transport of F across the discontinuity.

The transport theorem can then be used to derive the conservation
equations. It is shown in Appendix 1 that if a quantity F is

conserved, then at all points of the continuum where the flow is regular

we have

dF V= .
T +F Vx V = k(x,t) : (I-1-4)
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or, equivalently

g—f: +V -+ @®V) = k&x,£) . (I-1-5)

Here k(X,t) is the (local) rate of production (or destruction) of F
It is thus a volumic source density of F and represents the effects of
sources or sinks of F present in the medium.

In addition, along surfaces of discontinuity, the conservation

theorem takes the form of the jump condition

[[F(V—U)- ﬁz]]z = ky (&g, t) : (1-1-6)

Here kz(xz,t) is a surficial density of source of F on the discon-
tinuity. Note that if the volumic source density is of the form

k =V * Kk then at a discontinuity I the surficial density kE must
include a term of the form [[K . ﬁzIIE (see Appendix 1). The source
terms on the right-hand sides of equations (I-1-4) to (I-1-5) are
additive and thus when several mechanisms occur which generate F ,
their effects can be considered separately. We now turn to some special
forms taken by these equations in particular cases. In all cases we
shall formulate the conservation equations so that they may be directly
compared to the general forms (I-1-4) to (I-1-6) .

I-1-a) Comnservation of mass

Since one always assumes in continuum mechanics that no mass is

either created or destroyed, the conservation of mass may be expressed
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by direct application of (I-1-4) . If p is the density of the

material, we have, away from discontinuity

4 |
E%+pv-V=%%+v-(pV)=o . (I-17)

This is the continuity equation. At a discontinuity, (I-1-6) becomes

IID(V—U) . ﬁZ:I] =0 , (I-1-8)
Z

which is the standard jump condition of shock wave theory.

Note that, by virtue of (I-1-7) , if the quantity F is of the

form F = pG , where G is termed the "density of F ," then

dF ggg v - . 9C
dt+FvV +pGV -V Rrr .

.and (I-1-4) becomes

0 d—G = k(X,t) ) (I-1-9)

This relation will prove useful in many cases.

I-1-b) Conservation of linear momentum

Here we assume that Cauchy's stress principle holds: The inter-
action of the material lying outside a volume V with the material

within UV may be represented by the tractions acting on the boundary
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S of V , with outer normal # . Thus if T is the stress tensor,
the tractions acting on S are t= T+ 1 , where the dot product on the

right-hand side is taken to mean the contraction T,.n, . The

133
conservation of linear momentum is expressed by equating the rate of

change of p to the forces acting upon the material. Using the form

of equation (I-1-4) we have

pdv =3Ja;LVl+v- (VeV) = pf +7 T . (I-1-10)

Here f is the body force density, and the symbol @& is used to denote
the tensorial outer product, so that V@®V is a symmetric dyadic. In

component form, (I-1-10) reads

v, 3(oV;)

dt ot (=130

p * (p‘vi‘&?j),:i = pfi * T

ji,3 ’
This is the equation of motion for a continuum.

At a discontinuity ZI(t) carrying no externally applied surficial

force density, (I-1-6) yields

l]:p V[(V-U) . fiz]]]z = [[T- ﬁz] ; M (I-1-12)
or, in component form

I]:pvi(vj ) U,) nj]l ) = ][Tijnj]] ] ) (I-1-13)
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For the case of a fluid Tij B o Psij s Where Gij is the Kronecker
delta, and (I-1-13) reduces to the usual jump condition encountered in
shock wave theory in fluids.

I-1-c) Comservation of angular momentum

We are only concerned here with non-polar media, for which Newton's
third law holds in its strong form. In other words, we assume that no
body couples are present. If this were the case, the medium would have
to be treated as a Cosserat continuum, (see, e.g., Malvern, 1969, for a
more extensive discussion and a bibliography on the theory of multipolar
media). Then we express the conservation of angular momentum by
equating the rate of change of prxV to the moment of all the forces
present, with respect to the origin -- r is the position vector . We

write, away from discontinuities

oL (rxV) =2 (orxV) +V « [p(rxV) @V] = prxf + 7V« (rxT) ,
(I-1-14)

where, by a slight abuse of notation, we define by o the

antisymmetrized tensor product eijk xj T£k » s8ince no confusion can

arise. The symbol € represents the usual permutation tensor

ijk
defined by

eijk = (0 if any two of (i,j,k) are equal

1 1if (4,j,k) 1s an even permutation of (1,2,3)

-1 if (4i,j,k) is an odd permutation of (1,2,3),
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In component form (I-1-14) becomes

d -
Pae CapSh) =
2. (o ) + (pe, xV.V,) , £+ (e T, )
5t PCi5%3Vk P11 Kk 27,2 = PEia®ytk 15K 2k’ 2
(I-1-15)

Noting that - A < , and VxV =0 , we can write the left-hand

dt
side of (I-1-14) as prx %%L ,» and replace it by use of the equation

of motion (I-1-10) . (I-1-14) becomes then

rx (V+F) =¥ ¢ (rxT) ’

or, in component form

€5, 2 = G155 2

But, because x.’£ = 5j£ , this reduces to sijijk =0 or

Traes ™ 0 " | 1-1-16
[3K] - Al
This is the usual result for non-polar media: the conservation of
angular momentum, away from discontinuities, requires the skew-symmetric
part of the stress tensor to vanish. The stress tensor is thus

symmetric.
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At a discontinuity X(t) , carrying no externally applied surface
force density or surface couple density, we have, by direct comparison

with (I-1-6)

p(r xV)[(V-U) - 1.] = [(rxT) * & (I-1-17)
H: Zjﬂ E ﬂ: ZD %

or

uipeijkxjvk(vz - Up) n4| i - ut{-:ijkijzknE:ﬂ i . (I-1-18)

This condition has to be satisfied at discontinuities of the flow if
angular momentum is to be conserved.

I-1-d) Conservation of energy

The kinetic energy density is %—p\r'\r ; we denote the internal
energy density by pu , where u is the specific internal energy of the
medium (per unit mass). The total energy density pE = pu +-% pV-V
is conserved. This is expressed by use of the first law of thermodynam-
ics. Casting the equation in the general form (I-1-4) , we have, away

from discontinuities,

p%‘g—t(pE)+ Ve (EV)=pf-V +poh+V: (V:T-q)
(1-1-19)

Here h is the heat source density, q is the heat flux vector, and

V+T indicates the contraction VjTij . In component form,

dE 3
at(pE) + (DE‘V:L)’i pf,V, + ph (VjTi

AL (1-1-20)

379
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At a discontinuity I devoid of any externally applied surface

forces and of surface heat source density, (I-1-6) specializes to

oE (V -U)* ﬁ]] = [«vT-q) -4 (I-1-21)
[[ 2l 5 [[ nz:[lz
or

[[oE(vi - 1) ni]] - H:(vaij - q,) n;H i . (1I-1-22)
»

This is the condition prevalent across discontinuities of the flow. It
allows for transformation of internal enmergy into kinetic energy across
the boundary and vice versa. In fact the quantities h and q may be
generalized to include other forms of energy as well (e.g., electro-
magnetic energy; see Malvern, 1969). The condition (I-1-22) prevails
even if energy is transformed from one form into another across I .
If the state of the material is known, along with the flow, within
two regions of the medium separated by a discontinuity Z , and 1if the
conditions are satisfied for the conservation of mass and momentum, then
equations (I-1-19) and (I-1-21) can be (ﬁheoretically) solved for
U , the velocity of the boundary. One has to know the quantity of
PE liberated (or absorbed) at the crossing of I . This is the
generalized form of the problem of Stephan, discussed by Carslaw and
Jaeger (1959, Chapter XI). The problem is greatly simplified if the
medium is at rest. O'Connell and Wasserburg (1972) solve an analogous
problem. We shall come back to this particular problem in Chapter III.
If we isolate the kinetic energy term on the left-hand side of

(I-1-19) we get ;21_ o —g—t(V'V) =pV:- thE . By use of the equation
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of motion (I-1-11) this reduces to V= [pf+ V  T] . It is more

convenient to evaluate this quantity in component form. We have

f, + — £, + T - -1~
pVi i VjTij,i pVi i (Vj ij),i DijTij (I-1-23)
where D,., is the deformation tensor defined b D,. =V g o
ij s I ¢ 13
is thus the symmetric part of Vi i and if we write
3>
V, ,=D,, +8,. 3 (I-1-24)

then the skew symmetric tensor Qij is the vorticity tensor.
By combination of (I-1-19) and (I-1-23) and using the

definition of total energy, we obtain

pﬁ_—@—l+v- (uV) =D:T +ph -V - q (I-1-25)

or

P (I-1-26)

dt Dogtyy ¥ Pho= 9y 5
This is the usual "energy equation" (e.g., Malvern, 1969). We must
note, however, that this is not a conservation equation because pu ,
the internal energy, is not a conserved quantity. Therefore, we cannot
write a jump condition analogous to (I-1-6) in that case. Carslaw
and Jaeger point out that (I-1-26) 1s merely the differential equation
of conduction of heat in a moving medium (Carslaw and Jaeger, 1959,

p. 13). The appropriate equation to be used at discontlnuities is
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(I-1-22) , because the total energy is indeed a conserved quantity.
The term DijTij on the right-hand side of (I-1-26) represents the
energy dissipated by internal deformation of the medium. It can be
evaluated if a specific constitutive equation is assumed to hold for
the medium under consideration. For example, in the case of a viscous
fluid Tij = -pﬁij +n;. » where 7. . is the viscous stress, then

ij ij

Dy3Tag T PygMyy =

® 2 (I-1-27)
the dissipation function. We shall not discuss here the forms of
various constitutive equations of interest.

Let us consider the jump condition (I-1-22) in greater detail.
If the flow velocity V is continuous, then by (I-1-8) the density
p 1s continuous, and by (I-1-13) the tractions across I are
continuous. Then the kinetic energy terms on the right-hand sides of

(I-1-22) do not give any contribution to the jump, and we get
e[e].v-v) -8y =-[a-4 :
5 5 [ ’3]]2

But because the specific volume is continuous across X , the jump in
the internal energy reduces to the jump in enthalpy. The interpreta-

tion is clear if ¥ is a phase boundary: ﬂ}{ﬂ is then the latent
)3

heat of transformation (per unit mass) ,g . This latent heat is
understood in an algebraic sense, and corresponds to the transformation

of material from the state on the positive side to the state on the
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negative side of X . -We write

o (v-U) - iy = - H:q . ﬁEJIg ) (I-1-28)

This reduces to the boundary condition use by Carslaw and Jaeger for the
solution of Stephan's problem. For a medium at rest, and in the one

dimensional case, (I-1-28) reduces indeed to
ql = qZ = pEU . (1"1-29)

Another special case of interest is that where V-U is tangent

to the surface £ . Then (I-1-22) yields

[[Viti]] i = [[qini]] i (1-1-30)

where the ti's are the components of traction on I . The obvious
interpretation is that the jump in the normal heat flux balances the
work done by the tractions on £ =--in particular, frictional work.

I-1-e) The entropy equation

Let us assume that the continuum admits a caloric equation of

state of the form

u = u(s,yi) ’ (I-1-31)

where u 4is the specific internal energy, s the specific entropy,



o

and the yi's are a set of thermodynamic state variables. We assume
that the medium is homogeneous, so that the functional dependence
(I-1-31) 4is the same for all particles. Defining the thermodynamic

temperature by T = (%%)y and the thermodynamic tensions by

Yi = (%%—) , then for reversible processes we have the Gibbs relation
i/s

du = T ds'+ Y_dy, . (I-1-32)
1744

The Yi's are sometimes referred to as generalized forces, and dyi
as generalized displacements.
Of special interest to us will be the case of the elastic solid,

then

du =T ds + Uijdeij 4 (I-1-33)

where Uij is the elastic stress tensor, and where eij is the

infinitesimal strain tensor. For an inviscid fluid, this reduces to
du =T ds - p dv 5 (I-1-34)

where p is the pressure and v the specific volume.

The general theory can be found for example in Truesdell and
Toupin (1960), and a succinct exposition in Malvern (1969). In the
absence of viscosity or any nonlinear phenomena, elimination of u

between (I-1-33) and (I-1-25) yields



pT %% =ph -V +*q (I-1-35)

away from discontinuities.
For the case of a viscous fluid the dissipation function ¢

(defined in I-1-27) appears on the right-hand side and we have

ds _
dt

pT @+ ph~-V-q . (I-1-36)

This is the entropy equation.

However, the second law of thermodynamics yields the Clausius -

Duhem inequality

o]

. (I-1-37)

ds
dt =

=1l=2

© |-
<
]

This inequality means that the rate of increase of entropy is greater
than or equal to its rate of input in any arbitrary volume (see Malvern,
1969). Combining (I-1-36) and (I-1-37) we get

(I-1-38)

3-24q- V>0

for which it is sufficient to assume (Truesdell and Noll, 1965)

L=l
v
o

(I-1-39)
q- VT

IA
o
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In order to satisfy the second of these inequalities, we shall assume a

constitutive equation of the form

1y = = Xyy? i (I-1-40)

This is the law of heat conduction in an anisotropic medium (Carslaw
and Jaeger, 1959). We shall further assume that the conductivity tensor
Xij satisfies the Onsager reciprocal relation Xij = in (e.g.,
Malvern, 1969) and that the matrix Xij is positive (Landau and
Lifchitz, 1967).

If we go back to the caloric equation of state, it follows from
(I-1-31) and the definitions leading to (I-1-32) that the tempera-

ture is a function of the thermodynamic state T = T(s,yi) . If we

assume that this relation is invertible, then s = B(T,yi) . Thus
ds _ (3s) ar, (s ) Yi
dt oT vy dt oy dt

As an example, we treat the case of an elastic solid, then

de
ds _ (3s dT ds 13 _ N
dt (M)e at * (ae_,) it (1-1-41)
ij 13T

But

(.?_S_) =F_\L : (35 )=9_5
oT eij T Beij T KT ij

where Cv is the specific heat at constant volume, o the coefficient
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of thermal expansion, and KT the isothermal compressibility
coefficient (e.g. Landau and Lifchitz, 1967) Further

de. .

= = ; : T m
T Gij vi,i s, so that the combination of (I-1-35) , (I-1-40)

and (I-1-41) yields

5p 9L 4 Qz-vi

v dt KT

; = Ph (xijT,j),i y (I-1-42)

3

the equation of heat conduction in an elastic solid. This equation takes
various forms when derived for different materials (Stokesian fluids,
etc...) and when different state variables are chosen. We shall refer
the reader to the literature for the various cases usually encountered,
since the example (I-1-42) suffices for our present purposes.

Similarly we shall not discuss here the equations of thermo-
elasticity, since they require a choice of constitutive equations and

thus a specialization of the material.
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I-2 Green's theorem and the elastic operator

The general equation of motion in a continuum (equation I-1-11)

exhibits a nonlinear term of the form (pViVj)ij ~—the convective term.

For that reason, flow solutions to boundary value and initial value
problems cannot be expressed by superposition of a particular solution
to the inhomogeneous equation and the general solution of the homo-
geneous equation, a fortiori by a Green's function or a Green's tensor
solution. In the other hand, for the case of an elastic continuum
undergoing infinitesimal strains, equation (I-1-11) i1is usually
linearized. The (vector) wave equation so obtained can then be solved
by determining its Green's tensor for the problem at hand.

Discussion of Green's tensor and Green's tensor solution will be
the object of section I-3. However, we need before hand to derive the
generalized Green's theorem for the elastic operator.

Let us denote the cartesian coordinates of a particle in an elastic
medium with respect to an arbitrary (cartesian) reference frame by
X5 i=1,2,3, . The displacement of this particle away from its
reference--in general, equilibrium--position is represented by the
vector u(X,t) , of components ui(x,t) g w1 Pl

By linearization of the equation of motion (I-1-11) we obtain

3 %y
ETS pgt— =Tij,i+pfi . (I-2-1)

Since we want to solve (I-2-1) for the ui's , we must relate the

stress tensor T to the displacement through some constitutive

ij

equation. The infinitesimal strain tensor i1s given by
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e 2y tu ) (1-2-2)

gy T W ay
ij (1,3)
and the generalized Hooke's law then reads

T =

15 = %5 T Cijeeee T Cige(x,p) (1-2-3)

where Oi denotes the elastic stress tensor.

3

If the cartesian tensor -~the elastic tensor--satisfies the

Cijke
symmetry conditions

= = = I1-2-

Ciike T Cjake T Cigek T Gy (Rt
then (I-2-3) reduces to

%5 ™ Saspi™e i (I-2-5)
We can therefore rewrite (I-2-1) as

3 ( oy

ey — ] = + . =T

3t \P 3t (Cijkiuk,l),j Pty (1-2-6)

If we now consider the time t as a fourth coordinate, so that the

ordered couple (X,t) is in fact the order quadruplet (xl,xz,x3,x4) 5

we can extend the three dimensional Euclidean space in which
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displacements are measured into a four-dimensional Euclidean space. We
should note here that we are not defining a space-time in the
relativistic sense, that is, we do not assume a Lorentz metric. Time
is still considered in a Newtonian sense.

We shall make the convention that Latin indices (i,j,...) take
values 1,2,3 ,while Greek indices (0,B,...) take values 1,2,3,4 .

By keeping a Newtonian notion of time, we cannot allow any
arbitrary transformation of the coordinate system. In fact, time has
to be independent of the spatial coordinates and we must restrict the
orthogonal coordinate transformations to those of the form

x, =Ax, +B, . (I=2+7)

B*B
Here the space-like part Aij of the matrix AaB is orthogonal and
represents an orthogonal transformation of the space coordinates, but
Au4 = AAa = a 5&4 , Wwhere a 1is a scalar and 6&4 the Kronecker
delta. In other words, the only time transformations allowed here are

translations of the origin and changes of scale. Under these specific

restrictions we seek to rewrite (I-2-6) in the form

Cagys®y,s’,8 = Pfa ; (1=2+8)

It is sufficient for this purpose to define u, = f =0 , and the

array CaByG by
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~

CaBYG T Cijkl for a,8,7,6 = 1,2,3
Costn ™ Shami * ® Y4z r (I-2-9)
CaByG =0 otherwise
#
Thus CGBY5 possesses the symmetries
C = = = )
agys ~ Cgays T Cagsy T Cysos L)
similar to (I-2-4) . The arrays C&BYG > Uys fa , will transform as

cartesian tensors under transformations of the type (I-2-7) . But we
must emphasize again that these are not the most general orthogonal
coordinate transformations on the four-dimensional Euclidean space that

we have just constructed, and Ca will not be a cartesian tensor on

BYé
that space in general.
Except for the fact that (I-2-8) has to be linear, there are no

restrictions on the and they may be functions of the coordinates.

Caeyd

Equation (I-2-8) 1is a very compact form for the equations of motion,

we rewrite it as
ou
9 b 2 T e

This defines a vector valued, second order linear differential operator,
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which, when applied to a space-like vector u yields a space-like

vector pf . Defining

%Y = g_xé (cor.B"fﬁ -g%) , (1-2-12)
we have
JQZYUY = pf, ) (1-2-13)
or
Hu = pt : (1-2-14)

We shall henceforth call 527 the elastic operator. (Kupradze, 1963,
defines the "elastic operator" in an analogous fashion in the frequency
domain). Stakgold (1968) shows how the definlition of such operators
can be extended to include differentiations in a distributional sense.
In fact, one can define the operation of ﬂsgy on a space-like tensor.

If W is a space-like tensor (i.e., without any time-like component),

it satisfies

Mg .ooa="pg ... 2@ -8 -6,) (1-2-15)

Then i%’vv is a space-like tensor given by the contraction

S?uawa 8 \ ? where other conventions can be chosen as to which

subscript is to be contracted.
Now, given a time-dependent spatial volume V(t) bounded by a
surface S(t) , and a time interval [tl,tz] , we can define a four-

volume § in the space-time. Given two space-like vectors u(xa)



=50~

and v(xa) , the integral

_ 4 [*2 3
(u,v)g= fuv, dx=[ % [uv & (I-2-16)
’ t

Q 1 V(t)

defines an inner product of the two vectors. Further (u ,u.)Q is

positive and vanishes only with u= 0, and the triangular inequality
holds

(u+v,u+v)gf (u,u)9+(v,v)9 § (I-2-17)

so that this inner product may be used to define a norm on the space.

In addition, because the space is flat, the integral of a tensor

is a tensor, and we can define the quantity

(G, = fGikui iy, (1-2-18)
Q

where Gik is a space-like tensor, so that the quantity defined is a

space-like vector. If G, 1is a two-point tensor Gik(x,x') , We

have to specify the variable of integration on the right-hand side of
(I-2-18):

(Gsu)g. = fGik(xsx') ui(xl) d4x1
Q

f Gik(x,x') ui(x) d4x %
Q

(I-2-19)

(G,u)y
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The first definition yields a vector function of X , and the second
one a vector function of x' . If G(X,x') is symmetric in X and
x' , then clearly both definitions are completely equivalent.

To define the formal adjoint ,ﬁ?ﬂ* of the operator ,527 , we

proceed as in the scalar case (e.g., Stakgold, 1968), and compute

(57%,vﬁ9 by an integration by parts. We have

(A V) = fwm(’cmm(@u\(,e;)’B e . (1I-2-20)
Q

To integrate by parts, we simply note that,

VaCagys¥y, 87,8 = (olapys®y,s’,8 = Va,s%sys%y, Lpea

But becayse of the symmetry properties (I-2-10)

B va'BCaBYﬁuY,G T va,BcYﬁxsuy,G (1-2-22)

However, the indices 0...8 are dummy indices and can be renamed, thus

- = - I-2-23
Va,8%6a8%,6 =~ Y, apys"Y, 6 ( )

But by simple comparison with (I-2-21)

= ua,BCGBYﬁvY,G = ua(CaBYGVY.a).B - (uaCGBYGVY,G),B (1I-2-24)
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Combining equations (I-2-21) through (I-2-24) we finally get

Va(caBYGuy,G),B - ua(casyévy,é),s * (vacasyéuy,s - uacasydvy,G),B

(I-2-25)
and, by replacing (I-2-25) in (I-2-20)
5 e . _ . 4
g“’v)g f [u Cogys'y, 80,8 ¥ (VaCagysy, s uaCaBYGVYSG),BJ e
Q
(I-2-26)

t 3
Therefore we can define the formal adjoint :24 by rewriting this as

(Fuv)g = @, FV)g + ,[JB,B a“x : (1-2-27)
Q

J5 is the bilinear concomitant of u and v , and (I-2-27) is the
sought generalization of Green's theorem. From (I-2-26) it is evident
that JZQ*E.Egy ! we say that Jgfy is formally self adjoint.

It is important at this point to note that JB has a time~like
component. We recall that in (I-2-7) we had to restrict the allowable
coordinate transformations on our space-time. In fact, the array JB
would not in general transform as the components of a vector under the

most general orthogonal mapping in the four-dimensional space-time.

For this reason, we shall treat time as a special coordinate, and write
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4 _ 4 4
fJB,de— fJi,idx+ th’tdx (1-2-28)
Q

Q

Gauss' theorem is readily applicable to the first integral on the right-

hand side of this equation, we have

E
5 [*2 f 3
f.]i’idx-—/‘ I &x
e |

Q V(t)

)
=f f Jm, da i (1-2-29)
|

S(t)+I(t)

Here we have distinguished between S(t) , the external boundary of
V(t) , and Z(t) , representing all internal boundaries. If I(t)
presents a surface of discontinuity of the fields W and Vv , or of
the operator 129 , then the integration will have to be taken on both
sides of this discontinuity. In such a case jumps can be defined in

the same manner as in Appendix 1 or in section I-1l. The array n,

represent the components of the (space-like) outer unit normal to the
various boundaries. The geometry is described on figure I-2-1.

n, and write

13

We can expand the product J

Iimy = = VyCoaine, oy ¥ %4Cigua’k, 2%y

L) @ AT=2-00

" o=y 11 ’
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Xal

Figure I-2-1. Geometry of the four-volume Q . Xy and x, are

spatial coordinates, X, is the time coordinate. The geometry is

shown (in two dimensions) at times t and t

1 2
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(u) (v)

where ti 5 ti are the tractions on the boundaries associated with
the displacement fields U and V respectively. With reference to

figure (I-2-1) we may thus write

t
fJ. ; dax =f 2 dt f(u.t.(v) -V tgu)) da
153 - x L 1
t S

Q 1 (t)
ts (v) (w)
+f dt [uitiv = vitiu da  .(I-2-31)
tl Z(t)

The last term in (I-2-28) can be evaluated separately. Using the

definition (I-2-9) for the coefficients CGBY5 we have
t du ov, 1
. I 2 9 i 1] 3 -
th,tdx_/ cE f ot [p"i ot Y% at] ok  (rd-92)
2 t V(t)

The volume integral may now be evaluated by using the generalized
transport theorem proved in Appendix 1 (equation A-1-14), conveniently

recast in the form

. ]d3x=j—tf [ Jéx- f[ il * 4 da
V(t) V(t) S(e)+I(t)

(I-2-33)

Here the bracket is the same as the one appearing in the integrand on

the right-hand side of (I-2-32) , and can be thought of as a function
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of the flow since it is a function of both position and time which can
be attached to each particle in the medium. U is the velocity of the
boundary over which the surface integral is taken.

Combining (I-2-27) , (I-2-31) , (I-2-32) , and (I-2-33) ,

we have the generalization of Green's theorem in the form

(,gu,v)Q = (v, _%”’*u)ﬂ +/ f [[ V) _ vyt :(Lu) da
1 S(t)+IZ(t)
t du 2u
"fzdf— / [[p"i'sri‘p“ia—f]]U'“a
ty S(t)+I(t) p

t du ov
24 f s W | I
+/ dt (Wi ot~ PY1 3¢ )d * RE
-

(I-2-34)

Here we have extended the definition of a jump to the case of external
boundaries, where the value of a jump is simply the limiting value of
the quantity under consideration when the boundary is approached from
the inner side.

Equation (I-2-34) can be compacted by noting that the linearized

form of the jump condition (I-1-13) is
du
[[p Ly, + t(“)]] =0 : (1-2-35)
ot j 5

Making use of this relation in (I-2-34) yields
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(Luwyg = @, L™

t2 Bvi )
B dt p FT anj + ti ) [[ui]]
t

1 S(e)+Z(t)
du
. - ° (u)
(D 5t anj + g )[vi]]] da
t ou ov
2d f i 21 .3
+/ 7y (pvi 3t pu; 3% )d x dt (I-2-36)

t

The last integral in this equation has to be understood as a Stieltjes

t
integral, that is, it is of the form [ 2 dF , where
t

1

Bui Bvi 3
F=F() = pvié?——pui—a"t—)dx

V(t)

If the functional F is continuous, the last term reduces to
F(t,) - () -

We shall see in the next section that the terms involving surface
integrals on the right-hand side of (I-2-34) are useful in solving
boundary wvalue problems. Similarly the last term, involving a volume
integral is particularly useful in solutions to initial wvalue problems.

In elastostatics, time is absent from equation (I-2-34) and
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this equation reduces to Betti's formula (e.g., Kupradze, 1968, or Ben-—
Menahem and Singh, 1968).

In concluding this section, we note that the time coordinate could
be handled in the same way as spatial coordinates up to equation
(I-2-27) . The reasons why we subsequently gave it as separate treat-
ment stem mainly from the Newtonian notion of time that we kept
throughout. The analysis presented here can undoubtedly be extended
to other geometries (e.g., possibly to relativistic problems), for
linearized problems. There are, however, theoretical subtleties and
difficulties: for instance, how should one define the time-like
components of the strain tensor? These problems lie outside the scope
of the present work; attempts at their solutions will be undertaken in

the future.
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I-3 Green's tensor solutions to the linearized equation of motion in

an elastic medium

The linearized equation of motion in an elastic medium, which we

wrote in the last section as

LS W (1-3-1)

is to be solved for u(xa) , if the operator Jgﬂ and the body force
density f are known. In addition to satisfying equation (I-3-1) ,
the solution u will, in general, be required to satisfy boundary
conditions and initial conditions. We shall denote symbolically these

conditions by
Hu=-b . (1-3-2)

This equation is to be satisfied on the boundary 92 of the domain { .
J@? is an operator, b 1is a given vector function on 3R . We

shall represent symbolically homogeneous conditions by
a
Hu=0 . (1~3-2)

We shall always assume that (I-3-2) and (I-3-3) represent proper
conditions and that no incompatibility arises from them.
Because of the linearity of the problem, the general solution to

equation (I-3-1) can be written as the sum of any particular solution
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and of the general solution to the homogeneous equation

Y u =0 . (I-3-4)

We shall show in this section that the Green's tensor solution achieves
precisely that goal. In a first step we shall define Green's tensor
and show the system it satisfies; then by recasting (I-3-1) in
integral form we shall derive the Green's tensor solution formally, and
last we shall discuss it. For simplicity we assume the coefficients

C to be independent of time.
aByd

i) Green's tensors

We suppose that equation (I-3-1) 1is to be solved within a four-
dimensional volume . Given an arbitrary point X, within the
domain { , we say that the space-like tensor

gaB(X;xo) = gaB(x;xo)(l ~ B Y1 - 684) .

is a fundamental solution of the operator :20 » with pole at X,

if it is any solution of the equation
/ = 1-3-5
LBy = Bapg (1-3-5)

where the space-like tensor AaB is given by
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Ko = i G (1 < 8 00 = 8,,) 8(x=x) : (1-3-6)

Here 6(x-x°) is the (four-dimensional) Dirac delta distribution.
Clearly gaB will present a singularity at x==x0 , and therefore
will have to satisfy (I-3-5) in a distributional sense, (see e.g.,
Stakgold, 1968, for a more complete discussion of distributional
solutions). The normalization factor 4T was introduced because it
is convenient in the scalar case of potential theory (see e.g., Morse
and Feshbach, 1953, chapter 7; see also Courant and Hilbert, 1966, for
a discussion of the scalar case).

But for boundary conditions requirements, guBCx;xo) is the o
component of displacement in the medium at X caused by an impulsive
force in the B direction at X, - For this reason we shall call X,
the source point and X the receiver (or observer's) point.

In a similar fashion one defines fundamental solutions of the

adjoint operator ‘527* by
P, =h : (1-3-7)
ay Y8 aB

In order to generalize the notion of adjointness, we have to discuss
the effects of initial and boundary conditions. Morse and Feshbach
(chapter 7) give a general discussion of the problem; we shall restrict

ourselves to the essential points.
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Consider the system

]
©
Hh
-

ay y a

{_Sﬂu
I-3-8
- PO Sl

with homogeneous boundary conditions. (This system is to be distin-
guished from equation (I-3-1) .) Following Stakgold (1968), we call
D the set of all twice differentiable functions wu that satisfy
b p
the conditions Zu =0 . Let D be the set of all twice

differentiable functions Vv such that

%V; u, (Lu,v)=(u, L) . (1-3-9)

Then from the results of section I-2, the fields VvV have to satisfy

%k
a set of conditions .f%? ve0 termed the adjoint conditions. The

adjoint system is then

g;YVY=pf 5

F v

(1-3-10)

L}
o

*
We saw earlier that if JQ? = £2¢ » the operator :Zp is formally
* *
self-adjoint. If, furthermore, D0 = D and 52? =% >
then the system (I-3-8) 1is said to be self-adjoint.

We can now define the Green's tensor GaB(x; xo) for the

completely inhomogeneous problem
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Zay = Vi
PBu -b gy

e

it is the fundamental solution of ng satisfying the corresponding

homogeneous conditions, that is

G, =A
ay YB af

L%
{ Fa -, (1-3-12)

Similarly the adjoint Green's tensor is defined by

(I-3-13)

The most fundamental property of the Green's temsor is the reciprocity
relation which we now prove.

From the definitions (I-3-12) and (I-3-13) we have

(Fe6. G*)g e T G )y =0 (I-3-14)

where the inner product is taken with respect to x (cf. section I-2)

But 1f we write

/7 o = .
S Cop (X5 X)) = 80 (X5 X)) :
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% *
gay%s("; X)) = A(x3%) .

and use the definition of AuB given by (I-3-6) , we can rewrite

(I-3-14) as
G* . — -
OtB( X5 Xl) = GaB( xl, xo) .

Since Xl is arbitrary, we have

*
GaB(X; xo) — GOLB(XO;X) ) (I-3-15)

This is the reciprocity relation. If the system (I-3-12) is self-

adjoint, we have

Gas("; xo) = Gas( xo;x) (I-3-16)

and, in that case, Green's tensor is symmetric in X and _xo
In the general case, physical problems are not self-adjoint, and
symmetry relation (I-3-16) 1is not satisfied. One has then to use the
general reciprocity relation (I-3-15) . However, for problems in the
mechanics of continuous media, it is customary to make an additional
physical assumption, namely that the causality principle has to be

satisfied. The effect of this assumption 1s to reduce the class of

acceptable solutions to those for which time flows in a particular



o

direction. We shall now see how it affects the Green's tensor: The
Green's tensor is usually required to be "causal" (e.g., Morse and
Feshbach, 1953). For macroscopic events it is reasonable to assume that
the flow of time is unidirectional, so that if an impulse source occurs
at t0 no effect should be felt anywhere at an earlier time ¢t < t :

o}

(r,e) ,

Here again time plays a special role, and we write X
where Ir 1is the spacelike part of the vector position X . Then for

a causal Green's tensor

{ ¥ 88 ro,to) =0 for t < t0 = (I-3-17)

G

af
We observe immediately that the causal Green's tensor does not satisfy
(I-3-16) since one side of the equation or the other vanishes identi-

cally if t # t0 . However, since we assumed the coefficients CGBY5

to be independent of time, equation (I-3-1) does not imply any
directionality of time. Therefore, by reversing the flow of time while
exchanging source and receiver, we can obtain a reciprocity relation of

the form

G‘IB( r,t; rosto) = GO.’.B( 1‘0’ = tO; r, - t) " (I-3-18)

By comparison of (I-3-18) and (I-3-15) , one sees therefore that
the causal Green's tensor satisfies

*
GﬂB( retsY to) =G (r, —t;r, —to) ) (I-3-19)

of o
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which is the result of Morse and Feshbach (1953).

One sees at this point that the causality requirement has rather
profound consequences on the nature of the Green's tensor (and thus on
the solution). Its symmetry in the time coordinate is fundamentally
different from its symmetry in the space coordinates. This means that
when a condition is imposed upon a solution along a time-like part of
02 (such as an initial value condition), then since (I-3-16) cannot
be satisfied, the problem is not self-adjoint. Stakgold (1968) points
out that initial value problems are never self-adjoint.

The general reciprocity relation (I-3-15) is very useful for the
solution of source problems. So far we have always assumed that the
operator .5?7 was applied at the receiver point X . All operations
were carried with respect to the coordinates xa . However, the
intuitive notion of a Green's function solution, as expressed in the
introduction to this chapter, calls for the superposition of the effects
of all sources. One thus expects to integrate these effects over the
source coordinates. For this reason we wish to find the equations

*
satisfied by Ga Qs J&Q and GuB(Jc; X%) as a function of the source

B

coordinates. If we define

: ou

3 X

FCu =—|c (1-3-20)
oy Y 5x9 aBYS sz

as the operation of iiﬂ over u at 3%3 , then from (I-3-15) we

see that
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*0 _
5, aYGYB AaB

Fc=0

(I-3-21)

and

o & _
quGaB - AaB

F°G =0

(I-3-22)

are the systems satisfied, where all operations are carried on the
source coordinates,
The system (I-3-21) is that needed for a formal derivation of the

Green's tensor solution, which we present mnext.

ii) Green's tensor solution

The system (I-3-11) must be satisfied everywhere in & 3 in

particular, at any point xo we have

P aby ™ PELARD in @,
(1-3-23)

% °u

b (xo) on 23f.

Further the Green's tensor GYB()(;)CD) satisfies (I-3-21) as shown
above. We wish to apply the generalized Green's theorem (I-2-36) to
the solution u ('x.o) and the fundamental solution GYB(x; Xo)

For this purpose we need a few preliminary remarks.
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" 4 " th
First, just as ka()t;fx%) is the k component of displacement
generated at X by an impulsive force acting at )(0 in the mth

direction, similarly the space-like tensor

Cim 3 Xo) = € 50Cim, 0

(I-3-24)
will be the (i,j) component of stress associated with this displace-
ment.

Next, if we assume that the Green's tensor is causal--that is,

¥t - < - i i
GuB( s B8 ro,to) 0 for t £ then the upper limit on the time

integrals appearing in (I-2-36) can be changed to t+ > £ « &An
upper bound t+ is used instead of t to insure that the integration
be performed over the closed interval [tl,t] s In particular allowing
t0 =t . (Clearly all operations will be carried with respect to the
source coordinates, the receiver coordinates acting as parameters.)
For simplicity we shall assume that t1 =0

Third, by reference to the systems (I-3-21) and (I-3-23) , and

by the definition of the tensor Aor.B given in (I-3-6) we have

*
f u, (gorc; GY.B) d4x(°)

{0 if X ¢Q
Q

4'rruB(X) it XCh

and

Q2 Q
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Last, because the tensor GaB and the vectors L and fa are

all purely space-like, we may now restrict the range of the indices to
(1,2,3) and thus use Latin subscripts.

Then, applying Green's theorem in the form (I-2-36) , we obtain in
component form

_ . 4 (o)
lmuﬂ(‘X) = jS; pfi(xo) Gim( X 3 XO) 4 x

B

£ aui
o S(e )+E(E) -

(1I-3-26)

Here according to the conventions of section I-2, S(to) represents the
external boundary of V(to) and Z(to) an internal surface of discon-
tinuity oriented by an arbitrary choice of its unit normal direction.
The jump notation [F] 5 represents the difference between the
limiting values of F when X is approached from the positive and
negative side successively. On an external boundary the jump will be
taken as the value of F when S is approached from within V . We
must emphasize again that all operations appearing in the various

integrands of (I-3-26) , including the computation of the stress
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tensor, are performed with respect to the source coordinates.

For convenience let us rewrite (I-3-26) as

4mu (X) = 4Tru(P) + lmu(b) + A'fru(i) : (I-3-27)
m m m m

We shall refer to (I-3-26) as the formal Green's tensor solution to
the elastic problem. At this point we have not made explicit use of
the boundary conditions in systems (I-3-21) and (I-3-23) , and
(I-3-26) is an integral equation in u 1if G 1is given as a
fundamental solutiom.

To understand the nature and mechanics of Green's tensor solutions,
we shall now analyze the formal equation (I-3-26) din greater detail.
Two important questions are raised: 1) if u satisfies (I-3-26) ,
does it satisfy the linearized equation of motion (I-3-1) ? and
2) how are the boundary conditions satisfied by use of this formalism?

To answer these questions, let us operate with Jgﬂ at the

receiver point X on both sides of (I-3-27) . Because in (I-3-26)

X is treated as a parameter, the operation of the elastic operator
can be carried directly on the integrands. The only function depending

on X 1is the Green's tensor and we know that

ay Cys = Bag (X3 %) -

7
Thus we can operate with ' successively on the three terms that

make up the right-hand side of (I-3-27). Operating on the first term,
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one gets immediately

Fu®) - of . (1-3-28)

(p)

This shows that u is a particular solution of the inhomogeneous

equation. We therefore expect the additional terms to satisfy the
homogeneous equation. From equation (I-3-26) it is clear that uép)
is a weighted superposition of fundamental solutions, or impulse
responses, where the weighting function is the body force distribution.
This observation has led in various cases to the terminology of
"influence function" to denote the Green's function, in particular in
connection with electrostatlc theory (e.g., Morse and Feshbach, 1953).
We may note at this point that if the boundary conditions imposed
upon the solution in system (I-3-23) are homogeneous, then since the
Green's tensor satisfies the adjoint system, by definition u(b)

m

un(li) vanish identically and um()() = utﬁp)(x) . Their presence is

and

thus intimately related to the presence of inhomogeneous conditions.

Furthermore, when the body force density f vanishes identically,

only u(b) and u(i)

e s are present, and must therefore satisfy the

homogeneous equation.

We now turn our attention to the second term in (I-3-27) ,

(b)

namely u From equation (I-3-26) we see that the application

.
of hgf‘ at the point X wupon uéb)

will yield a non—-zero answer
only if X belongs to a boundary (external or internal) of the volume

¢
V(to) . Thus uib) satisfies the homogeneous equation mfyu(b) =0

at every point within the valume U(to) . Since the integration is
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performed over all the boundaries of U(to) , the boundary conditions

imposed on U and on the Green's tensor can be used explicitly to

compute u (®)

- For brevity we shall confine our discussion to the

two fundamental kinds of boundary conditions usually encountered in
elastic problems. We shall use the terminology of Kupradze (1963).
For boundary value problems of the first kind, the displacement

jump [[ui( T St ):l] is specified. The Green's tensor
e S(e )+E(t,)

then satisfies the adjoint homogeneous condition

[[G (x;x)]' = s
im (o}

S(to)+E(to)
and we have

+
t aG
(b) B im (o)
tft‘lTuﬂ1 (x) = —/ dt f (Gijm +p 5t Uj)nj ﬂui]da
o

L (t0)+Z (to)

(1I-3-29)

b
where the integrand is known, so that we can compute u( )

- (X)

Similarly for boundary value problems of the second kind, the quantity
du, ‘
g.. Fp st ] n, is to be specified on the boundary. Then the
ij Bto i/ 3 :

Green's tensor satisfies the adjoint homogeneous condition

9G ;
G,., +p im U.)n., =0 on the boundary and we have in that case
ijm Bto 153 -
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+
Ju
w _ [ f i (o)
41rum —[ dto (oij + p Bto Uj) nj H:Gim]] da
o)

S(to)+Z(t0)
(I-3-30)

Here again the integrand is known.

Thus we see that by using the boundary conditions imposed upon the
Green's tensor we have deleted all unknown quantities from the inte-
grand in the second term of (I-3-26) . (Mixed boundary conditions
can be handled in an identical fashion.) However, this does not
furnish a complete answer to the question raised above. Does the field
uéb)(X) take the correct boundary value as the point X approaches
the boundary? The answer to this question is difficult to obtain.
Morse and Feshbach (1953) present a rather heuristic discussion for
the scalar case. Kupradze (1963), working in the frequency domain,
proves that it is true for the elastic equation in the case of
stationary boundaries and of an homogeneous isotropic matrix with
homogeneous isotropic inclusions. He uses the theory of multidimen-
sional singular integral equations, and obtains the answer as a
consequence of generalized Tauberian theorems. For our present
purposes we shall assume the answer to be true, withoﬁt proof. A
complete proof for the case of growing boundaries remains an out-
standing problem of the theory.

In a last step we discuss the last term uéi) . It was pointed

out in section I-2 that this term is to be understood in the sense of

a Stieltjes integral, that is
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+
t
(1) _
4t —f df_(t)) ’
o
where
G du
_ im _ _ i} .3 (o)
Fm(to) = f (pui ot pGim 5t )d X s

V(to) o o

so that we need only take into account such times t, where F (to)
presents a discontinuous behavior. For the sake of simplicity we shall

+
assume that Fm is continuous on [o,t ], so that

Aﬂuéi)(JC) = f:m(t+) - Fm(O) ; (I-3-31)

However, we assumed the Green's tensor to be causal so that it vanishes

+
at t =t along with its derivative. Thus

Ju oG
(1) _ / i_ im 3 (o) )
41Tum (X) = ,:pGim _Bto puy Bto] d™x " (I-3-32)

V(o) to=0

(1)

It is now apparent that u depends explicitly on the initial

conditions of the problem. Furthermore, if we apply the operator S‘,ﬂ
at X throughout, it caﬁ be applied directly on the integrand on the
rigﬁt~hand side, and operates only upon the Green's tensor. The delta

function &(t - to) and its derivative . = §(t - to) are thus

ot
()
(1)

generated, and u is a solution of the homogeneous equation
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:gﬁh(i) = () except at t = tO = 0 . Here again, when the initial

conditions are specified, the integrand of (I-3-32) is known.
Thus, whereas the formal Green's function solution (I-3-26) is

in the form of an integral equation in u (multidimensional, and
singular, as pointed out by Kupradze, 1963), when boundary and initial
conditions are specified, all unknown terms disappear from the various
integrands. Then the solution um(x) is obtained by simple evaluation
of the integrals; this combination of the formal Green's temnsor
solution with the limiting conditions is called the Green's tensor

solution of the problem.

iii) Discussion

Having just derived the formal Green's tensor solution, we are
now faced with the next logical step which is to construct the Green's
tensor itself. Unfortunately, in most cases we shall not be able in
general to take that step!

The existence and the dyadic nature of the Green's tensor are
discussed, for example, by Morse and Feshbach (1953, chapters 7 and 11).
But because there are two wave velocities in an homogeneous isotropic
elastic medium--the compressional and shear wave velocities--the
determination of the Green's tensor for particular problems is often
extremely arduous, or impossible. Morse and Feshbach (chapter 11)
present a general formaliém by which the Green's tensor can theoreti-
cally be obtained. In practice, even if it can be found, its use in
computing the solution is often cumbersome and will necessitate

numerical integration techniques.
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For inhomogeneous media, the questions of existence and uniqueness
of the solution to elastic problems have been investigated by Kupradze
(1963). Working in the frequency domain, this author shows that the
elastic boundary value problem has a unique solution in a composite
medium (made up of an homogeneous isotropic matrix containing homo-
geneous isotropic inclusions). This is done for a variety of boundary
conditions at the boundary between matrix and inhomogeneities. By use
of the Green's tensor formulation he shows the complete equivalence of
the elastic boundary value problem with the solution of a multidimen-
sional singular integral equation analogous to (I-3-26) . Finally,
he describes how to obtain the solution by a numerical scheme. Kupradze
restriqts himself to monochromatic stationary sources. Thus for
separable sources (Archambeau, 1968), the trémsient problem can be
solved by a simple convolution in the time domain, or a multiplication
in the frequency domain. For nonseparable sources, such as the
sources presented in Chapter IV, one has to expand the radiation field
in multipolar form and use a different excitation function for each
multipole, since the multipole coefficients are independent functioms
of frequency (Archambeau, 1968).

For the case of anisotropic media the problem becomes even more
complex. There are three real wave velocitlies in aeolotropic media
(e.g., Love, 1927). Further, these wave velocities are functions of
the direction of propagation. Lifchitz and Rosentsveig (1947) derive
the Green's tensor for the equations of static equilibrium in an
aeolotropic medium and point out that even in this particular case, the

result is very complicated.
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A large number of questions, on the other hand, can be answered
without specific knowledge of the Green's tensor. In Chapter II, we
shall show how the formalism leading to the formal Green's tensor
solution permits us to investigate general, but fundamental, properties
of the radiation field generated by a seismic source. However, a few
additional properties of the Green's tensor can be discussed now.
Because it is the only practical case of interest, we shall assume for
the remainder of this section that the material within U(to) is

homogeneous. In that case the Green's tensor satisfies
4

5 2 )
cuBYG BxB 9% 5 Gyu a Ahu

. (I-3-33)
Two observations can be made about (I-3-33). First, we note that for
the infinite domain the equation is invariant under translation and
the Green's tensor is function only of ( X - .XE) . We can thus
choose the origin of coordinates at the source point X, - The
second observation is then that the right-hand side is an homogeneous
function of the receiver's coordinates, of degree -4, since

§(ax) = adl‘cS(x) . Thus since the left-hand side 18 a linear
combination of second derivatives of Gau , We can state that: for
the infinite homogeneous domain, the Green's tensor is a homogeneous
(o)

#
function of degree -2 of the relative coordinates X, =X, - X,

Now the Green's tensor for the infinite domain and that for any
particular problem both are fundamental solutions of the elastic

operator with pole at )gj. Therefore, they differ only by a regular
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solution of the homogeneous equation. This means in particular that
for a homogeneous medium, any Green's tensor behaves asymptotically as

the Green's tensor for the infinite domain as | X )(ol =+ 0

One especially important case is that where the medium is further
simplified and is assumed to be homogeneous and isotropic. We shall
denote the Green's tensor for the infinite domain in that case by
Fas(jc; XB) and because of its particular importance, we shall often
refer to it as the fundamental solution for the unlimited isotropic
homogeneous medium. In view of the foregoing discussion, it is worth-
while to enumerate several particular properties of FaB ¢ An
particular:

1) ' is a homogeneous function of degree -2 of the relative

.

. * (o)
coordinates x_ =x - x
o 6] o

2) Because of the isotropy, T dépends, in fact, on

* *
r = | r - ro[ and on t =t - t0 ;s furthermore,

FGB = PBa (e.g., Maruyama, 1963).

3) Any Green's tensor in a homogeneous isotropic medium may
be written

GuB = PuB + gaB 5 (I-3-34)

where gaB is a regular solution of the homogeneous

equation (e.g., Morse and Feshbach, chapter II, 1953).

4) Any Green's tensor in a homogeneous isotropic medium will
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behave asymptotically as PGB in the vicinity of the
pole )(O (e.g., Kupradze, 1963).
5) When expressed in the frequency domain, it reduced in

the limit of zero frequency to the classical Somigliana

tensor of elastostatics (e.g., Ben Menahem and Singh,

1968).
For completeness, let us give ka explicitly (e.g., Maruyama, 1963).
*
* % r /v 5
T (T >t ) =-l-t(l—,,) 18t +1)dr
P
r /,mk *
s ol )
P
1 % = |1 * * 1 % »
+-—r’mr,k —zé(t +V—)__§6(t +V—)]
r A P v 8
P s
11 * ’
)
+ émk *["i $ (t + T) (I-3-35)
r VS s

where VP and VS are the P-wave and S-wave velocities respectively.

The most important of the properties enumerated above is the third
one. Indeed, PaB represents the impulse response of the unlimited
medium, and in any limited domain, for |x - xo' small enough, the
response is intuitively expected to be the same (cf. property 4).
However, PaB will not satisfy the proper boundary conditions to
qualify as a Green's tensor. The perturbation 808 is introduced

precisely so that Ga should satisfy the required boundary conditioms.

B

Since raB is known, the perturbation can be obtained for geometries
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with sufficient symmetry as an eigenfunction expansion. If the
perturbation can be shown to be small, it can also be obtained by a
perturbation series (see any textbook on scattering theory for that
purpose).

In seismic source theory we shall be concerned with an infinite
medium containing an internal boundary of small dimensions, such as a

small cavity. If J{o is not on this boundary, then represents

gaB

the field superposed onto ruB to account for the presence of the

boundary; it represents the scattered field.

Methods for constructing the Green's tensor Gu largely depend

B
on the particular problem at hand. We shall enumerate a few:

1) Solution of an integral equation

2) Method of images

3) Eigenfunction expansion

4) Transform methods

5) Mapping in the complex plane

6) Perturbation methods
A description of these various techniques would obviously take us too
far from the goals of this discussion. We shall, therefore, refer the
reader to the literature, where abundant examples can be found for
scalar cases in particular (e.g., Stakgold, 1968; Morse and Feshbach,
1953; Courant and Hilbert, 1937; Maruyama, 1963; Haskell, 1964). A

large number of solutions to the elastic problem in a half-space have

also been compiled by Johnson (1973).
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I-4 Green's function solution to the scalar wave equation — Potentials .

We .shall consider in this section the particular case of a

homogeneous isotropic elastic medium. In this case, the tensor Cijkk

depends only on the Lamé constants A and ¢ . The equation of motion
(I-2-11) becomes then

924,
== A+ u

p fi (I-4-1)

+
3 et U o TP

We now define four scalar potentials Xa s 0 =1,...,4 1in the usual

fashion

(I-4-2)

so that Xy o i=1,2,3 are the cartesian components of the rotation
vector potential, and X4 is the dilatation. Then, by taking
successively the curl and the divergence of (I-4-1), we find that these

potentials satisfy the scalar wave equations

32.
cé at?

where ey = VS , 1=1,2,3 , and c4 = VP y =— VB and Vp are the

S~ and P-wave velocities. The forcing term is given by
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i=1,2,3 , and q4=%f2£

—
UG =2 S fp. g ’ 3
p

Z-VZ
S

The Green's function solution to the scalar wave equation is then
obtained by exactly the same procedure as was used in sections I-2
and I-3. The generalized Green's theorem for the wave operator

.
at2

a= l; - V2 can be written in a form parallel to (I-2-36)
c

@é,), = 6,09,

t
+ %,/ 24 (w 22y %‘g) d*x dt (I-4-4)
t V(t)

Further, the Green's function Ga( ;s rb’to) satisfies the equation

392G
L & _ ylg wiindlE~ 1) 8t~ t) ) (I-4-5)
Cy 9t2 a 0 0

By combination of (I-4-4) and (I-4-5) and noting that the wave
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operator is formally self-adjoint, we obtain the formal Green's

function solution in a form analogous to (I-3-26)

t
- . 3 (o)
4m Xa(r’t) -/ dto f qu( ro:to) Ga(r PR = rosto) d x
o

V(to)
+
t 9x
l i (o]
+/ dto f G(l (VOXO, + z(zx' ——ato U)
o S(to)+Z(to)
oG
_ 1 o] o B (o)
X (VOGQ +Ez‘——at U) nd
a ‘o
$
t oG
1 d_ _ a 3, (0)
+E’/ at f (Xaat Gaat)dx o
o o o
o V(to)

(I-4-6)

In the case of stationary boundaries this result reduces to the usual
form of the formal Green's function solution (e.g., Morse and Feshbach,
1953). The discussion of the effects of boundary values and initial
values is completely parallel to the discussion presented in section
I-3 and will not be repeated here.

Just as in the case of the vector wave equation, the last term in
(I-4-6) dis to be understood in the sense of a Stieltjes integral.

Its evaluation in specific cases will be presented in Chapter I[I.
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Conclusions

We have shown in this chapter how the generalized transport
theorem leads to both the usual comservation equations in continuum
mechanics, and to the various "jump" conditions to be satisfied at
flow discontinuities. The same theorem was applied again to derive
the final form of Green's theorem in linear elasticity; thus it was
used specifically in the formulation of the formal Green's tensor
solution in elastodynamics. We now have a powerful tool to solve a
wide variety of elastodynamic problems. The specific solution will be
obtained if the Green's tensor can be found. When this is not the
case, the nature and the properties of the solution may still be
investigated in many instances, by use of this formalism. Specific
applications will be found in the subsequent chapters.

However, we must point out a limitation of the present theory:
the velocity U of the boundary I , appearing in (I-3-26) and
(I-4-6) has been supposed known, and is treated as a parameter of
the problem (instead of an unknown). As was pointed out in section
I-1 when we discussed the conservation of energy, the problem of
solving for U is fundamentally an energy problem, and can be
described as the generalized problem of Stephan. Caslaw and Jaeger
(1959) point out that it is a nonlinear problem even in the simplest
case of one-dimensional heat conduction. This means that it does not
afford a Green's function solution. In fact, only the linearized heat
coﬁduction equation, in a medium with statiomary boundaries, can be
solved using a Green's function. This is done in various textbooks

(e.g., Stakgold, 1968).
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We shall therefore be obliged either to assume the evolution of
the boundaries to be known, or to determine this evolution on the
basis of another criterion, independent of the Green's function
formalism. A more complete discussion of this question will be given

in Chapter TIII.
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Chapter II

FATLURE AS AN INITIAL AND BOUNDARY VALUE PROBLEM

Introduction

The purpose of this chapter is to link some of the physical
characteristics of a failure process in a prestressed medium with
appropriate mathematical formulations of the problem. In particular,
we shall emphasize the fundamental similarities as well as differences
between initial value and boundary value problems. An apparently
rather trivial result is that,.for a problem with a unique solutionm,
two different mathematical formulations are totally equivalent.
However, for reasons of simplicity or convenience, one is often led to
make some approximations in computing the solutions. Obviously, it is
desirable to make those approximations which afford some physical
justification, rather than arbitrary ones. Thus, by choosing the
adequate mathematical formulation and by making well founded approxima-
tions, it is possible to emphasize a particular physical characteristic
of the phenomenon at the expense of amother one. For example, we shall
be able to exhibit in a simple fashion the effect of a bounded pre-
stressed zone, but in order to achieve simplicity we shall neglect the
scattered fields generated by the rupture zone itself: we shall make
the source "transparent."

The spontaneous (or induced) failure of an elastic material can
be basically modelled by the creation of a new (internal) boundary

within the medium. Appropriate boundary conditions are then required
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along this boundary. For this reason one is easily led to treat the
elastic radiation problem as a boundary value problem. The simplest
kinematical representation of the radiation field is then obtained by
specifying the displacement time function on the rupture boundary.
This method leads to the dislocation representation widely used in the
seismological literature (e.g., Haskell, 1964; Aki, 1967; Savage, 1966).
A dynamical approach consists of specifying traction conditions on the
rupture boundary. For example, if the shear tractions are to vanish,
one can apply on the boundary a set of tractions canceiling exactly
those generated by the prestress (e.g., Burridge and Alterman, 1972).
This method is particularly appropriate to the modelling of an under-
ground explosion by creation of a pressurized cavity (e.g., Haskell,
1967).

But a third approach--also a dynamical one--18 to recognize that
the introduction of the rupture changes the equilibrium configuration
of the medium so that, upon creation of the rupture zone, the medium
finds itself away from equilibrium. This approach clearly leads to an
initial value formulation of the radiation problem, where the medium
evolves dynamically towards its new equilibrium configuration according
to the elastic equations of motion (e.g., Archambeau, 1964; Randall,
1966) . |

We shall see in this chapter how and under what conditions the
three approaches described are equivalent. We shall also point out
their respective merits and drawbacks. For these purposes the Green's
tensor formalism developed in the preceeding chapter will prove

particularly convenient.
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Qur approach will be to consider first the elementary mass-—
spring system in order to clarify the ideas proposed above. The next
step will be to generalize the results to the case of instantaneous
failure in a three~dimensional elastic medium; at that point we shall
discuss the possible approximations and simplifications. The
extension of the theory to the case of a growing rupture zone will be
made by use of scalar potentials. Finally, we shall investigate in

greater detail the static limit of the problem.

II-1 Mechanics of the spring-mass system

Figure II-1-1 describes the elementary mechanical system
constituted by a mass m suspended to a massless spring of constant

k . We denote by x the equilibrium position of the mass under

i
its own weight and by X, the new equilibrium position it takes when
force F = k(xi - xf) = kL is applied.

Let us consider the elementary dynamical problem of the evolution
of the system for positive time t , 1f the force F 1is suppressed
instantaneously at time t = 0 . The origin of the x-axis is
understood to be chosen at the extremity of the unloaded spring, but
the problem is evidently independent of this origin so that we can
define the following relative displacements: y is measured with
Clearly

respect to x and =z 1is measured with respect to x

i -

the problem can be expressed in terms of y only or in terms of =z

only. The geometry is described on figure II-1-1. The mass m ,

starting from the position X, at t = 0 would end up at position
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X if there was any dissipation in the system; however, we shall
ignore dissipative phenomena here.

i) Solution for the displacement ¥y

Consider the relative displacement y . For t <0 , it is
constantly equal to L , and in the presence of any dissipation ¥y
would vanish after a long time. We are thus led to solve the initial

value problem

(I1-1-1)

I
r|

{mii = = ky

y(0)

which is the natural formulation of the plucked spring problem.

Taking the Laplace transform of the equation we have
2~ k ) =
Py - pL = - (-— ) y > (11—1-2)

where the initial value appears explicitly as a forcing term. From

(II-1-2) we have

¥ - PL

P2 + k/m

and taking the inverse transform we obtain the solution

y(t) = L cos (J% t) . (11-1-3)
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Figure II-1-1.
b) boundary value formulation.
value Xy and final value Xe

measured from xf and X
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ii) Solution for the displacement z

The relative displacement 2z vanishes identically for t < 0 ,
and would converge to -L after a long time in the presence of any

amount of dissipation. For positive time =z satisfies the equation
mz = -kz -kL H(t) ’ (II-1-4)

where H(t) is a step function. In other words, the problem can be
solved equally well by applying instantaneously, at time t=0 , a
force -F which cancels the force F . From this point of view we
have a boundary value problem wherein a force is applied at the

boundary 2z = 0. Taking the Laplace transform of (II-1-4) we get

or

S -lgla/m : (1I-1-5)
p(p” + k/m)

and, taking the inverse transform

[ ealE Y
fo-wffE)] -

z(t)
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If we note that y(t) - z(t) =L at all times, we see that (II-1-3)
and (II—1—6) represent the same motion of the mass as a function of
time and the two solutions are identical.

This elementary example shows the duality of the two points of
view. If we choose the final equilibrium displacement xf as the
reference state for the problem, then the natural formulation to use is
that of an initial wvalue problem; on the other hand, if the chosen

reference is the initial displacement x then the natural formula-

g 3
tion is that of a boundary value problem. One could also suggest a
trivial third point of view, where the experimenter would guess the
proper motion of the mass m , and impose it artifically, but this
kinematical guess is of no physical interest.

We shall now generalize these simple ideas to the three-dimensional
elastic problem. The problem treated above is really an elementary
one, and its understanding poses no great challenge. On the other hand,
a three-dimensional problem is not as easy to conceive and to
comprehend. However, there is no fundamental difference between the
concept of a one-dimensional elastic problem, and that of a three-
dimensional problem. The main difficulty arises from the complexity
of the analysis involved due, in part, to the fact that a three-
dimensional problem depends on a greater number of parameters. But
the basic attacks available are identical in nature to those described
in this section. One of them will give rise to an initial value
problem and will correspond to a stress relaxation phenomenon, another

one will give rise to a boundary value problem, where forces are being

applied on the rupture boundary.



-75-

II-2 Instantaneous failure in a prestressed elastic medium

We now turn to the description of a rupture phenomenon occurring in
an elastic medium. A more complete discussion of the failure mechanism
itself will be found in Chapter III. For our present purposes it is
sufficient to assume that the material lying inside a closed surface I
within the medium undergoes some transformation through which its
physical properties are abruptly changed. To fix the ideas we may assume
that within the rupture zone the material becomes unable to sustain
shear stress. Other assumptions could be made which depend on the
particular physical mechanism one wishes to model. The treatment given
in this section is quite general and may be easily adapted to a wide
variety of cases. We can thus formulate the problem as follows.

Consider a body made of an elastic homogeneous isotropic medium,
bounded by a surface S (for the case of an unbounded medium, S

recedes to infinity). We assume that this body is in a state of stress.

(o)
Gij

loading of the body from some unstressed state, but is only required to

The prestress is not assumed to have been generated by elastic

satisfy, at all points, the static equations of equilibrium with some

body force density fi

0(0)

- I-2-
13,4 ¥ PEg = 0 3 (11-2-1)

as well as some suitable boundary conditions on S . If S is a free

surface, then on S



., -
Y ) (II-2-2)

We can further describe the configuration of the body by a displacement
field uio) (which could be arbitrarily defined to be zero everywhere).
The virtual closed surface X shown on figure II-2-1 represents the
boundary of the rupture zone before failure.

Let us now assume that failure occurs instantaneously within I at
some instant of time which we may choose as t = 0 without loss of
generality. To fix the ideas we shall consider the case where a cavity
is created with boundary X . More complex cases with various rheolo-
gies of the material inside I may be handled in a similar fashion.
After an infinite time, the body will reach a new state of equilibrium
characterized by the fields Giﬁ) and uil) If we assume that, to
first order, the density of externally applied body forces is left

unchanged in the process (this is true to first order, for infinitesimal

strains), then we have

LD

g +pf, =0
151 = (I35}
OF%) n. =0 on S and I.
1] J
(L

The final field Oij must satisfy new boundary conditions on L

whereas ci?) was only required to satisfy the equilibrium conditions
J

there, since £ was not a physical boundary.

We now make the important assumption that the material outside LI
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Figure II-2-1., Geometry of failure inside a body of volume V and
surface 8 . a) before failure, b) after failure.
L 1is the failure surface.
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goes from its initial equilibrium state to its final equilibrium state

elastically. This implies that the relative static fields

oy =0 =il

ij ij ij (
II-2-4)
uf = ugo) - ugl)
i o i i

are now related by the constitutive equation of linearized elasticity--

Hooke's law. By subtraction of (II-2-1) and (II-2-3) we see that

*
o,. .=20
1]j,]
i =0 S II-2
Uij nj = on . (II-2-5)
*
g N = 0(0) n on Z 4

ij 7] ij 3

The evolution of the dynamic fields ui( r,t) and Gij( r,t) will
be governed by the equations of motion for the medium. However, in
order to apply the linearized elastic equations of motion, one must use
fields for which Hooke's law is valid. By comparison with the spring-
mass problem discussed in the previous section, we are led to define the

dynamic relative fields

= . N
Yi 1~ %

|
(=

(I1-2-6)

3 %3 ij '



S i 1

and

Z = Al ugo)
N 5 X
(11-2-7)
=g, -o®

The evolution of the medium for t > 0 can then be described by either

one of the two systems:

Bzyi
5™ Ty g
B 3,3
Tij nJ =0 on S ,
4 (II-2-8)
Tij nJ =0 on: X
*
- - 00 -
yi(r,O) u,(r); Yi(r. 3} =0 .
N
or
r 32z
= L ¢
Btz ij,]
t.. n, =0 on S
) 1 ] ' (11-2-9)
(o)
t n = g, on I
ij 3 3 .
%
Kzi(l‘,O) =0 : zi(l‘,w) —-—ui(r) >

The displacements . and z; behave quite analogously to the displace-

ments y and z encountered in the mass-spring problem of section II-1.

From (II-2-8) the displacement Yy is clearly the solution of an
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initial value problem. From (II-2-9) we see that z; has an initial
value of zero, but is caused by the application of tractions -Oi? 0y
on the boundary I . As in the mass-spring problem, i and z,

*
differ only by a constant since ¥y = =u, so that the analogy is

%
complete.

To investigate the differences between the two formulations in a
more precise manner, we use the formal Green's function solution
(I-3-26) , specialized to the case of an instantaneous rupture with no
initial particle velocity. Making use of the boundary and initial

conditions in (II-2-8) and (II-2-9) , and noting that the volume V

is independent of time for t > 0 (see figure II-2-1), we get

+

t
B (o)
41Tym( r,t) / dt_ Gijm ¥y n, da
0 S+E

3G
* im 3 (o)
+ f p uy Bto o d™x
v
- (s) ()] (1)
= dmy, "+ dmyy 4Ty 5 (I1-2-10)
and similarly
+
4mz (r,t) = - - d G z nda(o)
Zpt T AR ks ijm "1 7§
0 S

t
(o) (e)
_/ dto f (Gim Uij - Gijm Zi) nj da
0 z



"y
or

= 2 S) (Z)
4wzm 4ﬂzm + 4Wzm . (I1-2-11)

So far Gim(jr,t; ro’to) may be any fundamental solution of the
equations of motion and (II-2-10) and (II-2-11) can be considered to
be integral equations in y and 2z respectively. However, for Gim
to be the Green's tensor for the problem, it has to satisfy the following

adjoint boundary conditions
=1 on S and I . (I1-2-12)

PP §
1jm J

In that case we obtain immediately the following solutioms

3G

; * .
by = Gyt = f pu, == a3z (I1-2-13)

m m iodt

v o |t =0
and
t+
= (Z) _ _ (o) (o) .
4‘frzm 41sz = / dtof Gimaij nj da . (I1-2-14)
0 z

These two equations corroborate precisely the claims made earlier about
the respective properties of the solutions. In particular, - M8 depends
exclusively upon its initial wvalue: at time t = 0 the medium finds

itself away from equilibrium and starts evolving towards its equilibrium

configuration. Following Archambeau (1964, 1968) we say that : is
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the solution to a stress relaxation problem, and we shall call Yi and
Tij the "relaxation fields." On the other hand, 2z ~Tepresents the
response of the medium to a set of tractions -U(J) nj suddenly applied
at t =0 along the surface I . For this reason, we shall refer to
it as the "stress~pulse" solution.

Finally, when the surface Z is taken to the limit in which it
envelopes zero volume, so that it is in fact made up of two sides E+
and Z, , then we can treat I as a surface of discontinuity in

displacement. In that case, from the formal Green's tensor solution

(I-3-26) we see that (II-2-14) becomes
t+
ab g (0) (o) —_—
4z = f dtof [[ m]] ; da ,  (II-2-15)
0

where the jump figuring in the integrand could be obtained from knowledge
of the Green's tensor. However, with this particular geometry, the
natural boundary condition for the solution is expressed by the continu-

ity of tractions l[tij njtu =0 . If one uses then a Green's tensor
%
H, satisfying the adjoint condition IIHijm nj]] =0 , then the

formal Green's tensor solution yields the integral equation in 2

t+
= (o)
Zn T f of [[i:ﬂ ijm _] ) % (I1-2-16)
0

We recognize in (II-2-16) the usual formula yielding the displacement

field due to a Somigliana dislocation. This last equation is only
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useful if the displacement jump Uéiﬂ can be guessed, or observed.
z

The use of dislocation theory has been widely used in seismology (e.g.,
Maruyama, 1963), but analytical computations are simple only in the case
of a Volterra dislocation, where the displacement jump is comstant over
L . For more complex problems, one usually resorts to numerical
techniques, where a relatively complex dislocation is modelled by
juxtaposition of several "elementary" Volterra dislocations (e.g.,
Trifunac, 1973; Alewine and Jungels, 1973). This amounts to a discreti-
zation of the source, and can also be achieved by use of a finite
element method for example (e.g., Jungels, 1973).

The solutions (II-2-13) , (II-2-14) and (II-2-16) are exact,
provided that the Green's tensor can be found. But, as we pointed out
in section I-3, such cases are rare, and therefore one resorts to

approximations. These approximations are discussed in the next section.
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IT-3 Discussion of the solutions, and approximations

In order to evaluate the possible approximations to the solutions

given in the preceding sections, we first write the Green's tensor as

. (II-3-1)

in accordance with the discussion of section I-3. Here Fim is again
the Green's function for the infinite domain, and the two other terms
are regular solutions of the homogeneous equations of motion which
satisfy certain boundary conditions. We required in equations (II-2-12)

that the Green's tensor satisfy the following condition
=0 on S8 and I .

G
ijm nj

We therefore see that sufficient conditions for this to be satisfied are

2_(8)
CAE- 0 =g(S)
- ijm,j
(11=3-2)
FORNE B At
ijm ™y
0 on L ,

and, similarly
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2 (%)
B _ D
8t2 ijm, j
(IT-3-3)
0
g(z)n={ OnSa
ijm _
)Ejm nj o Z .
(s) (Z)

Here again, gim and g are regular everywhere in V . Following

im
the same argument, in the case where X envelopes no volume, since the

tractions ijm nj are continuous, we may write the Green's tensor

appearing in (II-2-16) as

Y . CiT=34)

We now seek to answer the following question: Is it a reasonable
approximation to use directly Fim --which is known--in the solutions

(II-2-13) , (II-2-14) and (II-2-16) , instead of Gim or Him

which are considerably more difficult to get? In other words, when can

(Z) (s)

we ignore the effects of gim and 8im

, and what is the approxi-

mation involved?

(8)

The effect of g,
im

is simpler to discuss. This term represents
the effects of the external boundary of V . Thus, if we ignore it,
the solution obtained will not contain the waves reflected from S |,
the surface waves along S , and the free oscillations of the body

within § . 1In fact, when the radiation emanating from the source

region is known, such contributions to the displacement field may be
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evaluated separately by a number of well developed techniques (e.g.,
ray theory, mode theory). Further, for theoretical source investigations

the body is generally taken to be unbounded and S recedes to infinity;

" S
in that case gim) does not have to be introduced. In that case also

the boundary condition at infinity must be a Sommerfeld radiation
condition, with no incoming waves from infinity; this condition will be
satisfied if we use Fim for the Green's function. From now on we
shall choose this to be the case.

Discussion of gii) is somewhat more subtle. We shall treat

separately the three different approaches--dislocation, stress-pulse,

and relaxation sources—-by order of increasing complexity.

i) Dislocation sources

From equation (II-3-1) , we see immediately that there is no
approximation involﬁed in using Fim for the Green's tensor in the
dislocation solution (II-2-16) , provided that the volume V is
unbounded. This is a known result (e.g., Maruyama, 1963). Thus the
dislocation solution provides an exact and accurate representation of the
radiation field generated by a known history of displacement along an
internal surface. The obvious drawback is that the history of slip is
not known. It will depend on a large number of physical parameters upon
which we have little or no control.

The multitude of published investigations which use dislocation
theory in earthquake modeling makes it superfluous for us to discuss in
detail the variety of possible dislocation models and their properties.

The most popular model is that of a Volterra dislocation where a
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displacement jump, constant over the whole surface of the dislocation,

is created with a given time history. This time history is usually
chosen to be a variation of a ramp function. A step function in time
will intuitively yield an asymptotically correct solution at very low
frequencies for most physical problems.

A relatively complete account of the results obtained from such
models may be obtained from Maruyama (1963), Haskell (1964), and Savage
(1966). Richards (1973) studies a more complex problem with a dis-
location along an elliptic plane crack with friction. In this case, the
displacement jump is a function of both the position on the crack surface,
and of time. It is therefore a dynamical Somigliana dislocation (e.g.,
Maruyama, 1963). Alewine and Jordan (1973) show how the static
dislocation theory can be coupled with numerical inversion techniques to

explain the observations of "zero-frequency seismology."

Finally,
Jungels (1973) and Jungels and Frazier (1973) present a completely
numerical approach to the problem, using a finite element method.

The principal success of dislocation theory in seismology is that
its results may be put in a simple form. Also, dislocation sources
can be easily investigated by use of point force equivalents, as
discussed by Maruyama (1963) and Burridge and Knopoff (1964). This
method furnishes a powerful method to model, to a first order approxi-
mation, gross properties of the radiation fields.

We shall see below the implications involved in using a Somigliana
dislocation, where the (variable) jump in displacement is created

instantaneously. We shall further show that this is equivalent to

solving approximately an initial value problem (relaxation source).
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ii) Stress-pulse sources

First of all, in the case of an infinite domain, the solution to
the stress-pulse problem given in (II-2-11) reduces to the term zn(lZ) 8

Denoting by Gim the Green's function to the problem, we have

-

t
(o) (o)
_/ dtof Gimdij nj da
0

z

4Tz
m

(II-3-5)

+
t
= (o) _ (o)
= / dt:0 f(rmcij yijmzi) nj da 5
0 z

where the second equality is obtained by use of (II-2-11).

As was pointed out earlier the second equality in (II-3-5) defines
an integral equation, since the displacement 2. figures both on the
left-hand side and in the integrand. The extra term appearing in the
integrand when one uses Fim comes from the fact that this tensor does
not satisfy the proper boundary conditions (II-2-12) on I . It is
easy to see that one cannot, in general, neglect this extra term since
in the limit where I encloses zero volume, this term gives the

solution, in the form of a dislocation solution. The first term

T U(0)

T does not give any contribution to the integral over Z+ + I_

because it is continuous across the crack. One also sees that the

Green's tensor Gim must have a non-vanishing jump across ¥ for the

first integral to take non-zero value in that case. But since T

(Z)

im 2

im
is continuous, this jump must come from the contribution g

(x)
im

according to (II-3-1) . It is thus clear that g cannot be
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ignored and one may not use Pim , but rather one must determine the
exact Green's tensor for the problem to use in the stress—pulse solution
(IT-2-14)

The stress—-pulse approach has been adopted by several authors
because of its intuitive simplicity. However, these authors did not, in
general, use directly the Green's tensor formalism.

The problem of a stress-pulse applied on the surface of a spherical
cavity was treated by Jeffreys (1931) and his results are given also in
Bullen (1963). For the case of a zero-volume rupture, Burridge and
Halliday (1971) use a method derived from the Cagniard-de Hoop technique.
The stress—pulse approach allows them to introduce dry friction om the
fault surface in a relatively straightforward manner. However, they
restrict their investigation to a two-dimensional situation. Richards
(1973) extended such results to the case of a growing elliptic crack.
Burridge and Alterman (1972) solved the problem of the self-similar
growing spherical cavity by expanding the solution in a complete set of
tensor spherical functions. These techniques yield solutions which are
exact-—or asymptotically exact in the high frequency limit--and they
could, in fact, be used to generate the Green's tensor for the problem
at hand.

Perhaps the most popular version of the stress-pulse approach is
that of Brune (1970). This author constructed a simple two-dimensional
model to study the generation of shear wave radiation by strike-slip
motion. In that case the equations of motion take a very simple form
very close to the rupture surface and can be integrated to compute the

displacement in a vanishingly thin layer along that surface. The model
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then reduces to a dislocation model and can be treated as such.

iii) Relaxation sources

If we use rim in the relaxation solution (II-2-10) , we get,

+
t
z ¢
by, = 4y )+ amy D -f dtof Yesas ™y da(®)
' 0 z

oT
% ,/. i av(®  (11-3-¢)

-
Vv t =0
o

This is an integral equation in . But we know that if Gim is the
Green's tensor, so that G,, n, =0 on I , then

ijm J

3G

%
4y = d/- o6, =B gy : (11-3-7)
m i 9t
t =0
v o

Thus, the use of the infinite domain Green's tensor in (II-3-7) is
equivalent to approximating ¥ by yél) in (II-3-6) . We therefore

yéi) and yéz)

seek to understand the nature of the terms in order to

%
evaluate the approximation. We know that vy = ozg & ug o which permits

us to write

+
E
417y“(12) = -/ dtof Yijm (u: + zi)nj da(o) . (FE-3-8)
0 &
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yél) may be obtained by using (II-2-11) 4in this equation, we have

+

t
4TI'Y(Z) = - 4Tz —/ dt f i c(?) n, da(o)
m m o im 13 j
0 z
+
t
* (o)
= dtf Y.. u, n, da )
J/g o s i —3

and now replacing z by Yy — U, we get

+

i t p

4Wn(11) = lﬂTuI: —f dtof I‘imoj(_?) nj da_(O)
0

x
+
td Y, o n, aal® I1-3-9
to ijmui nj a " (II-3-9)
0 z
®
Since u does not depend on time, we see that the approximate solution
yéi) is totally equivalent to a superposition of a "stress-pulse" field

and a dislocation field. When I envelopes zero volume, only the

*
dislocation field survives. Further, since u

i is time independent, in

that case, yil) is the field generated by the instantaneous creatilon

at time t =0 of a Somigliana dislocation along Z . In addition,

(II-3-8) shows that, in that case, yéz)

represents that component of
the radiation field which is specifically due to the departure from
instantaneity in the creation of the dislocation.

We have thus proved that in the case of a very thin rupture zone,
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the field & is the superposition of 1) the radiation field caused by
the instantaneous creation of a Somigliana dislocation, and 2) a term
which represents the additional radiation due to departures from
instantaneity in the creation of the final displacement jump Hﬁuil)l
This result holds for an instantaneous rupture occurring in an infinite
domain. If I envel?pes a non-zero volume, then the field yéi)
contains, in addition, the radiation field caused by a stress-pulse
applied instantaneously on I . These observations permit us to see in
even greater detail the relationships between the three approaches
considered in this section, and also to push the argument further, albeit

in a somewhat more heuristic fashion.

From the definition (II-3-6) , the presence of the surface X

manifests itself in the field yii) only through the initial displace-
* ;
ment u; . yé}) is thus the radiation field that would be observed

*
if the medium were given an initial displacement us in the absence

of L . The reason why the additional field yéz)

must be introduced
is precisely the continuous presence of ¥ during the relaxation process.
Thus, yél) is the direct field generated by stress relaxation, and

(Z) (1)
ym can be thought of as the field due to the interaction of Vs
and I : it is the scattered field that contains all the waves that
are reflected, trapped, etc..., by L .

We shall define as a transparent source one which does not interact

with the dynamic fields in its vicinity. In other words, when ignoring

i
yéz) and thus approximating L by Y( )

o , we are in effect making

the rupture zone transparent. With reference to scattering theory, this

is justified for waves with a wavelength greater than the source width,
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and in particular in the long period limit.

The stress relaxation phenomenon may thus be described heuristically
as follows. Consider an instantaneous rupture occurring at t =0 1o a
stressed medium. A particle in this medium, located at some distance
from the source, will not "know'" about the rupture until a time such
that elastic waves have reached it (whence the necessity of using a
causal Green's temsor). At that time, the material point will "learn"
that rupture has occurred, and therefore that it is away from its
equilibrium position, and proceed to evolve towards it. In that process
it will interact with the neighboring points and radiate elastic energy.
The superposition of all the elementary fields thus generated will
constitute the total radiation field due to the rupture, in a manner
similar to that implied by Huyghens' principle. Part of the radiation
will be directed towards the rupture surface and interact with it, thus
creating a feedback to the rupture process: it is this interaction
which is ignored when one makes the source transparent. We understand
from this heuristic concept the reason why y;i) is expressed as a
volume integral. In this approach, the seismic radiation has its source
in the prestressed volume surrounding the rupture zone, not on the
rupture surface.

This is not to say that this model does not involve a fault
(Randall, 1966): the rupture zone and the physical processes involved
in the rupture manifest themselves in a very precise and clear fashion
through the initial wvalue uz . This initial field will depend both on

the nature of the rupture mechanism, and also on the initial state of

stress of the medium before rupture.
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This last observation leads to the concept of a localized source
region. The Earth is a finite body and is certainly not stressed
uniformly. Even if we ignore the interaction of the radiation fields
with the free surface (reflections, etc...), it is not necessary to
model the Earth by an unbounded prestressed body. The calculation of
the initial value u: in a finite body is possible but is often a
cumbersome one; such a calculation is hardly warranted in view of the
many other approximations involved. In this work we shall resort to

*
the following very crude approximation: u

i is computed for an infinite

body, and then the volume integration is simply truncated at some
distance from the rupture zone. This method is obviously not accurate,
but will give us a qualitative idea of what to expect if the prestress
zone is limited in size. A more complete discussion will be given in
Chapter IV.

We have described three approaches to the instantaneous problem
and have shown how they are really equivalent. Two of them--dislocation
and stress-pulse--correspond to a boundary source on the rupture surface.
The third one--relaxation--treats the source as a volume source, in
which the radiated energy comes specifically from the region where it
was stored before rupture, i.e., from the medium surrounding the failure
zone.

Boundary sources are often advantageous because of their relative
simplicity. However, we shall adopt in this study the relaxation model,
in spite of its greater analytical complicatlons, because it 1s related
more directly to the physical phenomena associated with failure, and

because the initial state of the medium is explicitly present in the
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solution.

The relaxation model was adopted by Archambeau (1964, 1968) to
model the seismic radiation caused by a sudden phase change within a
prestressed medium. Randall (1966) attacks this problem from a somewhat
more geometrical point of view. For the simple spherical geometry these
authors get similar results (Randall, 1973). Both authors make use of
the Green's function for the infinite domain, and thus assume the source
to be transparent. Archambeau (1964) generalized the theory to include
growing and propagating ruptures, and specialized the results to model
the tectonic release associated with underground explosions in tectoni-
cally stressed regions. (Archambeau, 1964, 1971; Archambeau and Sammis,
1970). However, for ruptures which do not grow self-similarly,
Archambeau's attack leads to rather cumbersome algebra. Some of the
work presented in the following chapters will yield results similar to
his, but in a simpler analytical form. We shall also present in
Chapter IV a new attack on the problem of a propagating rupture, which

yvields more complete results.
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II-4) The case of a time—dependent boundary

We now turn our atteﬁtion to a phenomenon of slightly greater
complexity. Instead of assuming that the cavity considered in the
previous section is created instantaneously at t = 0 , we shall let it
grow at a finite rate.

Following Archambeau (1964, 1968, 1971), we shall make use of the
potentials defined in section I-4; these are the cartesian components of
rotation and the dilatation. We shall compute them from the relaxation
field yﬁ discussed in the previous sections. We denote by ¥ any one
of these potentials, by ¢ the wave velocity associated with it, then,
by the formal Green's function solution (I-4-6) and by virtue of the

discussion in the previous section, the relaxation field is given by

+

t

_1 [F a ar _ 3 (0)

qmy(r,t) = 2[ it f [x T T 7 } dv dto i
c " o] V(to) o o

(II-4-1)

Here [I' is the scalar Green's function for the wave equation in an
infinite domain.

As pointed out earlier, the right-hand side of (II-4-1) 1s to be
understood as a Stieltjes integral. Our present purpose is to evaluate
this integral.

In the case of an instantaneous rupture, the result is immediate:
X 1s a potential of the field ¥ » and if x* is the corresponding

*
potential of the field uoos then



i) =

4my = f X % dy 2 ) (I1-4-2)
c

%
But the difference field u is defined as utgo) - ulgl) , Where ul_fll)

is the final equilibrium field. The relaxation field : 3 is measured

5 1
relative to ué ) . For a growing rupture zone uél)

is a function
of the source time during the rupture process, and a constant afterwards.
Thus for all source times to earlier than To , the duration of the
rupture process, u: is a function of to ,» and so is x*.

Archambeau (1968, 1971) suggested that a continuously growing
rupture zone may be construed as the limiting case of a succession of
elementary instantaneous ruptures. We shall make use of a similar idea
here by studying the effect of an infinitesimal rupture increment when
it is added to a finite rupture.

’ Let us suppose that we know how to compute the solution up to some
time t; < Ty # At that time the potential has the value x(r,tl)

If the rupture would stop at ¢t , then ¥ would be measured, for

1
t > t; relative to the equilibrium configuration associated with
V(tl) , and would be given at all times t > t1 by

9
4'11')((r,t;t1) = 1—2 f [X g—% -T 5{1 ] dv(o) (11-4-3)
2 V(ep) . £ =t

In other words, we would have the solution of an initial value problem,
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the initial values x(tl) and %%-(tl) being created at tl

However, we know that in a short interval th , the rupture would grow
and the volume would become V(t1 + th) . Let us approximate this
growth to first order by an instantaneous elementary additional rupture

occurring at t Then the left-hand side of (II-4-3) would change

i
for two reasons. First the state with respect to which the relative
field x is measured has to be changed to the equilibrium field
associated with Vit + th) . But this is a simple change of origin
(c.f. the mass-spring system) and does not represent a radiated field,
but rather a static field. We need not concern ourselves with this at

the moment. Second, the initial value x(tl) s, appearing in the

integrand on the right-~hand side, has to be increased by

*
g%— th while the initial velocity %% is unchanged, since
o to=t1 (o] t0=t1

it does not depend on the reference state. The fact that the initial
velocity does not undergo a sudden change is important because it means
that the rupture phenomenon is spontaneous and that no impulse is
imparted to the medium during the elementary rupture. We thus see that,

to first order in 6t ,

*
+8t,) = x(r,t;5t)) + X St

ot -
o to—tl

%L r,tit,

St *
i ox T (o) 2
-+ 2 f [at T dv + 0 dtl
0 to=t1

V(e +6t,) °
L& (LI~4-4)
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The second term on the right—hand side corresponds to the (static)
change in equilibrium values mentioned above, so that the sum of the two

first\terms represents the dynamic fields existing at t; , measured

" +
relative to the equilibrium state valid at t1 . The third term is
the additional contribution to the radiation field due to the incremen-

tal rupture, expressed relative to the same equilibrium state. Thus,

(II-4-4) may be rewritten

1 _
Stl [X(r,t,tl + th) = x(r,t,tl)} =

*
— f [%ltL-g—l;— av (@) 4+ o(st,) , (I1-4-5)
4Te U(t1+6tl) o o to=t1

which is valid for t > tl + 6t1 and for observer's points r exterior
to U(tl + th) , and where the fields are reckoned with respect to the
equilibrium state associated with U(tl + ﬁtl) . But the right-hand

side does not depend on the reference state since only the derivative

*

%%— appears; similarly, the left-hand side does not depend on the
o]

reference state either, since it is unchanged when one adds a comnstant
to X . Therefore, taking the limit dtl + 0 , and using the

definition of a derivative we get

*
d 1 9 T
Lxmuey =Ly [ [s%a—;] i e
1 4me t =t
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vhich is independent of the reference state. This equation is valid for

fixed t , for fixed r € V(tl) , and for any t such that

0< tl < min(tyTo) s

The meaning of (II-4-6) is somewhat subtle and deserves comment:
this equation gives the parametric dependence of the dynamic field

X(r,t) wupon the elapsed rupture duration tl . For a rupture occurring

at a finite rate, and of total duration T, @ the derivative on the

left-harnd side vanishes identically for tl > To . Thus by integration

with respect to tl of (II-4-6) we get

min(t,T ) *
X(r,t) = C + —= 5 ° a4t ~/~ [éx__QIL_] v @
4me 1 ot ato t =t
o V(tl) o

(I1-4-7)

where C 1is an integration constant to be determined. The second term
on the right-hand side is the dynamic field referred to the equilibrium
field which the medium would reach if the rupture were stopped in its
configuration at time t . But the logical reference state is that
which is associated with the final rupture configuration (at t, = TO) .

This allows us to determine the constant C , which is
* *
C=yx (ry7)) - x (r,t)

Note that C wvanishes for t > To . Note also that tl is just a

dummy variable in (II-4-7) , so that the final result is
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* *
x(r,t) =x (r.To) - X (rst)

C *
1 _ 3y L . (o) ™
+ . 2[ H(t, -t ) dt_ f A dv . (1I-4-8)
me o (o]

This reduces, for t > Ty to the result of Archambeau (1972).

One sees immediately that (II-4-8) reduces to (II-4-2) in the

case of an instantaneous rupture at t =0 . Indeed, in that case, we
* * BX* %
have ¥ (r,t) = ¥ (r)H(t) and thus e = X (r)6(t) , so that the

integrand in (II-4-8) is a delta distribution in time, at .t =0
This remark leads to the following interesting interpretation of
(I1-4-8) If (II-4-2) is construed as an "impulse rupture" solution,
then the solution (II-4-8) can be thought of as the convolution of

this elementary solution with the '"growth function" of the rupture zone.

The solution (II-4-8) is the one which we shall evaluate in

Chapter IV in a case of a growing and propagating spherical rupture.
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II-5 An equivalence theorem in the static case

We have shown so far the equivalence of three basic approaches to
the dynamical source problem. This equivalence holds under fairly
general circumstances. In this section we shall examine in greater
detail, in the static limit and under moreqrestrictive circumstances,
the equivalence between relaxation and dislocation models. Here again
we shall use the Green's tensor formalism, but we shall use specifically
the static Green's tensor, so that both source time and r;ceiver time
disappear from the formal Green's tensor solution (I-3-36).

Consider an infinite domain filled with a homogeneous isotropic
material (1) , except for an inhomogeneity bounded by a closed surface
L , filled with an homogeneous isotropic elastic material (2) . We
assume the inhomogeneity to be bonded to the matrix, and for simplicity
we assume also that any intrinsic elastic field associated with this
inhomogeneity can be linearly superposed to the solution of an elastic
problem in this compos%te medium. This is a good assumption in the
limit of infinitesimal strain theory. The intrinsic fields would be
those directly associated with the inhomogeneity, and thus those present
in the composite in the absence of any external loading.

Our present purpose is to investigate the effect of the inhomo-
genelty on the fields generated by external loading of the composite.
Clearly, if the superposition principle described above holds, then we
need only consider the case where a state of no atrainrand no stress
throughout the campoéite material exists. We shall use such a state as
a natural reference state.

Eshelby (1957) presented a solution for the elastic fields inside,
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and immediately outside an inhomogeneity, as well as the fields at large
distances. Kupradze (1963) attacked the problem by using Green's tensors
and the theory of multidimensional integral equations.r We shall combine
the relatively simple approach of Eshelby with the Green's tensor
formalism developed in Chapter I.

Let us load the composite by, say, a set of body forces applied

@) (1)
ij i

fields generated within the material (1) --outside the inhomogeneity--

outside the inhomogeneity, and let © be the elastic

and u
and dii) and uiz) the fields generated in the material (2) -- inside
the inhomogeneity. Because the inhomogeneity i1s bonded to the matrix,

then if fi 1is the outer normal to I , we must have

(1) (2)
Oij nj = Uij nj
(I1-5-1)
uil) = uiz) on L ,

which expresses continuity of tractions and displacements across L
(if the material (2) is a liquid, then only the normal component of

displacement should be considered). Let Uig) and uio) be the fields

that would be generated throughout the space in the absence of the

(o)
1§ .

considered in the former sections, we must point out that the problem

inhomogeneity. Here if we wish to think of o as the prestress

has been specialized to the case where the prestress is created purely

elastically, so that U£§) io)

and u are related via Hooke's law. The

fields cii) and uio) are continuous everywhere.
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o [+]
Let Pii) and Pii) be the static Green's tensors for the infinite

domain valid for materials (1) and (2) respectively. Then

m]ff) " fpfi fj(j])dv@ , (11-5-2)
v

where V 1is the whole domain. Similarly, if V(l) is the domain

external to the inhomogeneity, and U(z) the domain filled by it, then

 _ W, (o) (1) (D) _ @ @ (0)
s .U/(.Dpfi Feq, .{(Pm 15 = Vi )“j .

(I1-5-3)

and

Anun(lz) = f(rg) o - Ygi iz)) n, da(® ; (11-5-4)
z

These last two equations, when coupled with the boundary conditions

(II-5-1) form a system of coupled integral equations to be solved for
u(l) and u(z)
m m

Let us perform the following fictional operations (cf. Eshelby,
1957).

1) Remove the inhomogeneity--material (2) —--from its site

in the composite, while applying tractions U(J) on

]
the wall of the cavity thus created, so that the

material outside stays in equilibrium.
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2) Cut a piece of material (1) such that, when tractions
Oii) nj are applied on its boundary, it takes exactly
the shape of the cavity.

3) Imnsert this piece of material (1) into the cavity;
tractions are now continuous again across I , so
that we have equilibrium. We have thus transformed the
inhomogeneity into an inclusion. The space is now
filled with material (1) everywhere.

Let vél) be the displacement field inside the inclusion, it is given

by

(1) _ (1) () L) (1) (o) =
Qﬂvm = f(rim Uij Yijm vy ) nj da 5 (II-5-5)
b

The displacement outside the inclusion is still uél) . The

tractions are continuous everywhere, but the displacements cannot be
continuous, since the continuous solution of the equations of equili-

brium in an infinite domain, filled with material (1) , under the

load pf,, is given by uéo) , which is different from uél) . We
thus expect that uél) and vél) do not take the same value on L ,

and thus I d1s a surface of discontinuity for the displacement: a

dislocation surface.

Before we can state the complete equivalence theorem, we still

T ¢ N
m m m

have to prove that the difference field outside the
inclusion can be expressed as a static dislocation solution. Hence-

forth, we shall denote by Z+ the internal side of I and by I_
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its external side, since . is the outward normal (see figure II-5-1).

The displacement jump is given by

_ (1) (1)
[l:um:ﬂz - 11mr+z+ g - 11mr+z— u . (II-5-6)

(2)

Further, since the displacement u

1

matches u on I , we also

have
- (@D)] (2)
‘Ium]]z = lig g, (vm - u ) , (1I-5-7)

which permits to evaluate the jump from the knowledge of two interior
solutions.

Let us evaluate the dislocation field

@ _ _ (l) i
4 < = 1Jm [[ :ﬂ 3 (11-5-8)
for points lying outside the inclusion. From (II-5-6) we have

@ _ (1) (1) (o) (1) , @ (o)
4mm fyi_'jm i j 4 f yijm : | nj - ’
I

(II-5-9)

We can apply Gauss' theorem to the first integral which we denote by

I ; we get
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- (material 1)

(material 2)

(material 1)

Figure II-5-1. Static fields associated with failure within a closed

surface I V(l)

is the volume occupied by a matrix of material (1).
v (2)

is the volume of the failure filled with material (2) . uél)
and uéz) are the static displacement fields in the matrix and inclu-
sion respectively. When the inclusion is replaced by a suitable body

of material (1) the static displacement field inside I becomes vil)
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I=f (;cl) m) a®
ijm “1 | :
()

But we know that

1) L1 y(1) (1) S (1) LD
(yi.‘lm 4 ),J y:L_',ln,_'j 1 * yi_]m 1,3 ’

and also, in the static case

v(1) _ _ _
)rijm’j = -4m8,_ &(r - 1)

so that

- _ . (1) v(1) (1) (o)
1 .[(2) [ 4usy  S(r-r) v, + )’iJm 1,3] dv

For r outside V(z) , the first term in the integrand does not bring
any contribution to the integral. Furthermore, from Hooke's law (or

equivalently by the Rayleigh-Betti theorem), we have

1=/ y L@ dv()=/ PO D @

)
ij

(L

where t is the stress tensor associated with vi Since there
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are no body forces within V(z) we have i;) = 0 and thus

I=f ((1) (1)) PRI
in “ij /,3
()

We can now use Gauss' theorem, and recalling that, on I ,

£ @) ey
ij j iJ j we have
T f fﬁ) US) n, da© A (1I-5-10)
I

Substituting (II-5-10) into (II-5-9) yields

41Tun(ld) = - f(rinll) (1) )’g; il)) o da‘®? (1I-5-11)
z

Now if we note that the volume integral in (II-5-2) needs only to be
g

computed over since there are no body forces within V(z) , then

by subtraction of (II-5-3) and (II-5-2) and comparison with

(II-5-11) we see that

u]:l(:ll) . ull(10) . u:; " “n(]d) . (11-5-12)

which completes the proof. We thus have the following theorem:

The perturbation to the elastic fields in a stressed
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medium, due to the presence of an elastic inhomogeneity, can

be represented as the field of a Somigliana dislocation, the

dislocation surface being the boundary of this inhomogeneity.

In the limiting case where I envelopes a vanishingly small volume,
L consists of two sides I, and 22 . Since v(l)

i m
inside V(Z) , the integral in (II-5-8) reduces to

is continuous

41Tungd) = - f )c;j(.;'r)n H:u]sl):[l n§1) da(o) 5 (II-5-13)

2y

which is the classical dislocation field (see e.g., McGinley, 1969).
Here the jump is taken as the difference between the limiting values of

u(l) on I, and I, , and ﬁ(l) is the positive normal to I

m 1 2 1
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Conclusion

We have used in this chapter the theory of Green's tensor solutions
developed in Chapter I, to investigate the fundamental properties of
three approaches to the seismic source problem. At no point did we need
to know the Green's tensor itself. In fact, in section II-3, we were
able to discuss the approximations involved in using an approximate
Green's tensor: that for the infinite domain.

The relaxation model, corresponding to the solution of an initial
value problem, is the one we shall use in Chapters IV and VI for
particular rupture geometries. We have shown how to compute the solution
in the case of a growing and propagating rupture. This choice of approach
is based on the fact that the relaxation model depends explicitly on
physical parameters of interest, for example, the rheology of the
material in the failure zone, the prestress existing before rupture,
etc... We shall see later in specific cases how rupture length, rupture
velocity, size of the prestressed region (i.e., '"relaxation radius"),
and other similar physical parameters affect the radiation fields.

As was pointed out in the introduction to this chapter, the equiva-
lence of the various attacks may seem to be a rather trivial concept.
However, our analysis showed that some of the detalled aspects of this
equivalence are rather subtle. In particular, the equivalence of a
boundary source and of a volume source is somewhat difficult to grasp
intuitively. From this point of view, when modeling an earthquake, the
choice of approach should be made according to which approximations one

wishes to make.
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.Chapter III

THE ENERGY OF A STRESS RELAXATION SOURCE

Introduction

Before going to the evaluation of specific source models, which
will be done in Chapters IV and VI, we still have to discuss another
general aspect of the rupture phenomenon: its energetics. We saw in
Chapter I that the equations governing the flow of energy in a
continuum are nonlinear and thus cannot be solved by a Green's function
technique. This is one of the main difficulties encountered in energy
problems. Another difficulty stems from the fact that the basic
failure mechanisms for geologic materilals are not very well known.

Most of the work in that domain has been concentrated around the
determination of static or quasi-static rupture conditions at the time
of incipient rupture. Failure criteria such as a Von Mises criterion,
involving a comparison of the state of stress of the material and of
its "strength," have been developed mainly in view of metallurgical
studies. These criteria can be extended to Earth materials and meet with
reasonable success in explaining experimental data (e.g., Mogi, 1971).
If such a criterion is adopted and generalized to the dynamic case, then
one only needs to know the dynamic state of stress of the material at
every point in order to predict where it fails. This is the basis for
Griffith's (1921) early work on crack propagation, and for much of the
later work. The rupture is then statically controlled by the stress

concentration factors prevailing in the vicinity of crack tips, and
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dynamically the energy balance is obtained by equating the energy flux
into the crack tip to the rate of absorption of energy in the form of
surface energy (see e.g., Freund, 1972). Since for a frictionless
crack, the stress has a singularity at the tip (e.g., Ida, 1972), and
since no material has infinite strength, such a crack must grow under
any load. Ida (1973) shows how this problem can be circumvented by
appropriate choices of boundary conditions and fracture criterion. In
particular, there must be friction between the faces of the crack. For
example, Ida and Aki (1972) obtain the seismic source time function for
a propagating longitudinal shear crack under these conditions. (See
Ida, 1973, for an exposition of the theory and a bibliography.)
Experimental considerations have led many authors to suggest
that stick-slip rupture is an adequate model for earthquakes. This is
supported by laboratory experiments (e.g., Brace and Byerlee, 1966;
Byerlee and Brace, 1968; Scholz, et al., 1972). The stick slip model
calls, in general, for both a static friction and a lower dynamic omne,
but experiments show that friction is time dependent for most materials
(e.g., Scholz, et al., 1972). This suggests that nonlinear phenomena
such as creep may be of importance, in particular ahead of the rupture
front. Ida (1973) proposes a theoretical model in which such phenomena
can be taken into account. This points out the need for a yield
criterion as well as a fracture criterion. Mogi (1971) proposes such
criteria. Thus by allowing for anelastic flow of the material under
certain stress conditions, the range of possible failure modes can be

enlarged to contain brittle fracture, ductile fracture, or only
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creep-like flow (see Malvern, 1969, for a discussion).

We do not intend to provide a comprehensive discussion of all the
work done in this area; the bibliographies of the various publications
mentioned above should, hopefully, enable the reader to trace the
major part of the geophysical research in this field.

Because the occurrence of material failure depends on the notion of
material strength in the models mentioned above, it essentially depends
exclusively on the state of stress of the material. Therefore, rupture
propagation in these models will be controlled by the propagation of
stress waves, that is, by the equations of motion for the material.
Thus for longitudinal shear cracks, in simple cases, the rupture velocity
equals the shear velocity of the material (e.g., Burridge and Halliday,
1971). By generalizing the crack-tip model with cohesive forces intro-
duced by Baremblatt (1958), Kostrov (1966) and Ida (1972, 1973)
found that rupture propagation can occur either in a smooth or in a
"bumpy" mode, depending on the boundary conditions on the crack and on
the amount of creep taking place ahead of the tip.

But all the considerations mentioned so far point to the fact that
rupture initiation and rupture propagation are fundamentally energy
problems. Therefore, the energy equation should really be considered
in solving such problems. This would also be more appropriate for the
relaxation model that we have adopted. Then, instead of defining a
kinematical coefficient of friction on a crack boundary, one would have
to specify the rheology of the material within the fallure zone, and

study the dynamic flow of energy in the vicinity of the rupture
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boundary. The methods and equations of Chapter I are then the
appropriate ones to use.

In such an approach, the rupture boundary is to be treated as a
propagating phase boundary. The rupture process is thus an activated
process, where the energy density at which transformation can occur
plays the role of the material strength, and the energy absorbed in
the transformation (''latent heat'") plays a role analogous to the surface
energy usually considered. Further, any anelastic work done inside the
rupture zone or immediately outside will play the role of frictional
work on the surface of a crack or the work done against internal
friction ahead of the crack tip. Because of the complexity of the
problem and the nonlinearity of the equations, we shall not be able to
find analytical solutions, and the theory will have to be applied through
numerical approaches; but this is the case anyway for the usual crack
propagation problems (e.g., Ida, 1973).

In this chapter we shall propose such a line of attack; but we
shall first examine the global energy balance in the relaxation source
model, and discuss the source of the energy available for both failure
and radiation phenomena. The concept of seismic efficiency will be
introduced in the usual fashion (e.g., Wyss, 1970; Scholz, et al.,

1972).
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ILI-1 Global energy balance for a relaxation source

Throughout this section, we shall assume that 1) the stress fields
are related to the displacement by Hooke's law, and 2) that there exists
a positive quadratic form of the strains W , the elastic energy

density, which may be written

W= % o ) (I1I-1-1)

ij i3

Here © is the elastic stress tensor associated with the strain e >

ij i3
We shall adopt the same notation as in section II-5.

Consider a finite elastic body made up of material (1) , of

(L
2

volume V . This body may be stressed by one or several of the

elastic constants , bounded by a surface S and occupying a
following mechanisms.

1) Applying given surface tractions on all or part of S .

2) Applying body forces to the material within V .

3) Specifying surface displacements on all or part of S

and maintaining these displacements by rigid grips.

4) Existence of internal stresses.

It is not necessary for our present purposes to develop the theory
of internal stresses. We shall refer the reader to Eshelby (1956) for
a clear and simple explanation. It suffices here to state that these
stresses are the Hookean stresses associated with that part of the
strain which does not satisfy the compatibility equations. Such inter-

nal stresses can be created by the presence of dislocations or similar
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defects in the material.

We stated in Chapter II that material failure in a continuum can be
thought of as a sudden phase change of the medium, occurring in a
limited region. This can mean a phase change in the usual sense if, for
instance, shear melting occurs (e.g., Griggs and Handin, 1960). For
deep earthquakes, rapid phase transformation of a medium initially in a
metastable thermodynamical state has been suggested as a possible earth-
quake mechanism (e.g., Archambeau, 1968). But we can extend this idea
to the case where the material is finely broken into a "fault gouge."

A continuum representation of such granular or powdery material can be
obtained from standard observations in soil mechanics.

The macroscopic properties of a medium with a high density of
microscopic cracks are different froﬁ those of the uncracked medium.
When failure occurs on a scale sufficiently large so as to generate an
earthquake, the material does not fail along a simple crack. Instead,

a zone is created where grains are disjointed along their boundaries,
and where a high density of cracks is generated on a microscopic scale.
Thus, within the rupture zone, the macroscopic behavior of the medium
is changed. 1In other words, even upon failure of virgin material, the
phenomenon may be represented by a generalized change of phase of the
medium. In come cases, for example, the material can be taken to go
upon failure to some elastoplastic phase.

In this section we are concerned with the global energy balance of
the phenomenon, and this will be controlled by the long-term—-i.e.,
static or quasi-static-—mechanical properties of the material, both

within and without the failure region. The dynamical behavlior of the
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phenomenon will depend on the thermomechanical and thermodynamical
equations controlling the propagation of the phase boundary. These
aspects of the question will be discussed in section III-3. If we
assume the new phase to be purely elastic for the purposes of investi-
gating the global energy balance of the phenomenon, then we shall obtain
an upper bound to the energy released in the relaxation process since
the anelastic effects and plastic work will be ignored. The greater
energy change will be obtained when the material in the failure region
loses all rigidity and thus becomes a liquid. In fact, if the material
failure mode is that described above wherein grains are separated and
disjointed by creation of a large number of microscopic cracks, then
one does not expect this new phase to be capable of sustaining much
shear stress: Granular material in the failure zone will set in a
fashion similar to roller bearings, and then ease the relative displace-
ment of the two sides of the rupture zone. Furthermore, if shear
melting does occur, then it is certainly a good approximation to assume

a drastic fall in rigidity of the material upon failure.

(o)

We shall therefore consider the following problem: Let Oij 5

(o) (o)

e > Uy be the elastic fields generated within the volume V by

ij
any of the mechanisms (1-4) operating in a region V(l) of ¥ .

y(2)

Suppose now that in a volume of this body, bounded by the closed

surface I the medium is transformed into a material (2) , with
(2)
elastic constants CijkE (see figure III-1-1).
Following the description given in Chapter II, the body, which Is

now a composite, goes to a new equilibrium field. We assume the inhomo-

genelty within U(z) to be bonded to the matrix occupylng U(l)

(1) (1) (1) (D
cij , eij > Uy v

.

Let be the new equllibrium ficlds I[n
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Figure III-1-1. Geometry of a body
e

, bounded by a surface S ,
and containing a failure zone bounded by L . The body may be
stressed by specifying body forces pfi in U(1) , surface tractions
t on S , surface displacements u on S , or by singularities

- (1)
(e.g. dislocations) within V
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and G(?) 5 egg)
1]

ij

boundary I we have

uiz) those present within V(Z) . Then, on the

oD o e @
1] | 1] J
(I11-1-2)
D@
1 1

We can now evaluate the total change of energy of the body caused by the

phase change. The change in elastic potential energy is

= i (2) (2) (o) _(0)
AE?,E 55 ‘[;2 [Uij eij' - Gij eij ] dv
v(2)

1
+2./

[0(1) 1) _ 4l e(°)] dv (ILT-1-3)
f5e

ij  ©4j 5] 1

In addition the work done by extermnally applied forces in the alteration

process is AEw if the phenomenon occurs at constant load, where

e f pfi[“ic,) - “il)] dv + fti[“iO) - uil)] da  (I1I-1-4)

v S

so that the total change in energy is

AE = AEeﬂ + AEW . (I11-1-5)
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Let us first derive a different expression for AE@L . Archambeau

(2)

(1972) argues that the energy which would be released within V is

probably not really liberated,but absorbed in the rupture process. On

these grounds, he ignores the first integral im (III-1-3) . Then,
defining c* = c(o) = c(l) outside the rupture zone, and e* and
ij ij ij : ij

*
uy in a similar fashion, one gets

s 1
BEpp = 3 f

fled

= (o e “

* * (0) * %* (O)
[“ij ®15 7 %43 %13 " %13 13 ] ay

The two last terms in the integrand give identical contributions to the

integral, a consequence of the Rayleigh-Betti theorem,so we may write

1]

i * (0) *
AEd— 2 f [Gij - Zcij ] eij dv

U(l)
- 1 f [0(0) +0'(1)] &, ¥ (LT T~16)
2 1 13 13 .
U(l)
Recall that Eij = u(i,j) so that
Gij eij = Oij ui,j = (Uij ui),j - Gij,j uy . (III-1-7)

Substituting (III-1-7) into (III-1-6) , we can apply Gauss' theorem,
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and also make use of

(2)
0 in V
5(0) ey
(III-1-8)
1.],.] iJsJ —of v(l) .
Then we have
(o) (1) (0) (1)
AEeﬁ'z +f —ijz—ij—uin da - f—‘j———J—uinj da

DX

f of. u d (III-1-9)
- u, dv . ‘ =

V(l) 5 A 5

However, if tractions are specified on S , then

5(© 5D
%; ™ T %3 4T H

]
rt
-

*
and if the displacement is specified, then u; =

cases, we get, by combination of (III-1-9) and (III-1-4)

0 , so that in all

(0) (1)
AE = + AEW f u:_ nj da " (I1II-1-10)

This provides an estimate of the energy released by relaxation. This
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result was obtained in a slightly different fashion by Archambeau (1972).
AE has the form of a dislocation energy (e.g., Steketee, 1958),
which is not surprising in view of the equivalence theorem proved in
section II-5. In fact, we see that AE is given by the work of the
mean tractions between initial and final state, working through the
change in displacement on Z . We could have derived (III-1-10)
directly from the results of section II-5, since the only difference

(2)

occurs in the material within U , the elastic energy of which
we ignored anyway.
Furthermore, in the case where L envelopes zero volume, then we

can write approximately
DE =2zA<g><u?> s

where A is the "fault'" area, < 0 > the mean stress and < u > the
mean displacement jump across L . This approximate expression is the
~one used, for instance, by Wyss (1970) to estimate the energy released
by faulting. We must point out, however, that this approximation can
be made only if the rupture is a simple one, where the mean stress and
the displacement jump are smooth functions over I and where the mean
value theorem may be applied. Jungels (1973) showed that for a realis-
tic fault model computed by a finite element method, this approximation
is not,in general,a very good one.

Another interesting result is obtained if one does not ignore the

first term on the right-hand side of (III-1-3) . Let us first
|
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transform (III-1-3) by rewriting it as
-1 f (co> @) _ (@ (o))
e 2 V(Z) 11 1] i
(2) (0) (2) (0)
+("iﬁ )(13 °13 )] '
+;f [((o) D _ W (o))
2 V(l) s 1 13 13 1]

( @ _ (o) ((1) (o))
iJ 1J ij 1J

By use of Hooke's law, and substituting (III-1-7) into this equation,

we get, after applying Gauss' theorem

- (1) (2) )} (2) (o)
A p =3 ./(;) ( Ciqki Cijk!?,) €3y Opg
v

(c_(}) (o))(u(l) (o)) Ca
ij l_'] i ]
w L j‘( 1 _ (o)) (um N u(")) ©da
t2 i T8 ™

s
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Because of the boundary conditions on L , the integrals over I

cancel each other, and we have

-
AE,p = 3 f

5 (2)

+% f( (l) (0)) (uj(_l) + uio)) nj da " (III-1-11)
i

(1) (2) (2) (o)
(1sz Cijkﬂ.)e' T

An alternate form for AEQE may be obtained by applying directly

(III-1-7) and Gauss' theorem to (III-1-3) . Then
1 (o) *
AE , =+ = f dv
el 2 (1) iJ,j Yy

- % f( S) i") i;) il)) ny da : (I1I-1-12)
S

Here we also used (III-1-8) in the first integral.

We can now discuss the effects of the various loading mechanisms
mentioned at the beginning of this section. Following Eshelby (1957) we
define the interaction energy between the inhomogeneity and the pre-

stress as

" o (1D &) (2) (0)
Eint =~ 2 f) (Cj.;]kﬂ, 11k9.) iy By av .
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a) If the body is stressed by means of a body force density within
V(l) and/or known prescribed tractions on S , then, combining
(III-1-12) and (III-1-4) and using the equilibrium equations

1
(III-1-7) , we have AE2£ il AEW and thus

Further, from (III-1-11)

AE = Eint 5
Thus
AE = Eint = = AE@E " (I1I-1-13)

We see that when the prestress is generated by externally applied forces,
then during the relaxation process,work is done by these forces and
half the work done goes to increase the internal energy of the body.

b) If the body is prestrained by imposing a known displacement u, on

i
the surface S , and by clamping S in rigid grips, then from
(III-1-11) we get
N (1) (o) e
BE,, = = B0+ f(cij 05 ) uy n, da . (III-1-14)
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But, from (IILI-1-12) we also have

AE&E = % f(cﬁi') - ci(g)) ug nj da " (III-1~-15)
S

Further, AEW vanishes in that case, thus, by combination of (III-1-14)

and (III-1-15)

AE = AEQE = Eini s (III-1-16)

and the total change in internal energy is precisely the interaction
energy in that case.

¢) The case when the body is subject to internal stresses is a little
more subtle. We assumed earlier that the sources of internal stresses

s (D

are all within Let us consider a closed surface S'
surrounding X , but such that the (singular) sources of internal
stresses lie outside S' (figure III-1-2). Then the "body'" can be
taken to be the composite material within S' . The analysis proceeds
as before and we can use (III-1-11) and (III-1-12) provided that we
replace S by S8' in these equations. This insures that the volume
within S8' is free of singularities, and the homogeneous equations of

equilibrium are thus satisfied everywhere within S' . Then from

(1Ei-1-11)
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Singularities

Figure III-1-2. Replacement of the surface S by a new surface S§'
such that no singularities are present within S§'
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>
=
1}

I

=
+
N |

Sl

and from (III-1-12)

i 5 55

/(-

AE , = - f (Uig) ugo) - U(l) uj(_l)) nj da

SI

Expanding the integrand in (III-1-17)

Betti theorem and comparing with (III-1-18)

Equations (III-1-13) , (III-1-16) , and (III-1-19)
discuss which circumstances are favorable to the occurence of

spontaneous rupture. This is done in the next section.

(o)) /. (1) (o)
Oij )(ui + ug ) n:.l da

(III-1-17)

(III-1-18)

, and then using the Rayleigh-

yields as in case b)

(III-1-19)

allow us to
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III-2 Discussion: The energy available for elastic radiation

We have studied in the last section the energy liberated by a
relaxation source for four different loading mechanisms. Of course, in
the Earth, several such competing mechanisms will, in general, be
present simultaneously. If the stresses and strains generated by two
such mechanisms are small enough so that they can be superposed
linearly, then the total elastic energy is

E(1+2) = E(1) + E(2) + (1,2) s (II1I-2-1)

E.
nt
where E(1) dis the elastic energy present when only the first loading

mechanism is present, E(2) is associated with the second mechanism,

and E. E(1,2) is the interaction energy given by Eshelby (1956)

_ i L (2, (2 (1 "
ELM(I’Z) =3 f(cij eij + Oij e’ij) dv " (I11-2-2)
v

When three mechanisms are present then

E(1+2+3)

E(1#2) + E(3) + B ,(1+2,3)

E(143) + E(2) + E; ,(1+3,2)

E(243) + E(1) + E; .(243,1) . (LI1=~2=3)
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By comparison of -(III-2-3) and (III-2-1) one easily sees that, in
the presence of N loading mechanisms

E(1+2+...#N) = E(1) + E(2) +...+ E(N) + E 15244 s53N)

int
(ITI-2-4)

where the interaction energy may be written

E;e(1s2seeoN) = E; 0(1,2) + B, (142,3) + ...

+ Ej_n/t[l"'z"" ..+(N-1),N] " (I1I-2-5)

The order of application of the different loads does not matter in
(III-2-5) —--see equation (III-2-3) --, so that any permutation of this
order may be chosen to compute the interaction energy. Thus we could
easily generalize the analysis presented in the former section to the
case of several competing mechanisms.

For the sake of simplicity, however, let us consider the various
situations presented in section III-1 separately.

Two main results emerge from section III-1: 1) The amount of
energy liberated in the relaxation process, if the prestress is given,
is independent of the loading mechanism and is Eini , the interaction
energy between the prestress and the inhomogeneity; but 2) the source
of this energy is different for different loading mechanisms. More

specifically two cases arise. If the prestress is generated by fixing
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the displacement on the boundary of the body, or if it is due to a
distribution of sources of intermal stress, then the change of energy
equals the change in elastic energy. In such a case one really has a
relaxation phenomenon, where the total strain energy in the body
decreases in the process, as a fraction of it is liberated. On the
other hand, if the same prestress is generated by an adequate distri-
bution of externally applied body forces or surface tractions, then the
strain energy changes by the same amount, but increases rather than
decreases. Then the work done by the external mechanism (change of its
potential energy) is twice this amount, so that eventually the same
total amount of energy is liberated. In this last instance, the
liberated energy finds its source in the work done by the external
loading mechanism.

This provides a ready explanation for the paradox raised by
Steketee (1958). Using Connoletti's theorem, this author considered
the energy balance in the creation of a dislocation in a prestressed
medium. Using the fact that the dislocation energy is independent of
the pre-existing stress state of the body, and arguing that the
natural boundary condition to be applied at the surface of the Earth is
that of a free surface, with constant and vanishing tractions, Steketee
finds that the total intermal energy of the Earth increases in all
cases. This is a rather disquieting conclusion, but not a surprising
one since it merely states that it takes energy to create a dislocation.
The source of this energy is where the problem lies. Lf the loading

mechanism is taken to be a body force density (such as gravitational
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forces), then from our analysis, the internal energy of the material
surrounding the rupture will indeed be increased. The total gravita-
tional energy will then be decreased, half of this energy being used to
increase the strain energy, the other half being "liberated." Part of
the "liberated" energy is available for radiation, and part of it is
dissipated in irreversible processes connected with failure and
deformation.

On the other hand, internal deformation caused, for instance, by
plate motion is more likely to be the source of the prestress. The
highly stressed zones in the Earth that are associated with earthquakes
appear to be confined to limited regions, as evidenced by the very
distribution of earthquakes. Thus if the rupture occurs, say, within
the thickness of a plate, o; of a downgoing slab at a trench, then one
can argue that the "body" to be considered for the analysis is that
plate or slab, and not the Earth as a whole. If we envision the prestress
to be due to a distribution of tractions acting on the boundary of this
"body," then we cannot expect these tractions to be held constant during
an earthquake. In fact, one rather expects the static displacements
associated with the earthquake to vanish rather quickly with distance
outside the slab. It appears then that a good approximation to the
boundary conditions is to fix the displacements rather than the tractions
on the boundary of a region surrounding the event. According to this
argument, it is clear from our analysis that true stress relaxation must
occur, and that the élastic energy of the slab decreases in the process.

Another point of view is to consider the state of prestress in the

Earth to be due to internal causes. Then the slab considered above is
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subject to internal stresses. If the sources of intermal stress are
thought to lie in the surrounding material, whatever they may be (e.g.,
convection), then the surface of the slab plays the role of the surface
S'" shown on figure III-1-2, and again our analysis predicts that elastic
energy is liberated.

Another consideration yet may help clarify the situation: the
phenomenon that we seek to describe is really a local one. Take the
extreme case of a large body which would be prestressed by application
of constant tractions ti on all or part of its boundary. Let failure
take place in a localized region within this body. Then we proved that
the elastic energy of the body will increase because of the work done
by the loading mechanism. But it is clear that the tractions ty
cannot start doing work until information has been propagated from the
rupture zone to the boundary of the body. This information will be
carried by elastic waves, which transport energy. Clearly the energy
of these waves does not find its source in the work done by the tractions
ti , but in the strain energy released momentarily in the source region.

Thus because an earthquake is always a localized phenomenon in the
Earth, it is always a good assumption to model it as a stress relaxation
phenomenon. Except for the possible work done by body forces such as
gravitational ones, the seismic energy emanating from the source region
finds its origin in the release of strain energy. Of course, at any
point the Earth will have to readjust its configuration, albeit
infinitesimally, but information about the rupture is carried by the
seismic radiation field, and this field has a localized source, of

limited dimensions.
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The effect of gravitational forces can be illustrated by the
following triyial example. Suppose an object is dropped onto the
surface of the Earth with no initial velocity, then,upon impact,the
potential energy of this object has been transformed into kinetic energy.
This energy is then partly transformed into strain energy stored in the
ground supporting the object, and partly into radiation of elastic waves.
Not until the elastic waves have reached it will a point in the Earth
adjust to the new situation. This very simple example illustrated how
locally, gravitational potential energy can be transformed into seismic
energy. In the case of an earthquake, one can see intuitively how the
work done by gravitational forces can contribute to the seismic radlation,
particularly in the case of dip-slip faulting--of course, in pure strike-
slip faulting, the particle motion occurs along equipotential surfaces,
and no work is done by or against gravity.

Jungels (1973) used a numerical (finite element) method to construct
a realistic model of the San Fernando earthquake of February 9, 1971.

His findings corroborate the preceeding discussion, but also show that
realistic situations can be quite complicated. The first important
point to be realized is that the energy balance problem has to be solved
by first isolating a region R surrounding the earthquake zone. The
essential criterion for delineating the region R is to require that
most of the energy liberated in the form of radiation find its source
within R . The transfer of energy between R and the rest of the
Earth will take place through the radiation field. We have just argued
that this energy comes essentially from two possible sources in R :

the release of strain energy and the possible work of gravitational
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forces within R .

Observations of both static and dynamic fields suggeat that most
of the radiated energy comes from a limited region surrounding the
rupture zone. This will be true, in particular, if the strain energy
density released by the event outside R , and the work done by
gravitational forces outside R , are small. Certainly the San Fernando
earthquake did little to release the strain energy stored even 100 km
away, let alone, say, in South America. Two criteria may be used to
determine the dimension of the region R . 1If the prestress is thought
to be a rather localized field around the event, the R should be
essentially taken to englobe the prestressed zone; 1if the prestress is
thought to be large on a much larger scale, then the characteristic
dimension of R should be taken to be about the longest wave length
under study.

Thus, Jungels, for example, proceeded to systematically investigate
the various situations described above:

1) When the tractions were kept constant on the boundary of the
region R , then the strain energy in R was increased.

2) When the displacements were held constant, then the elastic
energy was decreased.

3) However, when gravitational forces were included in the model,
Jungels found that the work done by them could be significant. In fact,
for this particular earthquake, energy was expended in work done against
gravity, so that the radiation field contained less energy than could
have been expected from simple relaxation.

But more importantly, it was shown that the rupture geometry, the
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failure process, the presence of a free surface, and the inhomogeneous
nature of the crust could cause the faulting to be exceedingly complex.
Strain energy could be increased locally, and decreased elsewhere, and
similarly for gravitational energy. The energy underwent a complete
redistribution in a very complicated fashion, and only the global
balance appeared in the form of radiation leaving the region R

One must therefore keep in mind that, not one, but several of the
possible loading mechanisms enumerated in section III-1 can act in such
an event, and there is no insurance that one of them might be more
important than the others.

Another aspect of the question is worth mentioning at this point:
we pointed out earlier that even if a body is prestressed by application
of constant surface tractions on its boundary, then the radiation field
associated with localized failure of the material within this body is
generated by a dynamical stress relaxation mechanism. This is true if
the points of application of the external loads are far enough from the
rupture itself. Eventually the surface tractions will do some work and
finally cause the strain energy to increase, but not until the radiated
waves have reached their points of application. Now if the body is
limited in size, so that surface tractions are applied at close
proximity of the failure zone, then the loading device will start doing
work during the relaxation process, and thus create a feedback to the
rupture phenomenon. This can be the case in laboratory experiments
(e.g., Scholz, et al., 1972) where a small sample is prestressed by
applying a constant load on its boundary, and where the failure zone has

dimensions comparable to those of the sample. In such cases, work will
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be done by the loading apparatus during the failure process, and the
elastic energy of the sample could increase as the rupture propagates.
If this is the case, then energy is transferred continuously to the
sample, and the rupture may be "driven' by the loading mechanism. As a
consequence of this, one does not expect the rupture phenomenon to stop
until the potential energy of the sample and that of the loading
apparatus have been sufficiently decreased.

On the other hand, if the boundary of the sample is rigidly clamped
so as to fix the displacements, then the only energy available for
failure is that stored as strain energy in the sample itself. In such a
case elastic energy is liberated, and one can see how, after sufficient
stress relaxation, enough energy could have been released so that the
rupture would not propagate further. Of course, the failure criterion
must be applied point-wise, as we shall see, and stress concentrations
in localized regions will be most importént; but this observation must
be kept in mind when designing an experimental device to study material
failure, especially if one wishes to reach conclusions about the
mechanism of earthquakes.

We have discussed so far the origin of '"liberated" energy under
various circumstances; Wwe still have to discuss which form this energy
takes. Clearly, some of this energy is to be radiated in the form of
elastic waves; the question is: how much of it? Eshelby (1956) proposes
that, in the quasi-static case, all the energy available appears in the
form of surface energy, wherein the opening of a crack absorbs an energy
proportional to the crack surface created. This is the basis for

Griffith's (1921) solution to the crack propagation problem. Furthermore,
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if friction is introduced hetween the two faces of a crack, energy will
be dissipated (e.g., into heat), which equals the frictional work of the
tractions across the crack. If creep occurs ahead of the crack tip
before rupture (e.g., Ida, 1973), then some energy will be absorbed by
this phenomenon in the form, say, of plastic work. Baremblatt (1958)
considers the work which has to be done against intermolecular cohesive
forces at the crack tip during crack formation. Cherry (1973) assumes

a specific constitutive equation to evaluate the energy dissipated in
plastic work numerically. Further, it is difficult to believe that an
earthquake behaves as a single crack of enormous size. In fact, surface
observations show a large number of secondary cracks of rather small
size. The energy radiated by these small fractures will be carried by
very high frequency waves which are likely to be very rapidly attenuated,
and thus this energy will be dissipated very close to the failure zone
or within the failure zone itself.

Then one realizes that, of all the "liberated" energy, much will be
absorbed by the rupture phenomenon itself, and only a fraction of it will
be radiated away and not all of it will be transmitted very far. The
ratio n = ES/AE of the seismic energy to the total energy available
defines the seismic efficiency factor of the rupture. Further, the
observed energy at teleseismic distances has been further affected by
the travel path of the waves, and the ratio 1 should be defined as a

function of frequency.

The seismic efficiency factor n plays therefore the role of

a partition coefficient for the "liberated" energy. Hanks and Thatcher
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(1972). show that it cannot be determined from the knowledge of the
radiation field only, but that one needs either additional information
or additional assumptions in order to evaluate it.
The foregoing discussion clearly ties material failure and rupture
propagation problems to the energetics of the phenomenon. It is thus
only natural to approach these problems from the point of view of energy

considerations. We shall propose and outline such an approach in the

next section.
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III-3 Failure as an energy problem

Since the early work of Griffith (1921) and its generalization by
Sack (1946), much attention has been devoted to crack problems, both
static and dynamic. Most of this work was done in the context of
metallurgical applications (e.g., Yokobori, 1965). The publications of
Ida (1972, 1973) summarize well how the theory of crack propagation can
be used in geophysics. The major problem associated with friction free
longitudinal shear cracks stems from the stress singularity arising near
the tip for the elastic solution. No material can sustain infinite
stresses and the crack grows under any load. Kostrov (1966), and Ida
(1972, 1973), show how crack propagation is govermed both by the
fracture criterion at the tip, and by the boundary conditions to be
satisfied on the crack surface. Ida shows how stress singularities may
be avoided, and how various conditions yield different regimes in the
crack propagation. The propagation may be smooth or bumpy, and approaches
the shear wave velocity after a long time. The bumpy propagation is
observed in the case of a high frictional resistance to slippage along
the crack; the propagation is smooth in the case of low friction, and
also if a large amount of creep is allowed at the crack tip. The
author identifies the two regimes with brittle and ductile behavior
respectively.

Freund (1972) expresses the overall dynamic energy balance at the
tip of a moving crack in the two dimensional case, and summarizes the
results ob#ained by this approach. The main result consists of an
expression of the energy release rate at the crack tip as a function of

the elastic I'icld of the moving crack. 7This Is done by equatlng the
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energy flux into the crack tip to some fracture energy.

The ideas that we outline below, albeit rather tersely, take the
point of view that the energetics of the phenomenon constitute the
critical aspect of the problem, and must yield a formulation that
emphasizes the physical processes involved.

Since we are interested in a continuum representation of the
failure phenomenon, and in view of the arguments made above that failure
can be viewed as a generalized phase change of the material, the
pertinent equations to be solved are those of section I-1. Recall that
these equations include the conservation equations representing the
conservation of mass, of linear and angular momentum, of energy, and
also the Clausius-Duhem inequality, expressing the second law of thermo-
dynamics. These are precisely the equations enumerated by Truesdell
(1965).

Since we are in the presence of a material discontinuity Z' , we
must also include as boundary conditions the jump conditions developed
in section I-1. These are the conditions which control the evolution of
L . As pointed out in section I-1l, the critical equation needed in
order to evaluate the velocity U of I (see Chapter I, or Appendix 1)

is the energy jump condition

HE)E(vi—Ui) ni]] - [EVJ' T,579) ni]l . (1II-3-1)
b %

Here Vi is the material velocity, 9 the heat flux vector, and E

the total energy density. (It is the total energy which is conserved.)
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(I1I-3-1) 4is a boundary condition to be met on I by the flow
solutions on both sides of it. If the boundary velocity U is given
as a parameter, then by solving the flow equations on both sides of X ,
one can determine from (III-3-1) the quantity of pE which is
absorbed (or liberated) as a unit mass of material traverses I (that
is, undergoes the phase transition). For our present purpose, on the
other hand, this equation must be solved for U . We must therefore
state the problem as follows:

Having specified the state of the material on both sides of £ ,
we first solve the flow equations (transport of mass and momentum) in
the two regions separated by Z , as a function of the parameter U
We then specify the amount of total energy density pPE which is
absorbed or liberated upon crossing I . The problem is now to find a
value of U such that the solutions of the energy equations on both
sides of I be matched exactly on I by the boundary condition
(I1I-3-1). 1In short, all the flow equations of section I-1 have to be
solved simultaneously in the two regions bounded by Z , and the
boundary velocity U is then determined by requiring that the appropri-
ate jump conditions be satisfied. This is obviously a complicated
problem.

The simplest problem of this type is the problem of Stephan
(Carslaw and Jaeger, 1959; 0'Connell and Wasserburg, 1972) and, even in
the simplest case, the problem is nonlinear --see section I-1. This
means that analytical solutions may be found only in very particular
situations, and also, that the problem does not afford a Green's

function solution. Thus, the problem will have to be solved numerically,
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in most cases (e.g., Cherry et al., 1973).

The material properties on both sides of I may be specified via
suitable constitutive equations. There are no a priori restrictions
imposed on these equations except for the following principles which
hold for so-called simple materials (e.g., Truesdell, 1965):

1) The principle of determinism: causes operate only through

their histories so that, in general, present effects are
due to past and present causes.

2) Principle of equipresence: "a quantity present as an
independent variable in one constitutive equation is so
present in all."

3) Principle of local action: effects at a given point depend
only on causes occurring in some neighborhood of this
point.

4) Principle of material frame-indifference: the quantities
present in the conservation equations have intrinsic
meaning, independent of the observer, and two observers
see the same material properties.

5) Principle of entropy growth: the Clausius-Duhem inequality
must be satisfied in all cases.

A complete discussion of these principles lies outside the scope of
this chapter and the reader is referred to Truesdell (1965), for
example, for a remarkably clear and concise presentation.

We also need to know the quantity of E which is absorbed (or
liberated) at the crossing of I . It includes several terms. The

jump in kinetic energy will be obtained by solving the equations of
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conservation of mass and momentum on both sides of I and satisfying
the boundary conditions on % . Similarly, that part of the energy
jump which is due to reversible processes, for example, the jump in
elastic energy, does not pose any particular difficulty once constitutive
equations have been chosen.

Much more delicate, on the other hand, is the estimation of
irreversible phenomena. These include irreversible work done on the
material, as well as thermal phenomena. We are talking here about
irreversible processes involved in transporting a particle from one
side of L to the other side, and not about dissipation and heat
conduction leading to internal entropy production away from I (these
can be estimated independently).

It is intuitively clear that there must be a complex interdependence
between the physical nature of these irreversible processes and the
boundary velocity. Several regimes may in fact occur: for example, for
a slowly propagating failure, transfer of energy by diffusion mechanisms
(e.g., heatflow, diffusion of point defects and crystal dislocations)
can be critical, while kinetic energy terms may be neglected. On the
other hand, Yokobori (1965) points out that little plastic work is done
in the case of a rapid propagation of a brittle rupture. In that case,
the propagation is more likely controlled by momentum transfer. Using
the excitation of free oscillations of the Earth, Dziewonsky and Gilbert
(1973) show evidence that two very different regimes of failure may
take place successively during a seismic event; more particularly, two
deep South American earthquakes were preceded by a slow compressive

phase, with essentially no high frequency radiation. Possible creep
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events taking place prior to earthquakes would fall in the same category
of phenomena.
Since an elaborate discussion of such processes should be rather

involved and quite lengthy, we shall simply write

H?uﬂ = ![pwreéﬂ + Ustir;H (I11-3-2)

where we have isolated the work done reversibly. The second term
contains both reversible and irreversible thermal effects, as well as
irreversible mechanical effects. It reduces to the latent heat of phase
change in the simplest case (see Chapter I).

For shallow earthquakes, this term can be estimated approximately
as follows: Suppose that the generalized phase present in the failure
zone is formed of a highly cracked material, to the point where the
medium is essentially granular. Then if 4 1is the new surface density
(per unit mass) created upon failure, & the surface energy per unit
area, and ([ the surface plastic work per unit area (e.g., Yokobori,

1965), we have

H:pTSirr]] = ps(etr) . (TIT-5-3)
b

Now, if we denote the grain size by /4 , the surface created is
proportional to &fl , so that the work done to finely grind the
material becomes very large, and less energy is available for radiation.

Of course the finest grain size is not expected to be reached immediately
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upon failure, since further irreversible work of this type must occur
inside the failure zone, which can be taken into account through the
constitutive equations.

It should be noted in that respect that if gaseous or liquid
material permeates the cracked medium, the surface tension is decreased
(e.g., Yokobori, 1965). The work done in (III-3-3) is thereby
lessened, increasing the chances of runaway rupture. This aspect 1is
particularly interesting because of its obvious connection with the
dilatancy-diffusion model of earthquake prediction (e.g., Whitcomb
et al., 1973)

For deep earthquakes, the shear melting hypothesis proposed by
Orowan (1960) and Griggs and Handin (1960) suggests that true phase
change takes place, which can be treated by standard procedures (e.g.,
Ida, 1970). Using the "local equilibrium' theory, this author shows
that a small pocket of molten material embedded in a non-hydrostatically
stressed solid evolves into a thin sheet, and suggests that this could
initiate the shear melting process.

As we saw in Chapter I, when no density jump occurs, and when the
kinetic energy is continuous across L , then the jump in internal
energy reduces to the latent heat of phase change. Thus the ideas
developed above constitute in a formal sense a generalization of
Stephan's problem, and one sees how the concept of latent heat has to
be generalized to model the failure phenomenon as a generalized phase
transformation.

The ideas which we have advanced so far allow for a solution to

the failure propagation problem, once failure has been initiated;
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nothing has been said, however, about the phenomenon of incipient
rupture. This aspect of the question has been investigated in rather
great detail from the microscopic point of view. Treatment of the
nucleation problem, and its connection with the theory of crystal dis-
locations can be found, for example, in Yokobori (1965), along with an
extensive bibliography. Clearly, because it takes into account the
physical nature of crystalline materials, this treatment must be kept in
mind when constructing a continuum mechanical failure criterion.

The stress-strain curve for many materials may often be separated
into two parts. Figure III-3-la shows an idealized curve where two
regimes of material flow occur in succession as the load increases. The
segment OA represents a perfectly elastic regime where the strain is
fully recoverable, whereas the segment AR represents a purely plastic
regime, in which the material is unable to sustain ény further increment
of stress, and flows in such a way so as to keep the stress level
constant. The plastic strain thus generated is no longer recoverable,
and the area of the rectangle ABCD is the plastic work done when the
strain increases from B to C . Rupture occurs at the point R
Since plastic yield is primarily associated with deviatoric stresses, we
may ignore, to first order, the hydrostatic stresses. A more complete
description of the phenomenon and a comparison to experimental results
can be found in any textbook on the subject.

On the basis of this idealized behavior, Cherry, et al. (1973) use
the following rupture criterion in numerical calculations: the material
is treated elastically up to the yield point A . This yleld polnt 1is

usually determined by a Von Mises criterion, or, equivalently, it Is
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Figure III-3-1. a) Stress-strain curve for an elastoplastic material.
OAR and O'A'R' are two possible regimes corresponding to different
loading conditions. A and A' are yield points; R and R' are
rupture points. b) Internal energy associated with 1) elastic defor-
mations caused by the deviatoric stresses, and 2) plastic work, as a

function of strain.
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reached when a level uéD) of the internal elastic energy associated
with the deviatoric stresses is attained (figure III-3-1b). The
material is then treated plastically afterwards, and a specified amount
@) @)
u

of plastic work u -

R b is required before rupture occurs.

The criterion can obviously be changed at will so as to use, say,
the curves OA'R" . The geometry depicted in figure III-3-1 might
correspond, for example, to two different strain rates. In that case
OA'R' would correspond to a higher strain rate than OAR . This is
not unreasonable since it is known experimentally that the yield stress
Tp increases with the strain rate. The path OA'R' could also corres-
pond to a lower temperature than OAR, since temperature effects can be
traded off with strain rate effects (e.g., Yokobori, 1965). The
additional assumption which we make in this figure is that the internal
energy associated with 1) the deviatoric elastic strains and 2) the
plastic work, reaches a specified value at rupture. This is also an
acceptable simplification, since the more brittle the rupture (e.g.,
OA'R' ), the less plastic deformation is observed before it (see e.g.,
Yokobori, 1965).

Such a rupture criterion based on energy, although it 1s very
simplified, and would have to be checked against observations presents
several advantages.

First of all, it can be applied point-wise, which is realistic, and
rather convenient in numerical work. Furthermore, it would provide a
natural tie with the dynamical concepts discussed earlier: uéD) is the
energy level required before phase transformation can occur at all.

Third, it can be generalized to include more sophisticated situatlions:
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Coleman (1964) developed the theory of thermodynamics of simple materials
with fading memory. This theory assumes very general constitutive
relations for the material, which satisfy the principles mentioned
earlier. More particularly, the stress, the internal energy, the entropy,
and the heat flow are functionals of the deformation and temperature
histories of the medium. The heat flux depends also on the present
temperature gradient. The concept of fading memory is adopted as a
principle which states that effects of the distant past are less
important than those of the recent past. More specifically, the present
state of the material depends strongly on recent deformations and
temperature changes, but is practically independent of deformations and
temperature changes which took place long ago. This results in a
different material behavior under rapid deformations than under slow
deformations. These circumstances have obvious applications in Earth
sciences, where the long~term deformations associated with tectonics,
or with isostatic rebound constitute one regime, while rapid deformations
caused, for instance, by seismic events call for a different material
behavior.

The problem obviously needs to be thought out very carefully; for
example, if the material goes through a phase change, so that the new
phase possesses a different memory function, then we are faced with the
situation of a material having a memory, but no past. This idea is
certainly worth further investigation, and could yield very useful

results. Such work will be undertaken in the future.
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Conclusion

The treatment of the energy balance for a seismic source model of
the relaxation type, as given at the beginning of this chapter, clarifies
the question of where the radiated energy finds its source. Particularly
important is the realization that the radiation field serves to carry
energy from the vicinity of the source to other points in the Earth. It
serves, in particular, to redistribute the gravitational potential energy.
Thus, while the seismic radiation comes essentially from the release of
tectonic elastic energy, one is forced to take into account the work of
gravitational body forces in the source region since it does contribute
to the radiation field.

It is proposed that the detailed energetics of the phenomenon can
be used to help model the dynamic failure process. Failure can be
thought of as a generalized phase change of the material, and the
evolution of the failure boundary is then controlled by the energy
transport equations. In addition, an energy criterion can be devised to
determine the occurrence of incipient failure.

This approach presents great potential, since it should lead to a
more physical representation of earthquakes, in as far as it allows for
the modeling of a completely spontaneous phenomenon, depending only on
the thermodynamic state of the medium and its constitutive equations.
Finally, the thermodynamic theory of simple materials with fading
memory is particularly attractive in this context because of the broad
range of time scales encountered in geophysics. Very long time scales
apply to problems such as the recurrence of earthquakes, deformations of

the crust by tectonic loading, isostatic rebound, etc., and, in that
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case, viscous and plastic behavior of earth material cannot be ignored.
On the contrary, wave propagation problems in the Earth can be treated
by assuming a quasi-elastic behavior of the medium under rapid

deformation.
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Chapter IV

THE GROWING AND PROPAGATING SPHERICAL RUPTURE

Introduction

The representation theorems developed in Chapters I and II are quite
general in nature since they only assume that the material retains its
elastic properties up to the failure point. In particular, no assumption
was made as to the rupture geometry, or as to the rupture propagation
mode. It is clear, however, that these representation theorems will
yield analytical solutions for the radiation field only in very special
cases, and even then, under further simplifying assumptions. Any attempt
to model accurately a realistic situation has to be handled via numerical
techniques.

This is not to say that it is ludicrous to consider analytical
solutions, even at the cost of oversimplifying the problem. On the
contrary, we would like to emphasize their importance in terms of
obtaining a basic understanding of the phenomenon. Whereas a numerical
approach enables the investigator to handle simultaneously many parame-
ters ——including local heterogeneities in the material--it also prevents
him from isolating the individual effects of these parameters; the more
numerous the parameters are, the more difficult, the lengthier, and the
costlier it is to conduct a parameter study. On the other hand, when
constructing a model which can be investigated analytically, one often
has to limit the free parameters to 1) those which lead to tractable
analysis and 2) those which are deemed necessary for a reasonably

complete representation of the phenomenon.
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In modelling the relaxation source, one has to know the rupture
geometry as a function of time, the rheology of the material within the
failure zone, the intensity and orientation of the prestress, and a
measure of the localization of the prestress.

The geometry that lends itself best to an analytical treatment is
that of a spherical rupture zone. This is obviously an excellent
configuration if one wishes to model the tectonic effects of an under-
ground explosion (e.g., Archambeau, 1972), but it does not conform to
one's intuitive idea of the geometry of a fault zone. However, if an
underground nuclear explosion is detonated in a prestressed medium, then
in addition to the direct field caused by the cavity overpressure, one
observes an anomalous radiation field. Whereas the direct "explosion
field" has a completely symmetric (monopole) radiation pattern, the
anomalous field exhibits a quadrupolar radiation pattern (e.g., Lambert
et al., 1972). A quadrupole is typically the radiation pattern of a
double-couple, which is the widely accepted point force representation
of an earthquake (e.g., Burridge and Knopoff, 1964). In fact, this
anomalous radiation led Aki et al., (1969) to suggest that an earthquake
was triggered by the BENHAM underground nuclear event. Archambeau and
Sammis (1970) and Archambeau (1972) showed that the simple stress
relaxation caused by the presence of the explosion generated cavity is
sufficient to explain the anomalous part of the radiation (see also
Lambert et al., 1972). One can thus say that the anomalous radiation of
an undergound nuclear explosion is "earthquake like," justifying the
suggestion that the radiation field generated by an earthqdake can be

adequately modelled even with a spherical geometry (e.g., Archambeau,
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1964, 1968). In addition, seyeral authors have presented arguments
supporting the idea that deep earthquakes may be caused by a large scale
rapid phase change of the material, which could be due to metastable
thermodynamic initial conditions (see e.g., Archambeau, 1964 for a
discussion). In that case the spherical geometry could very well be a
good approximation to the real failure zone configuration. A much better
approximation would be obtained by adopting an ellipsoidal rupture zone.
Such a case will be considered in Chapter VI, but the analysis becomes
very cumbersome and there is little reason to believe that the gross
properties of the radiation field should be strongly dependent on the
rupture geometry. In fact, physical experience, and field observations--
which leadrin particular to fault plane solutions--show that the basic
radiation pattern of the radiation from an earthquake is a double couple.
Thus any model should exhibit this feature, and this condition has to be
satisfied independently of the choice of geometry. We shall see how it
is so for the épherical rupture, and how rupture propagation effects
alter this conclusion at high frequency.

The question of the rheology of the material within the rupture
zone is to be considered next. If one wishes to model an underground
nuclear explosion, then there is little argument that the material loses
its rigidity inside a spherical region surrounding the detonapion point:
the shatter zone.Archambeau and Sammis (1970) and Archambeau (1972)
present a detailed model of the radial variation of material behavior
around the explosion cavity. We shall refer the reader to their work
for a more complete discussion.

Earthquake modeling is somewhat more subtle. Many authors are in
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favor of the stick slip model for shallow earthquakes, and thus friction
could play a significant role. On the other hand, we argued in

Chapter III that the cushion of granular material——the "fault gouge''--
generated inside the rupture zone, probably has a very reduced resistance
to shear motion, compared with the surrounding material, the grains
composing this material acting in a way analogous to roller bearings.
Further, if friction were high, and the confining pressure high also--as
would be the case for a moderately deep earthquake--then one expects the
energy dissipated by friction to generate a lot of heat in a localized
zone, and possibly shear melting could occur (e.g., Griggs and Handin,
1960; Ida, 1970). Using arguments along those lines, and taking into
account the possibility of fluid flow if the medium is porous, as well
as the possibility of material dehydration under suitable thermodynami-
cal conditions, Archambeau (1968) concludes that boundary conditions
corresponding to vanishing shear strength in the rupture zone are
appropriate. This may lead to some concern that oscillatory relative
motions ("overshoot'") between the two sides of the failure zone might
occur under these circumstances (e.g., Molnar et al., 1973). However,
under the definition of source transparency given in Chapter II, we have
shown in section II-3 (equation II-3-9) that the instantaneous
relaxation source model is equivalent, in an infinite space, to the
instantaneous creation of a Somigliana dislocation with a step function
time history, plus an instantaneous stress step pulse on the rupture
boundary. There is, therefore, no overshoot in that case, and growth
and propagation effects should not alter this conclusion. (The local

nature of the prestressed zone, however, can lead to apparent
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"overshooting,"

as will be shown in this chapter.)

0f course, the shear resistance of the material may not vanish
completely in the rupture zone as non-elastic effects are likely to be
important. In fact, a frequency dependent shear resistance could very
well take place; these could be modelled as viscoplastic effects, but
the only circumstance in which analytical solutions can easily be
obtained is when the material inside the rupture zone is treated as
elastic with small non-vanishing rigidity. Such an approximation is
dynamically justified inasmuch as viscoelastic or viscoplastic materials,
or for that matter any material with fading memory (e.g., Coleman, 1964),
behave quasi-elastically when submitted to very rapid deformations, such
as those encountered during the failure phenomenon. More complex models,
including more general constitutive equations, would have to be treated
numerically. TIn this chapter we shall assume that the shear strength of
the medium vanishes upon rupture. As we pointed out in Chapter III,
this assumption leads to the most efficient relaxation process, and
thus since energy dissipation in non-elastic phenomena is ignored, we
shall get an upper bound to the radiated energy. If the rheology of the
material within the failure zone were viscoelastic, then one would have
to introduce frequency dependent effective elastic moduli. The energy
spectrum thus obtained would be somewhat different; more energy would be
radiated at long periods, for which the effective rigidity would be
small, and less energy at high frequencies for which the effectilve
rigidity would be higher.

Growth and propagation of the failure region will be treated by use
of the results given in section II-4. However, when these phenomena

occur, one loses the spherical symmetry, inasmuch as the instantaneous
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reference frame in which this symmetry is preserved moves with the
failure zone. If the spherical rupture undergoes self-similar growth--

a case appropriate to the modelling of an explosion-—then a constant
immovable reference frame can be used (e.g., Archambeau and Sammis, 1970).
If there is propagation as well as growth, then a moving coordinate
system with origin at the instantaneous center of symmetry has to be
introduced, in which the initial value fields take a rather simple form.
But the radiation field is best represented in a fixed coordinate system,
with its origin chosen, say, at the point of initial rupture--the
hypocenter. Two approaches are then available:

First, the dynamic part of the problem can be entirely handled in
the fixed coordinate system. One must then express the initial value
fields in that frame, and this can be done by use of the addition theorem
for solid harmonics (see section IV-1). This is the attack chosen by
Archambeau (1964, 1968). It calls for approximations made early in the
solution of the problem, and leads to relatively simple results. The
treatment given in section IV-2 is essentially similar to Archambeau'’s,
but the results are cast in a much simpler form than his, and asymptotic
behavior of the radiation spectrum can be studied quite easily.

The second attack consists of evaluating the dynamic field in the
moving reference frame, and of finding its expression in the fixed
reference frame by continuous, time-varying translation of the
coordinates. This method calls for the addition theorem for spherical
waves, proved in Appendix 9. With this method the approximations are
not made until a fairly advanced stage of the analysis. The results are

slightly more accurate when this approach is used, but take a somewhat
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more complicated form. We shall show that the asymptotic behavior of

the radiation spectra are the same whether one method is used or the
other. This supports our contention that the gross features of these
spectra are reascnably well predicted by our model.

One limitation to the propagation of the rupture zonme is imposed by
our ambition to treat the problem analytically. Healing phenomena are
rather difficult to consider analytically other than by a pure kinematic
representation, such as the one provided by a dislocation model. The
stress concentration around a spherical failure zone is tractable only
if the sphere is embedded in an homogeneous medium, which is not the case
if this sphere is found at one extremity of a zone having failed and
then healed. Indeed, there exists then a static deformation of the
medium in that zone which will interact with the sphere and greatly
complicate the analysis. Furthermore, there is not even any insurance
that healing occurs when static equilibrium has already been reached.

In fact the material can '"'freeze" in the rupture zonme while relaxation
is still in progress. In order to avold such complications we shall
assume that no healing occurs, and that, once a material point has
failed, it stays within the rupture zone during the total duration of
rupture.

Specification of the prestress is essential in the relaxation
source model. Since we are mainly interested in failure mechanisms
associated with the deviatoric stress tensor--in particular, failure
under shear--we shall ignore here the effects of the lithostatic
pressure. This is an approximation, especially in the case of an

explosion, where a definite cavity is created, but then one can treat
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this question in connection with the radiation field caused by the over-
pressure in the cavity. In the case of an earthquake, the lithostatic
pressure may have two effects:  the first one is a direct effect
associated with a possible change in specific volume of the material
upon failure (see Randall, 1964). The second one is essentially a
second order effect, taking place at very high pressures; then elastic
waves must be treated as small deformations superposed on large
deformations. Dahlen (1973) investigated the effect of pressure on

a dislocation source.

We shall consider hereafter the case of a medium prestressed in
pure shear only. In fact, for reasons of simplicity, we shall assume
that only the off diagonal elements of the stress tensor Gij are non-
zero, when expressed in a natural coordinate system of the source. Such
a natural reference frame is one where the z-axis points in the direction
of rupture propagation. This does not reduce the generality of the
solution since the transformation of the radiation field under change of
the reference frame can be found afterwards (this is done in Chapter V).

Much more important is the parameter specifying the site of the
stressed zone. We have already argued several times (section II-3,
section III-2) that the Earth is finite in size, and is certainly not
adequately modeled by a uniformly stressed infinite space. Furthermore,
earthquakes are confined to relatively narrow zones, and this suggests
that the prestress is high enough only over limited regions. On
intuitive grounds, one expects that the dimension of the prestressed
regions might have a definite effect upon the shape of the radiation

spectrum. In particular, one expects essentially two characteristic
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wave lengths to appear in the spectrum, one of them related to the
characteristic dimension of the rupture itself, and the other one
related to the characteristic dimension of the prestressed zone.
Following Archambeau (e.g., 1964), we shall designate the characteristic
dimension of the prestress zone by RS , and shall call it the relaxa-
tion radius. It is important to realize beforehand that RS is a very
physical parameter, even though we shall investigate its effects through
a mathematical approximation. RS is the radius beyond which the static
stress change due to failure is negligible. In other words, we may
assume that the initial value fields wvanish very fast outside RS .

The reasons why one should expect significant stress changes to
occur only in a finite region have been enumerated before: the Earth is
finite in size, and high stresses are apparently confined to limited
regions; the proximity of the free surface, or of heterogeneities, are
additional reasons; also measured static strain changes seem to be
confined to the vicinity of the event (e.g., Jungels, 1973; Jungels and
Frazier, 1973).

This concept is especially important for relaxation source models,
because such models lead to volume sources (Chapter II). Stress pulse
models or displacement dislocation models do not allow any convenient
introduction of RS . The effect of the relaxation radius is essentially
to limit the volume of the source: All the radiated energy finds its
source within Rs . An observer standing outside the relaxation zone
is completely outside the source region, and can encapsulate it in a
"black box" inside which all the radiation generating phenomena occur.

An observer standing within the relaxation zone is inside the source
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region, and we shall show that in that case, it is meaningless for him
to speak of "far field" radiation, because stress relaxation takes place
eyverywhere around him.

The mathematical approximation that we shall choose in order to
introduce RS is as follows: If the prestress is approximately
uniform in the vicinity of the failure zone, then, in that vicinity the
initial value can adequately be computed as if the medium filled the
whole space, and were homogeneously stressed. This is a good static
"near field" approximation. But we know that physically, because of .
inhomogeneities (or because of the proximity of a free surface), the
prestress, and therefore the initial value, vanishes quickly outside the
radius R.S . We shall approximate the initial value fields up to the
distance RS from the origin by those computed for the infinite space,
and we shall truncate them at RS . Archambeau and Sammis (1970) show
that even in the case of an infinite space, most of the energy released
comes from within a distance of less than five source dimensions from
the rupture zone. Therefore we approximate a smooth decay of the initial
value fields by an abrupt truncation. This will clearly lead to an
overestimation of the radiation fields. The important aspect is that
we have chosen here a mathematical approximation to a real physical
situation.

0Of course, a special case of interest is that where RS is taken
to be infinite. This was suggested by Randall (1973, a, b) to be the
only correct choice for RS , on the basis of the mathematical approach
used above. But taking Rs infinite constitutes a very different kind

of approximation: one then has an exact mathematical formulation of an
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unphysical problem. The approximation of the Earth by an infinite
homogeneously prestressed medium is of a physical nature, and although
it leads to a convenient exact mathematical formulation of the problem,
we consider that this is not desirable. Our philosophy is to choose an
approximate mathematical solution in a likely physical situation over an
exact mathematical solution to an unphysical problem.

We shall see in this chapter, and also in Chapter VII, that the
size of the relaxation strongly affects the shape of the theoretical
displacement spectrum: It is intuitively clear that the largest wave
length efficiently radiated by the source will be connected with RS .
A source region of limited size will be a rather inefficient long-period
radiator, and thus one expects the displacement spectral amplitude to
decrease at long enough periods, except if RS is taken to be infinite.

We shall show that the only case where Rs can usefully be taken
to be infinite arises when the observer stands inside the relaxation
zone. This can easily be explained by the fact that such an observer
lies within the source region (as would any observer if RS is infinite).
Such an observer cannot speak in a meaningful way of long-period far-field
radiation. Although it is possible to mathematically define such a
concept, its physical significance is not clear: The fact is that an
observer lying within the source region will always observe source near-
field effects at long enough periods. The mathematically defined far-
field radiation (that is, that part of the field which decays with
distance as 1/r) can only be compared with the observations for wave
lengths short compared to the distance between source and observer. If

the far-field is to have meaning at longer periods, then the observer
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must recede away from the rupture zone accordingly; however, since Rs
must be finite for the reasons given above, the observer must eventually
find himself beyond RS , and the finiteness of the relaxation zone
can no longer be neglected. A particularly interesting result is that
this mathematically defined far-field radiation possesses a spectrum
identical in shape with that predicted from the usual dislocation models
for which the displacement jump history is a step function in time
(e.g., Aki, 1967). This is not surprising in view of the equivalence
that we proved in that case in section II-3. Further discussions of
these aspects of the question will be found in this chapter, and also
in Chapter VII.

The organization of this chapter will be as follows:

In the first section we shall formulate the problem and define the
various variables to be considered. The potentials introduced in
section I-4 will be used throughout, as well as the results of section
II-4.

The two next sections will be devoted to solving the radiation
problem by the two attacks described above respectively. In each case,
asymptotic behavior of the spectra will be discussed, along with the
effects of the various parameters. The multipolar representation of the
radiation fields introduced by Archambeau (1964) will be used throughout.

Finally, a discussion of the displacement spectra and of other

useful source characteristics will be given in a last section.
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IV-1 Formulation of the problem

i) The potential solution in the frequency domain

Our ultimate goal is to obtain the displacement u; at every point
in the medium, as a function of time, or equivalently as a function of
frequency. But rather than manipulating the complicated Green's tensor
solution developed in Chapters I and II, we choose to consider the four

scalar potentials Xa » a=1,...,4 defined in section I-4, namely

1=1,2,3

(IV-1-1)

|
(=]

X =

The potentials Xy > i=1,2,3 are the cartesian components of the
rotation vector potential, even though we shall use a spherical coordi-
nate system; Xy is the dilatation. These scalar potentials satisfy
wave equations.

The theory of stress relaxation sources was developed in Chapter II,
and it was shown that, for a transparent source, the relative dynamic

fields, measured with respect to the final equilibrium fields were given

by

* *
Xo (T8 = X, (r, 7)) = X, (r,¢)

*
t oy, ol
1 . a __a (o) ;
+ 2[ l[(10 t,) dt() f el > dv (1v-1-2)
Guc o

aJo Vi)
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*

Here ¥y is the initial value field, which is a function of the source
time t0 % To for a growing rupture zone. Gog is the wave velocity
associated with the potential Xa , and Ta is the infinite space

Green's function for the wave equation satisfied by Xo ° We have

c, =V » 1=1,2,3 ¢, =V, (IV-1-3)

where VS and Vp are the S-wave and the P-wave velocities,

respectively. Also (Morse and Feshbach, chapter 7)

S(I*/cu - t*)
Pa(r’t;ro’to) i * . (IV=1=4)

*
Here r = Ir—IbI is the distance between source point and observer's
; * . *
point, and t = -t . It is clear, since r >0 , that T
*

vanishes for t negative so that we have a causal Green's function
(cf. section I-3).

In most cases, that is except for extreme near-field studies, the
observer will be concerned about times greater than To , the total

rupture duration. In such a case (IV-1-2) takes a simpler form and,

using (IV-1-4) we may write

(IvV-1-5)
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This is the expression used by Archambeau (e.g., 1972). For time
t < To , the analysis shown in this chapter can be duplicated by using
(IV-1-2) , and the results become more complicated.

It is convenient at this point to take the Fourier transform with
respect to t of both sides of (IV-1-5) so as to work in the

frequency domain. We define

+oo ;
X (T50) =f Xg (Y1) e at (1IV-1~6)
so that
Foo
1 . it
Xot(r’t) k- xa(r,m) e dw d (Iv-1-7)

We shall concern ourselves only with points r at large enough
distances from the rupture zone so that Xa(r’t) vanishes for t < To 3
and that (IV-1-5) dis then a valid representation at all times for such
points.

Since t 1is only a parameter on the right-hand side of (IV-1-5) ,
we can apply the transformation (IV-1-6) to both sides of this equation,

and use the following relations

%E; [G(I*/cu - t* )] = - %E [G(I*/ca - t*)]
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and

*
oo -ik r -iwt
* * ~1,
‘[ g_t[6(r /ca-t )] e HUE dt =iwe O e B

—Co

where the wave number ka is equal to w/ca

The solution may therefore be written in the frequency domain as

*

T *  -ik T
: o -iwt ax o
~ _ iw [ a e (o) s
xa(r,w) = 2[ e dto f 0 = dv (IV-1-8)

hﬂca s U(to) o T

Now the volume V(to) is the volume lying outside the rupture zone
itself, and within the relaxation radius R8 . We consider a spherical
coordinate system with origin at the point of incipient rupture and
polar axis along the direction of propagation of the rupture (see

figure IV-1-1). Then (IV-1-8) becomes

i 2T m
X, ( W) = " 2/ dg_ sin 6_ d6_
CO. o o

(1V-1-9)
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This equation gives us the potential solution in the frequency domain,

provided that we can perform the integratioms.

ii) Geometry of the rupture

The geometry of the rupture is described in figure IV-1-1. The
fundamental coordinate system, hereafter called the source coordinate
system has its origin 0 at the point of incipient rupture. The source
spherical coordinates are I, ¢o 5 60 . The failure zone is a

sphere of variable radius R(to) centered on the 2z axis at a distance

d(to) . The constraint that no healing occurs can then be written

d(to) < R(to)
for all to . (1V-1-10)
d

d_to [d(to) + R(to) ] i 0

Another coordinate system, hereafter called the moving system, is
defined in order to take advantage of the spherical symmetry of the
source. It has its origin at the center O0' of the rupture, and is
obtained from the source system by a translation d(to) along the z
axis. The relaxation zone is taken to be the inside of a sphere ﬁith
center at O and of radius RS .

The point P dis an arbitrary observer's point, with coordinates
r , 8 , ¢ in the source system; the point Q 1is an arbitrary
source point.

If one wishes to model an explosion, then no propagation occurs and
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zAzO 5
P |6
¢
r*
;
Q|6
s, r | ¢
o' & A !
8o - E
d(to)!
, 0 * : —vp
A :
— - 1
s ¢0:9‘-’
X0

Figure IV-1-1. Geometry for a propagating spherical rupture of radius
R(to) . 0 is the origin of the source system, O' the origin of the

moving system. Q is a source point,and ‘P the observer's point.
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d(to) is taken to vanish for all source times - For an earthquake
with unilateral rupture propagation one may choose d(to) = R(to) at all

times so that the rupture front propagates with the rupture velocity

g9 &
VR T 2 &t
(0]

R(to) , while no motion of the boundary occurs at the point
of incipient rupture. It is intuitively clear that after a finite
propagation most of the stress relaxation will occur ahead of the
rupture front, while little energy will be radiated from the vicinity of
the hypocenter. With this particular geometry the propagation effects
will then be the strongest. We shall assume VR < VS &

If one is interested in studying the radiation field from a small
rupture zone propagating rapidly, it is possible to consider the case
where d(to) grows faster than R(to) . One has to remember, however,
that the permanent deformation present in the "healed" part of the
rupture may have been ignored. Since this is essentially a static effect,
such a model is not strictly appropriate for long periods; but since'
most of the relaxation occurs in the vicinity of the rupture front, this
model yields approximately valid results at high frequency, provided
that one removes from the solution the energy radiated from the "tail"
of the rupture.

The geometry described on figure IV-1-1 is thus quite flexible and

will permit us to model a reasonably wide variety of situations.

iii) Computation of the initial value

%
For each source time to , the potential Xu 18 a harmonic
function and may be expanded in solid harmonics (e.g., Archambeau,

1968), that is, in the moving system, at t,



0 n
X:(r'sto) = 2: ‘—-;%;FI E: [aég) cos mp' + béz) sin m¢‘]
n=0 (r'") m=0
+ Pl (cos 8") (IV-1-11)

The perturbation to the elastic fields in an infinite medium under homo—
geneous stress at infinity caused by a liquid spherical inclusion can

be calculated by a variety of methods. Archambeau (1964) used the
solution given by Landau and Lifschitz (1951), who found the displacement
solution as a combination of biharmonic functions. When the prestress

is a pure shear at infinity, Archambeau was able to show that only the

quadrupolar term (n=2) is in fact present in (IV-1-11) , so that

* 1 2 (o) (o) m
Xa(r"to) = 3 z: [azm cos mp' + me sin m¢'] Pz(cos e")
(r") m=0

(Iv-1-12)

and the (static) coefficients agﬁ) and béi) are given by

T The coefficients given by Archambeau in his publications prior to 1973
have to be divided by -2 for o = 1,2,3, they are correct for o = 4.
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(o) (0) ©),, |
3023 12 —012 /2 =053 /4
30§g)/2 0 ogg)/a
5[(1-0)-8 _, 0]
(a)(t § = (7_50)a4 RB(t ) y
H 9 0 °)/2 oig)/z
5(@)
0 o 0 |
(IV-1-13)
and
i (0),, |
0 0 914 /4
(o) (0)
5[(1-0)-8 ,0] 0 015 12 /4
b (e ) = B8 — 2l )
2m (7-50) o (@)
0 013/2 0
(o) (o)
i 0 923 015 /2
(IV-1-14)
(o)

Here the quantities Uij are the components of the homogeneous
prestress, chosen to be pure shear in this case.

In order to isolate the time dependence of these coefficients we

write

agi)(to) .(z) R(t )
(1TV-1-15)
(u) .(a)

(t)= om R(t)
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The expansion (IV-1-12) holds in the moving coordinate system.

The azimuthal dependence exhibited by this expansion of the static
fields must essentially be that of the very long period radiation, for
which propagation effects are not expected to be very strong; we
therefore see, since only the quadrupole term is excited, that the long
period radiation pattern must be essentially quadrupole, which is in
agreement with the observations.

Note that for geometries other than spherical, one does not expect
only the harmonics of degree 2 to be excited, especlally close to the
rupture zone; but for r' sufficiently large, because of the radial
dependence of the solid harmonics, one expects the quadrupole to
dominate in all cases.

The solutions given in the next sections assume that the rupture
velocity VR is less than or equal to the wave velocity Cy It is
clear that for a supersonic rupture velocity, the rupture may be
considered to be instantaneously created. In particular, if
VS < VR < Vp the problem is to be treated differently for the
rotation potentials and for the dilatation. We shall not treat such
cases explicitly; Archambeau (1972) presents a discussion of the

subject, in the context of explosion modelling.
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IV-2 Archambeau's method of solution

The first approach to the dynamical problem as described in the
introduction to this chapter, consists of evaluating the dynamic solution
(IV-1-9) in the source coordinate system. This is the attack adopted
by Archambeau (1964). The results which we shall obtain in this section
are of somewhat simpler appearance and of greater generality than
Archambeau's results, and reduce to these results in specific

circumstances.

i) Translation of the static fields

The first step we have to take is to find an expression for the
*
initial value fields Xs in the source coordinate system. We know that
in the moving system we have

nm

© & ) 2
X;(r',to) = z—: Ln-rl— mg [at(lz) cos mp' + b(a) sin m¢'] . Pz(cos 8')

(IV=-2-1)

where only the term for n=2 is present, and where the coefficients

(o)

aéz)(to) and bnm

(to) are given by (IV-1-14) .

The coordinate transformation that we wish to perform is a simple
translation, of amplitude _d(to) , along the polar axis. In that
translation the azimuthal angle ¢' does not change so that ¢0 = ¢' .

Then from Hobson (1931, p. 140) we have the following addition theorem
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Pm(cos on =) a(t ) \s
n (n-mts) ! o m
(r,)n-i-l B n+l z=: (n-m) ! s! ( T, ) Pn+s(cos 60) (Iv=-2-2)

which converges uniformly with respect to r for r > d(to)

Substituting (IV-2-2) into (IV-2-1) , where we need keep only

the term n=2 ,

o 2

* ~ 1 (o) (o)

Xa(ro’to) = Z: Z =3 [azm cos m_+ b, ° sin m¢0]
s= m=0 ro

N d(t ) \s
, (s+2-m)! ( o ) Plg_'_s(cos 0.) .

(2-m)! s! T
o]

(Iv-2-3)

This equation may be transformed by defining & = s+2 and by using

(Iv-1-14) ; we get

o 2 R (t ) d (t )
X;(ro,to) = p,gz E e} [aééla) cos m¢0 + bé;a) sin md)o]

m=0 r
o

(2-m) !
(2-2)! (2-m)!

P (cos 8) , (IV-2-4)

1 (OL)

where the coefficients a;hga) and b are given by (IV-1-14) ,
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and are time independent. Note that only the harmonics of degree > 2
are present; in particular for d(to) = 0 , one must keep only the term
for £2&=2 in (IV-2-4) . This is the case for a purely expanding
(non—-propagating) spherical rupture, appropriate for the modeling of an
underground explosion in a stressed medium.

The equation (IV-2-1) is merely a particular case of (IV-2-4) ,
where a sum over £ reduces to its first term. Recall that (IV-2-4)
is only wvalid for r > d(to) . This means that the use of this
expansion restricts the possible volume of integration in (IV-1-9) .
However, as shown on figure IV-2-1 , the forbidden region, delineated
by horizontal stripes is a region where the material is presumably
already relaxed, so that one does not make a large error in ignoring
the energy radiated from it. In fact, one would rather avoid including
any part of the rupture zone itself from the volume of integration, and
one is thus led to restrict the volume of integration to the exterior
of the sphere of radius d(to) + R(to) passing through the rupture
front. One argument in favor of this choice is that most of energy
radiated comes from the vicinity of the rupture front, while the energy
ignored (that emanating from the vertically striped region) is likely to
be absorbed by the inelastic, nonlinear processes of rupture.

Numerical calculations (Chapter VII) show that if the volume of
integration is restricted to the exterior of a sphere centered at 0 ,
and of radius RO such that d(to) < Ro(to) o d(to) + R(to) , then

the rate of convergence of the solution improves notably when Ro is

chosen close to the upper bound of this range. But we then found
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B 7

Figure IV-2-1. The sphere of center 0' and radius R(to) is the
rupture zone. The rupture front propagates at the velocity VR .

The initial value volume integral can be taken external to the sphere
of radius vRto , or to the sphere of radius d(to)
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that the final result is rather insensitive to Ro . For our present
purposes, we shall choose the upper bound of this inequality, and if
VR is the propagation velocity of the rupture front-—hereafter called

the rupture velocity—then the volume of integration is restricted to

the exterior of the sphere of radius VRtO -

ii) Evaluation of the radiation fields

In view of the discussion presented above, the radiation field given

by equation (IV-1-9) takes the form

iw 2m T
X (r,w) = [ d¢] sin 6 d6
o 2 o o) o}
4me
avo o

T * *
° _mmo Rs a&xe 2
. e dto T o r, dro (IV-2-5)
v o

We shall now evaluate the integrals appearing in (IV-2-5) . Two
cases arise: either the observer's point lies within the relaxation
zone, and r < Rs , or it lies beyond RS . For convenience we shall
consider the former instance first, then the results thus obtained may
be easily adapted to the latter case.

Let us first replace the Green's function appearing in the integrand

by its usual spherical wave expansion (e.g., Morse and Feshbach, 1953).
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We have
(2)
-iqu* o jl(karo) by Ger)
& =ik ) (2MD) P, (cos )
r @ A=0

2 ()
Splegm) Bz s

(IV-2-6)

where the upper pair of Bessel functions are to be used when r > oo
and the lower pair when 1r < r,o- Here the angle Yy 1is the angle
between the vectors Ir and A (e.g., Stratton, p. 407) and we have

(Stratton, p. 408)

A
_ sy Otk k
Py (cos Y) = &E% (2 - 8, ) GagT Facos 8) Py(cos 6 ) cos k(¢=0,) .
(Iv-2-7)
where Gko is the usual Kronecker delta. We also have the integral
relation (Stratton, p. 407)
2m il = u¢o
[ [ Pk(cos ) P%(cos 60) sin Go dGO d¢0 =
o o sin u¢0
cos U
41_ P\ (cos 0) 8y . (IV-2-8)
22+1

sin u¢
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The radial integral in (IV-2-5) can be split in the form

R r R
s _ j + f s
vRto VRto g

Then by substituting the appropriate expansion (IV-2-6) into each of

*
these integrals, replacing the initial field by its expression
Xa Y

given in (IV-2-4) , and making use of the orthogonality property

(IV-2-8) , we obtain the radiation field in the form

)‘{u(r,m) = ;2 Ig;) P?(cos 0)

. [héz) (kar) [Q,Agg) cos md + R‘Bgi) sin m¢ ]

(o)

+ jﬂ(kar) [J?,CZm cos mp + ,Q,Déz) sin m¢] } .

The coefficients A 5

2 2m R.BZm # .Q,CZm > £ 2m

D are given by

(1vV-2-9)
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(@) (@)
Q,AZm (r,w) & k2
= (A—m)! o
G-2)t (2-m)! ¢

( 9 (2,09 by

T ;
o =-1iwt r 2+1
od 3 2-2 1
f e o [R (to) d (to)] (——r ) Jz(k . ) ro dro dto
o] @ V.t ¥

R o
(Iv-2-10)
and
(O") v(u)
,Q 2m (r,w) gom k2
_ (f-m) ! .
(2-2)! (2-m) ! s
(ot) , ()
Q 2m (r,w) me
T R
o -iwt s 2+1
. [ e o g » {R (t ) d (t )1 f (-JI;:) h!EZ) (karo) ri dro dto
o T
(Iv-2-11)

For the case of an expanding, non-propagating sphere ("explosion"
model) , the spherical symmetry is preserved, and thus only the term
2=2 survives in (IV-2-9) , (IV-2-10) and (IV-2-11)

If the observer's point lies outside the relaxation zone then we

have R < r ; in that case only the coefficients (0') and (G)
s 9, 2m Q, 2m

are present, and the upper bound of the integral over r, in (IV-2-10)

must be changed to RS
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In spite of its symmetrical appearance, the solution (IV-2-9) is
not particularly convenient since the coefficients depend on r , the
hypocentral distance of the observer. A more convenient form for
computation can be obtained by evaluating the integrals in (IV-2-10)
and (IV-2-11).

The following closed forms are evaluated in Appendix 2——equations

(A-2-2) and (A-2-3)

b - Jg_q(k 2 J (kb)
f (x )" 5 e r ) 22 ax - kl B S e

a (},a

(2) (2)
b hg7y (k@) hpZ(k b)
-(%+1) ( ) 2 2-1""a
(r,) (k,r,) r, dr_ = - - . (Iv-2-13)

L kaaz—l . bz 1

Inserting these formulae into (IV-2-10) and (IV-2-11) yields

(u) at (o)
(x,w) 2m kl
- (&-m) ! a
B (2-2)! (2-m)! e,
2Bgz)(r,w) bééu)

i

o -iwt i (k V.t ) J, (k. 1)

. J( B v d r3 (t,) b (t yy |l E R ° e ! 221 de
A o (kaVRto) (k,x)

(TV-2-14)

L
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and
(OL) ,(a)
(r,w) 2111 k'Q'
- (X-m) ! o
(2-2)! (2-m)! Cy
Coc) y (o)
(r,w) b2m
T , (2) (2)
. f g e-lmto dj:l [R (t 3 dg' (to)] 2 l(k,:)l (k . ) d::Q .
o (kur) (kaRs)
(IV-2-15)
In the case where R < r the coefficients ((1) and (a)
s ? R, 2m R, 2m

vanish identically and r must be replaced by RS in (IV-2-14)

One sees therefore that the only integrals left to evaluate are

o} —lUJt
1P @ = [ e & [R () @721 ar, (IV-2-16)
(o]

T
o -iwt j (kV t)
I’EZ)((U) =[ e [R (t) d (t )] 41 1 dto 5
o (k V_t )
o o Ro

(IV-2-17)

and, in the case R < r |
s
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To -iwt
(3)@) _[ e 2 [R (t ) d (t i
O

o

N PR W PR Rs)

= dt 5 (IV-2-18)
2-1 o
(kaVRto) (kaRs) .

The last integral Ié3) is obviously a linear combination of Iél) and

Iéz) If R(to) and d(to) are taken to be polynomials of t:0

then these integrals are linear combinations of functions having the

general form

T
o
G(a,p,\);'to) =[ e T lJ J () dc (1V-2-19)

o

where Vv and | are half integers. Such functions are evaluated in
closed form in Appendix 2, in the case where Vv = n+l/2 and where U
varies from -n+l/2 to nt+3/2 . This would limit the possible choice
of growth and propagation functions for the source. In addition, the
closed form derived in Appendix 2 was found to be poorly behaved for
numerical computation. The integral (IV-2-19) can also be expanded
in a series of generalized hypergeometric functions (Luke, 1969) but
the algebra is extremely cumbersome and will be omitted here.

The integral Igl)(w) clearly has the form of a finite Fourler

(2)

transform. Ii is also of this form, except that ka = w/ca appears
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in the argument of the spherical Bessel function. Neyertheless, for a
fixed value koz , one can evaluate this integral as a finite Fourier
transform, as a function of w , and set w = kaca in the result.
This approach was found to be, by far, the most efficient for numerical
applications. Filon's method of numerical integration (e.g., Alexander,
1963) proved particularly appropriate to compute the Fourier transform
numerically.

We can now combine the r-dependent terms in (IV-2-14) and .
(Iv-2-15) , and make use in (IV-2-9) of the Wronskian relation

(Abramovitz, 1964)

3,0 8200 - 0P 5, ) - - 25 (19-2-20)
kr

This allows us to write the solution in the form

Xa(r,w) = Z:z ;) Pz(cos ) {héz) (kar) [AS(L? cos mp + Bg;) sin mcpJ

+ jg(kar) [Cg‘z) cos m¢ + DSE:) sin m¢]

+—-—:£m_-i [Egz) cos m + FJ(Z;) sin m¢] }

(k1)

(1IV-2-21)
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where the various coefficients are now independent of r . We shall

call them "multipole coefficients;" they are given by

A (W) o () g ‘1(2) (W if r<R_,
_ Gmt Xy
(&2)1 (2-m) 1 ¢, é
Bg;‘) (w) bétga) 15‘3) W 1f r>R_,
(IV-2-228a)
and
(o) (o)
Co " (w) E, 7 (w)
Sm (2) (k R ) Lm
R 1 5 (IV~-2-22b)
(k R )
U(a)(w) Féz)(w)
where
E(“) () é:ﬁa) g Igl) () 1if r <R, .
= (&-m) ! E
2T 2W7 ¢
Fé:‘l) (w) bééo‘) 0 1f r>R_.
(IV-2-22¢)

We notice, however, that the last term in (IV-2-21) does not
represent a traveling wave. It emerges from the time dependence of the
initial value field as it is created. To see this one just has to note
that this term is merely the Fourier transform i:(r,m) of the initial

value field given by (IV-2-4) .
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.Because Xa(r’t) was defined originally as the relative field,
measured from the final equilibrium state of the medium, by subtracting
the initial value from it one gets the radiation field which is, in
fact, observed and measured experimentally. This was discussed in
Chapter II. Thus the final solution for the dynamic field above takes

the form

ia(r,w) = ;E; 22% Pi(cos 8) { héz)(kar) [A(z) cos mp + B(z) sin m¢]

+ jg(kar) [Céz) cos mp + Déz) sin m¢] } 5

(Iv-2-23)

where the multipole coefficients are given by (IV-2-22) .

iii) Discussion

The solution (IV-2-23) gives the scalar potentials ia in the
form of multipolar expansions. It is clear that the source model under
consideration is not a separable source (Archambeau, 1968): one cannot
in general separate the frequency dependence and the spatial dependence
of the fields algebraically. Furthermore, if more than one multipole
is present, the radial variation cannot be separated from the angular
dependence by factorization. Archambeau (1968) pointed out that, in
general, the multipole coefficients are linearly independent functions
of frequency.

In the case of a non-propagating rupture, d(to) vanlshes
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identicaliy and only the term for &=2 1is present in the expansion
(Iy-2-23) . The field is then pure quadrupole; this is the result
obtained by Archambeau and Sammis (1970) and Archambeau (1964, 1972) for
the tectonic release due to an explosion in a prestressed medium.
Randall (1966) also found a pure quadrupole radiation in the case of

the instantaneous creation of the rupture (VR = ®) , As shown by
Archambeau (1972), this is a particular case of the general situation
presented heie, and one adequate to model a cavity growing faster than
the P-wave velocity. Archambeau proposed a two-stage model for the
purpose of modeling an underground nuclear explosion, where the velocity
of expansion VR is greater than the P-wave velocity in the first
stage, and then drops to a subsonic velocity in the second stage. We
refer the reader to his publications for a detailed description of the
model.

The fact that the non-propagating spherical rupture generates a
pure quadrupole radiation is in complete agreement with the observations
of the anomalous radiation from underground nuclear explosions (e.g.,
Lambert, Flinn and Archambeau, 1972). The pure quadrupole radiation
pattern corresponds to a double couple point source and is also found
in association with simple Volterra dislocation models of earthquakes
(e.g., Randall, 1971). The higher order multipoles appearing in
(IV-2-23) are excited only if d(to) is non-zero; in other words, the
presence of multipoles of degree greater than 2 is intimately associated
with rupture propagation phenomena, and the departure from self similar
rupture growth.

For separable sources, rupture propagation effects can be
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introduced by use of a propagation function (e.g., Ben Menahem, 1961;
Haskell, 1964). These effects can be understood intuitively by analogy
with the usual Doppler effects. One expects them to affect waves with
a wave length comparable to, or smaller than, the total source
dimension. In other words, propagation effects will be most evident
in the high frequency part of the radiation spectrum. Archambeau (1964,
1968) showed how the multipoles of degree greater than 2 distort the
radiation pattern at high frequency, while they have a negligible effect
at long periods. The numerical results given in Chapter VII exhibit the
same behavior: the radiation pattern is almost pure quadrupole at low
frequencies, while more energy is radiated in the direction of rupture
propagation than in the opposite direction at high frequencies.

The solution (IV-2-23) simplifies itself in two extreme cases of
interest. Those are 1) r > RS , and 2) RS = ® ., In both cases the

multipole coefficients Cég) and Déz) vanish identically and we have

2 (2) (@) (@)
X, (r,w) = z: P%(cos 8) hy (kar) [Aﬂz cos mp + BR; sin m¢] "
=2 wm=0

(IV-2-24)

The only difference comes in the computation of the multipole coeffi-

cients Agz) and Bgz) by equation (IV-2-22a) . In the first
(3)

instance the integral Il must be used, and in the second instance,
Igz) is the proper choice.
We shall show below that these two cases lead to radically

different behaviors of the radiation spectra at long-period, particularly
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in the far-field approximations.’ As we pointed out in the introduction
to this chapter, the two cases mentioned above correspond 1) to a
mathematical approximation of the real physical situation, and 2) to an
exact mathematical representation of an approximate physical situation.
We feel that, although neither case may precisely model the real
phenomenon, it is probable that the truth lies somewhere between the

two extremes. Thus the two extreme spectral shapes obtained in this
fashion ("peaked" spectrum, and "flat" spectrum, as we shall see) should
bracket the range of possible observations. The first case corresponds
to the model proposed and investigated by Archambeau (e.g., 1964), the
second one was advocated by Randall (1973) and also by a number of other
investigators using dislocation models. Unfortunately, to this date,
field observations have not been obtained which would be of high

enough quality to allow a clear choice between the two models (Molnar
et al, 1973); however, it seems very likely, in view of our previous

comments, that there is no clear-cut choice.

iv) Asymptotic behavior of the potential spectra.

The principal advantage of having an analytical solution for the
radiation spectrum is that one can obtain the asymptotic behavior of
this spectrum in a number of limiting cases. Such cases include the
very high frequency limit, as well as the very low frequency limit of
the spectrum. In addition, at low frequencies--that is, at long
periods——-we shall distinguish between near—-field and far-field approxi-
mations. These approximations take into account the decay with distance

of the spectral amplitude.
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In this section we shall only consider the spectra of the various
potentials 'ia ; the extension of these results to the displacement

spectra will be made in section IV—4.

a) High frequency behavior

This case is the simplest to investigate. It is shown in
Appendix 4 that, if R(to) and d(to) both are linear in t, which
is the case for the model considered here, then the following results

hold in the case R_>> V_T
] Ro

n _
Ly = 0(1/w)

for w> 1 { 1P -oam*h (TV-2-25)
1P = o) .

Further, in that case, for any finite value of r , we have kar 2> 1

and kaRs >> 1 . Thus the following asymptotic relations hold

—1kar
jo(k ) ™ Re (19“+1 & ) " (IV-2-26a)

-iqu

H1l e
kr :
o

héz) (kx) v i (1V-2-26b)
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2 -ik
hé—i (kaRs) P ‘ofs
(kaRS ) (kOtRs)

By comparison of (IV-2-22a) and (IV-2-22b) and by use of (IV-2-25)
and (IV-2-26) , we see that the only term in (IV-2-23) which is
important at high frequencies is the first one, if Rs is large enough

with respect to the rupture dimensions. We have then

Ag) (w)
= 0(1/w) (1V-2-27)

Bgz) (w)

and thus by use of (IV-2-26b) the spectral amplitude for the potentials

has the following high frequency asymptotic behavior:

%, (rsw)| =0(/w®)  for w> 1, (1v-2-28)

It is interesting that this result is independent of the relaxation
radius RS . This corresponds physically to the fact that, at high
frequency, most of the energy is radiated from a small region surrounding
the rupture zone, of characteristic dimension comparable to the wave
length under consideration. Thus one does not expect the high frequency
side of the radiation spectrum to be sensitive to RS .

Another important aspect is that the results shown in (IV-2-25)

assume specifically that both R(to) and d(to) are linear in t
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For more complex ruptures, an "'acceleration" phase could occur at the
beginning of the rupture, and thus R(to) and d(to) could be more
complicated functions of the source time t0 . However the analysis
becomes rather complicated in such cases, so that numerical methods
have to be used. Multipole fields of all degrees are contributing to
the high frequency radiation, and their relative excitations could well
depend on the detailed character of the rupture propagation. For the
model investigated here, the convergence of the multipolar expansion

is controlled by that of the addition theorem (IV-2-2) , which is not
particularly rapid. However; it can be noted that, becauée of our

choice of volume of integration a factor of 1/22+1 appears in the

52) (see Appendix 4). This means that the multipole

integral I
coefficients become eventually exponentially small with increasing £ .
It was found from numerical calculations that convergence is very

rapid for £ > 10 . However, even if the series is truncated at a
lower degree, most of the characteristics of the radiation fields can

be obtained with sufficient accuracy, as long as one does not try to

compute these fields at too high frequencies (see Chapter VII).

Of course, as one can expect on simple intuitive grounds, the
term "high frequency" must be defined in relation to the rupture
dimension. We shall see that a convenient convention is to consider
as high frequencies those for which the wave length is comparable to
or smaller than the characteristic dimension of the rupture.

The last observation which we may make about the high frequency
radiation is that it exhibits an amplitude decay with distance

proportional to 1/r --see equation (LV-2-26b). This corresbonds to
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our definition of the far-field radiation, given below. It is not
surprising that there should not be any significant near—-field high
frequency radiation since practically any observer will be several wave
lengths away from the source at such frequencies. High frequency near-

field effects can only be observed extremely close to the source.

b) Long-period behavior

The long-period limit corresponds to w << 1 , but since
the Hankel functions and the Bessel functions in (IV-2-25) have
kar = wr/cu for argument, one must take into account hypocentral dis-
tance r of the observer. We shall thus make the following definitions:
1) The (unqualified) long—period limit corresponds to w << 1
2) The long-period limit in the far-field approximation is
defined by
w<< 1 and kar »2 L .
3) The long-period limit in the near-field approximation is
defined by
w<< 1 and kar I A
These definitions correspond to the usual ones in use in electromagnetic
theory (e.g., Stratton, 1941) and in seismology (e.g., Haskell, 1964).
One sees immediately that the very long period far-field radiation can
only have physical meaning for extremely large distances. However,

because of the following asymptotic forms for kar >> 1
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-ikar
(2) 241l e
by ") ™ 4 kx

(Iv-2-30)

—ikar
% 41 e
JRCRGI) " Re (i. —E—;——~) ’

o

one may wish to choose another definition for the far-field radiation:
it is that part of the field which shows an amplitude decay with
distance as 1/r . This second definition allows us to define the
"far-field" radiation at any frequency and any distance, but it is a
purely mathematical definition, which ignores the physical concept of
"far-field."

The "near-field" asymptotic behavior, on the other hand, should be
observed at any finite distance r , provided that one considers long
enough periods.

We shall consider successively the case of an observer lying outside
the relaxation zone and then that of an observer lying within RS , and
in each case we shall separate near-field and far-field behavior.

a) r > RS , near-field approximation

In that case, from Appendix 4, equation (A-4-10) , we have

for w<<1l

K2/2 o
3 = 2 22) 4 [.3 g2
Lglm " 1-3-5...-(22—1)[ [Rs “VRto] dt_ [R (g d (tO)] L
o

(IV-2-31)



=198

Thus, from the expression for the multipole coefficients (IV-2-22)

(o) 1(0)
A @ 4om 2, T
] (%—m) ! - a 274! B [ y @
@2t Gl e (29! %
(@) v (@)
B,Q,m (w) 5 2m °
- T (IV-2-32)

Further, in the near-field, k03‘<< 1 and the dominant term in the

Hankel function is

(2) i(22)!
h:* (K £) 0 . (IV-2-33)
L o 222! ki.+l r2,+l

Using the results (IV-2-32) and (IV-2-33) in the potential solution

(IV-2-24) , we get the following asymptotic behavior

lia(r,m)l = 0(w) for w<< 1 and kyr<< 1, (1IV-2-34)

The spectral density for the potentials vanishes in the (static)
limit of zero frequency. A static offset would yield an asymptotic
behavior as (1/w) . There is, therefore, no permanent change in the
dilatation and rotation outside RS , which is the correct result since
this argument was used to introduce RS in the first place: the stress

relaxation'taking place outside the relaxation zone was assumed to be
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negligihle.

Further, the multipolar field of degree £ 1is proportional to
m/rz+1 , and r must he reasonably large (r > RS) sy thus we see
that the radiation field is dominated by the lowest degree multipoles,
in particular by the quadrupole. In other words, the lqng—peribd

radiation is essentially that of a double couple.

B) r > Rs , far-field approximation

Equations (IV-2-31) and (IV-2-32) still hold in that case,
but we have now kur >> 1 so that
-ik r
6]

(2) 41 e
hy (k) v 1 kro

We see, then, that the partial field associated with the multipole of

+
degree ¢ will have an asymptotic behavior as w£ ; as w >0

Clearly, only the lowest degree multipole,the quadrupole, dominates at

long periods and we have

|ia(r,m)| = O(m3) for w<< 1 and kr >> 1,

(IV-2-35)

As we pointed out, this "far-field" term may be isolated mathematically
even for values of r and ®w where it is not dominant. One must then
keep in mind that it does not bear any relation to the observations.

Of course, in that case again, no static offset is observed.
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Y &% RS , near—field approximation

This case is slightly more complicated. We have w << 1 , and

kar << 1 , so that from Appendix 4—equations (A-4-8) and (A-4-9) —

1P w) v R 7y (IV-2-36)
L2 v st R € ) e
and also
<) 1(28)! 1
el (k) v , (IV-2-38)
TR s1e2k v)” ot
[0
kirz
107 ~ T35 T e (1v-2-39)
Then, from (IV-2-22) we have
(®) 1 (@)
At ) ™ B s ey o
o (%-m) ! ( 0 (To . O(w1+l)
(-2)1 (2-m)! 1°3°5...-(2%-1) ¢, ’
(o) v (0)
Blm L) b2m
(IV-2-40)

so that, with reference to the general solution (IV-2-23) , we have,

for wW<< 1
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(Z)Ck-r) [Agz) cos m¢ + Béz)‘sin m¢:] = O(w_l) . (IV-2-41)

From the definition (IV-2-22) we also have

(o) y (@)
Com @ 2om
2-m) ! 3 2-2
. (2—§)Tm)(2-m)! Bint & vy
(2) (k R ) i-
‘ —-—-—————c— (1V-2-42)
(kaRs) o

This last equation deserves further discussion.

If RS is small enough (or if ka is small enough, for any finite
value of RS) then we have des << 1 and the Hankel function in
(IV-2-41) must be approximated using the asymptotic form (IV-2-38) .

In that case

ng)(w) aé;a)
- i(f-m)! (28-2)! - o3 ) 42 )
(2-2)! (2=-m)! (&~-1)! 2
‘D(O‘) ((U) b 1] (Q’.)
2m 2m
%
k
L (IV-2-43)
(k. R) €a
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Then, with reference to the solution (IV-2-23) we have

3 (k1) [cég) cos mp + Déﬁ) gin m¢] = 0(w) . (IV-2-44)

This term may be thus ignored compared to the one given by (IV-2-41)

We noted earlier that this is equivalent to taking RS = «© , as can be

seen directly from (IV-2-43)

On the other hand, if Rs is large enough so that des == (R

then we must use

—ikuRs
(2) L e
h, (kR )i ———
=17 a's kaRs
in (IV-2-42) . We find in that case that
: () (o) & L -2
Jz(kar) [Cﬁm cos m$ + Dﬂm sin m¢] 0(w”) . (IV-2-45)

Again this term may be ignored, when compared to (IV-2-41)
Thus if the observer finds himself inside the relaxation zone, the
near-field spectrum of the observed radiation is insensitive to RS at

very long periods and the spectrum behaves as if RS were infinite. In

that case we have

1%, (s | = 0™ for w<<1 and kr<<1.  (IV-2-46)
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This long-period spectral behavior corresponds in the time domain
to a non-vanishing static offset (compare with the Fourier transform of

a step function in time, which is -iw - ). In fact, noting that

1+3+5...+(20-1) =‘%—’L—)—’— ,
2%

we find that the coefficient of the term in —iw_l for the asymptotic

form of the potential spectrum ia(r,w) is

3 2-2
&= R7(t.) d (t.)
;: s - = (@) L .
) =9 2:% (2-2)! (2-m)! r9,+1 [aZm cos mp + b b 51n,m¢]

. P?(cos 6) "

*
which we immediately identify with _Xa(r’To) as given in (IV-2-4) .

Again this result was to be expected, since the initial value fields
X; were computed for an infinite domain (Rs = ©) and have then been
truncated at RS . We have therefore obtained a consistency check for
our calculations.

One must remember at this point that the solution for X(r,w) that
we obtained in (IV-2-23) is only valid 1) for r * d(To) and 2) for
points such that no information has propagated to them at To , that is,
grossly for r > VPT0 . This constrains r to be relatively large in

the static limit shown above, so that the term of lowest degree-—the

quadrupole term——will again be the dominant one. Furthermore, in the
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static limit, higher degree multipoles are present only because the
final rupture zone is not centered at the hypocenter, but at a distance
d(TO) along the z-axis of the source system. In the moving system
(figure III-1-1), in the final position at Ty the static field is pure
quadrupole. The offset position of the rupture zone in its final
configuration is thus the reason for the presence of higher degree
multipoles, and this effect dies rapidly with distance.

4d) r< Rs , far-field approximation

This limit is obtained when w << 1 and kar >> 1 ; since

we have r < R.S , this also means kdgs >> 1 . We can therefore use

the approximations

_ikuRs
(2) Loe
by 1(kaRs) *12 2R .
a's
~ikar
(2) A+l e
h£ (kur) v kar ?

The asymptotic behavior of the multipole coefficients are still given by

(IV-2-40) and (IV-2-42) , and we may write, for kaRs >% 1 4
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cgfl) w) Ag ("‘) &y ,
R -ik R
% ljlbﬂi-z - s . (IV-2-47)
201 R )
D% () 8 () B

Because the multipole coefficients Aé;) and Bgz) are proportional to
ml, we need only consider the lower values of £ , in particular,
the quadrupole term £=2 . Then the proportionality factor in
(IV-2-47) is 3/(kuRs)2 , which is very small.

Therefore, here again, we can ignore the term in jg(kar) in the

general solution (IV-2-23) , provided that indeed
kR >k r>1 ,
a8 Qo

In other words, the '"far-field" approximation can only have physical
meaning within the relaxation zone if one considers frequencies such

that simultaneously

w<<1l and kR >kr>>1,
i a s o

In that case, just as in the near-field approximation, the spectral
behavior is insensitive to Rs and one may take RS to be infinite.
Furthermore, by use of (IV-2-40) and of the asymptotic behavior for
the Hankel function given above, we find that the multipole of degree £

yields a partial field which behaves as w at low frequencies. Thus
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only the lowest degree multipole (the quadrupole) is important and

X, (sw) [ = 0(w) for w<<1l and kx> 1, (IV-2-48)

If RS is kept finite and if one tries to isolate mathematically
the part of the radiation field which decays as 1/r , the results do
not present,in general, any simple asymptotic behavior as w tends
towards zero. This is not a disturbing fact since we just argued that
such results do not have any relation to the physics of therphenomenon.
On the other hand, if RS is taken to be infinite in the first place—
although this is not desirable, as we pointed out earlier—--then any
observer point is within the relaxation zone, and a mathematical "far-
field" term may be defined everywhere, which decays with distance as
1/r . 1Its asymptotic behavior is then given again by (IV-2-48)

Again, this term may be usefully compared with the observations only if

kar >> 1 , that is, at large distances from the rupture.

We may thus summarize the long-period behavior of the potential

spectra in the following table for Iia(r,w)l g

>
5 ol RS r RS
" . 11 —]_
qu <1 , "near-field 0w ™) 0(w)
kﬂr >> 1 , "far-field" 0(w) O(up)
(1V-2-49)
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In all cases the field is dominantly quadrupole at long periods.
Further, we have shown that when the observer is within the relaxation
zone, the spectrum is insensitive to R.s . This was true at high
frequencies also, so that, when r < RS , the phenomenon is adequately
modeled mathematically by taking the results valid for RS infinite.
Clearly this is not true for r > RS.

Thus, two cases arise from our modél, either the observer is
clearly outside the source region, and RS is to be chosen finite, or
the observer is inside the source region and RS may be taken to be
infinite. From (IV-2-49) one sees that these two cases give rise to
drastically different spectral behavior for the potentials. The
corresponding behavior of the displacement spectra will be considered

in section IV-4.

The method described in this section was used by Archambeau in
several publications (e.g., Archambeau, 1964, 1968, 1972). However,
Archambeau considered only the case where the relaxation zone is kept
finite and the observer is outside of it. We see now that this case
.represents only part of the solution, and that the position of the
observer with respect to the relaxation zone has a rather drastic
effect on the predicted radiation field.

It still femains to be seen whether any of the global characteris-
tics discussed above, in particular, the asymptotic behavior of the
ﬁotential spectra——and, by inference--of the displacement spectra (see
section IV-5) depend on the approximations made in computing the
solution. More specifically, we should make sure that the approxi-

mations shown on figure IV-2-1 are not critical. For this purpose,
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we develop in the next section a more complicated solution, which does
not require these approximations.

The results presented above are those that we shall use in
Chapter VII for numerical applications. We shall see that even this
very simple model depends on enough parameters so that the predicted

radiation field is, in fact, quite complex.
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IV-3 A general method of solution for propagating ruptures

The method of solution presented in the last section required that
we express the initial value fields x; in the source coordinate
system, For that reason, we had to approximate the volume U(to) , and
ignored a portion of the source volume in the vicinity of the hypocenter
Q (see figure IV-2-1).

There are several reasons in favor of performing the analysis in
the moving coordinate system of figure IV-1-1 rather than in the source
system. The first one is that the rupture zone exhibits the greatest
symmetry in the moving system, of origin 0' , the center of the
spherical rupture. As a corollary, the initial value fields X; have a
much simpler analytical expression in that frame than in the source
system. Second, the source volume U(to) is defined to be external to
the rupture zone itself, and, in the moving system, can easily be
defined by r' > R(to) . The volume integration can then be performed
easily, and without approximation. Third, this method will enable us
to compute the radiation fields even very close to the source, provided
that we use the correct Green's function solution.

We shall present in this section the solution for the case of a
growing and propagating spherical rupture. The solution, eventually
expressed in the source system, is obtained by continuous translation of
the reference frame along the z-axis, just as before, but the operation
is performed on the dynamic fields rather than on the initial value
(static) fields. We shall use the addition theorem for spherical wave
functions proved in Appendix 9, and specialized in section V-3 to

multipolar expansions.
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i) Formulation of the problem

As we showed in section IV-1l, for times t greater than Ty # the

total rupture duration, the dynamic potential solution is given by

*
i , . % =ik r
" g | ° Rae * . (o)
xa(r,w} = ; 5 e dto 3 5 dv & (1IV-3-1)
me, J, V(to) o r

The source volume V(to) is that volume lying outside the rupture
zone at t0 , and within the relaxation radius RS . Our purpose is
now to evaluate the volume integral in (IV-3-1) in the moving
coordinate system. The geometry is described on figure IV-3-1. For
simplicity we shall choose the relaxation zone to be the interior of a
sphere of radius RS , entered at 0' , the center of the rupture.
This means that the relaxation zone propagates along with the rupture.
i3 2 RS is large enough compared to d(TO) , one does not expect this
to have any strong effect on the solution. Furthermore, it is rather
desirable to take the relaxation zone to propagate along with the
rupture, especially if the prestress is inhomogeneous. In such a
situation one expects that the efficiency of the stress relaxation
phenomenon will be a function of the source time t, - Further, since
the size of the rupture itself varies with time, the region in which
significant stress relaxation takes place can be expected to vary in
size with ty, - We shall therefore take RS to be a function of -to
in this section.

This seems to complicate the situation a little. We saw in the
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preceding section that the results are different for an observer point
lying within the relaxation zone, and one lying outside of it. We are
now faced with the possibility of having an observer lying inside Rs
during part of the total rupture duration, and outside RS the rest of
the time. This complication can theoretically be handled by separating
the interval [O,To] into several subintervals during which the
observer point is inside (or outside) RS and by superposing the
solutions for these subintervals.

For simplicity we shall consider in this section only the two
fundamental cases where the observer point is 1) inside Rs(to) for
all 0 = t, < T, OF 2) outside Rs(to) for all 0 < £, < T, - The
adaptation of the results so obtained to more general cases may lead to
rather complicated algebra, but does not present any theoretical
difficulty.

The initial fields may be expressed very simply in the moving

system and were found to be given by (e.g., equation IV-1-12)

3
R7(t) 2
P _ o y (0 1 , (@) . v] I '
Xa(rb,to) = —;Tg—— Jéo [a cos m¢o + b2m sin m¢0 P2(cos 60)

(Iv-3-2)

The static coefficients a'(a) and b'ia)

om 2 are given by (IV-1-13)
through (IV-1-15). Here ré 3 9; , and ¢é are the spherical
coordinates of a source point Q in the moving system (see figure

Iy-3-1).
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Figure IV-3-1. Coordinate systems used for the propagating rupture.
O 1s the origin of the source system, O0' the origin of the moving
system. Q 1is an arbitrary source point, P the observer's point.
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Further, the spherical wave expansion of the Green's function in

(Iv-3-1) is
g -
ik r L B
a fo.0]
L > () P, (cos ¥")
r O )\=O

Jl(kar') h§2)(karé)
(Iv-3-3)

where the upper pair of Bessel functions is to be used if r' > ré 3
and the lower pair if r' < rg . The angle 7Y' 1is measured between

\J

the vectors r' and r; , and we have

PA(cos Y) = z: (2- Gko) E§+§;' P;(cos 3k P;(cos Sé) cos k(¢' - ¢') ,

k=0 (s}

(IV-3-4)

Thus, in the moving system, the problem may be formulated instantane-
ously at time t0 exactly as in section IV-2 for the case of a non-
propagating rupture ("explosion'' model).

By simple adaptation of the methods of section IV-2, we obtain in

the case where r' < R (t ) for all t
s 0 o
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%*
* —jk r
9 o dR (t )
/ -—ax"‘ & L E z (-ik)) (20+1)
vee ) 2% RY T
o

X

(o (@ (@)
'f j [a."?.m cos m¢é + b'zm sin m¢c')] PI;(cos 6(;) P, (cos )
o Jo

* sin 0' d8' d¢'
o o ‘o

r' §,(k rl)
. { (2)(k r )[ - o drc')
R(t,) o

Rs(to) (2) (k, )
+ J‘R(kar') f —,—— dr(') . (IV-3-5)

ro
'

We can now apply the orthogonality property (IV-2-8) and use the
closed form integrals given in Appendix 2--equations (A-2-2) and

(A-2-3) . We have

& cos 0}
n 1 -
[ [ Pz(cos Y) Pz(cos 60) sin 6(') de; depc') =
o 0 sin m¢c')
cos md'
Pm(cos ") §

2 2.+1 L L2

sin m¢'
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which may be substituted into (IV-3-5) . We get

X; —1kar
f 3¢ * E (-4mik ) ( ) cos mp' + bén(la) sin mqb']
o] r
V(to) -
Fm ar> (to) (2) ' jl(kaR(to))
(COS 9' ) ———— hZ (kar ) W—
(¢ o
h§2)(kaRs(to))
-3, (k") "
2 kOLRs(to)
(IV-3-6)

Here we have left out the wronskian term in —i/(k.ar')3 , for the same
reasons as given before--e.g., equation (IV-2-21): This term does not
represent a travelling wave, but is the Fourier transform of the initial
value fields.

If the observer's point is outside the relaxation zone, then the

last bracket in (IV-3-6) must be replaced by

JAEBE)Y 3.0kB Ct)
{ hgz)(kar|) [ ]‘ o [s] )_ 1( 0 s o )] } N (IV-3-7)

kaR(to) kuRs(to)

From (IV-3-6) we recognize one of the results obtained in the previous
section——in the coordinate system with origin at the center of the
rupture zone, the radiation field is instantaneously pure quadrupole.

We now have to substitute (IV-3-6) into (IV-3-1) by first expressing
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the yolume integral (IV-3-6) in terms of the source coordinates r |,

© > ¢

The transformation that we wish to perform is a translation of
magnitude— d(to) along the z-axis. Let us denote this transformation
by L§7Eto) . In such a translation, the azimuthal angle ¢ is left

unchanged, so that we may write.

k
ia(r,m) ==-c—c1 E [aéia) cos m$ + béia) sin m¢ ]

t 3
o =-iwt dR7(t ) i (k R(t )) _
. 0 0 IN'G "o (2) 1y plt !
[ e ac_ % L R(E,) T (e [hz (kye') Foleos © )]

(o]

(2)
hl (kaRs(to))
kaRs(to)

ﬁ?to) [jz(kar') P)(cos e')] } at

(IV-3-8)

Here the quantity ‘f7zto)[f(r')] is a function of r .

(IV-3-8) 1is the solution that we must now evaluate, and recast in
the form of a multipolar expansion. For an observer external to the
relaxation zone, the bracket in the integrand of (IV-3-8) must be

replaced by
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BEAGY) _ 30A,CD) By e
% [ kaR(tb) - des(to) L§7Eto) [h2 (kar ) Pg(cos ] ﬂ .

(Iv-3-9)

ii) Evaluation of the solution

The quantities which we must operate on with the transformation

Lf7zto) are of the form

2,0, x") Paleos 8') = (- o AIZELL T 5 () vRe' 00

(Iv-3~-10)

with Z2 representing either 32 or h(z) .

We prove in Appendix 9 a general addition theorem for spherical
wave functions, and specialize it to the case of a simple translation
along the z—axis. These results are then used in section V-3 to
investigate the transformation of a multipolar expansion under such a
translation. The result which we want to use here will thus be proved
in Chapter V--equation (V-3-4) . For r > d(to) and for a transla-

tion of amplitude -d(to) , we have

|l

z_(k,x") YI:(B‘,cp') = Z Z ¢,(v,%|n,m)

2=0  v=|2-n|

" 3, (k,d(E)) Zo (k1) Ty(6,0) (IV-3-11)
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where .
cl(v,lln,m) = (-1 iwz‘“(2w1)(22+1);’(2m1)‘!’
*(2vm0 | nm(@vVvO0oO|no). (1v-2-12)

The coefficients appearing on the right-hand side of (IV-3-12) are
Clebsch-Gordan coefficients.

A similar formula may be derived for the case r < d(to) ; we
shall not investigate this case here since it corresponds to an extreme
near—-field situation, and shall refer the reader to Appendix 9 and
section V-3 for the derivation of the corresponding results.

Using (IV-2-10) and (IV-2-11) we get

242
Z,(k ') Py(cos 8') = (-1)" J gé_m), Z Z € (v,2]2,m)
2=0 v=|2-2]|

stey 0 IR 1,00 Ficen 0

(Iv-3-13)

This last equation gives us the result of the operation (9 (to) on

Zz(kur‘) Pg(cos 8') . We can now substitute (IV-3-13) into (IV-3-9),

and write the solution in the form of a multipolar expansion:
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©  min(2,%)

f('a(r:m) = Z Z P]z(cos 0)

=0 mw=0
. { héz)(kar) [Aéz) cos md + Bgz) sin m¢]

+ jl(kar) [Cég? cos m¢ + Dgg) sin m¢] } .

(IV-3-14)

Here the multipole coefficients are given by

(o) v (@)
Atm @ %om o 2+2
_ ‘Eg EE: (-1 VL V2 (2v+1;(2£+1)
) (@) & v=]e-2]
Bﬂm (w) me
12 )
: Eﬁ;ﬁ;iggfzgf (Lvmo0 |2mvoo |20
1w
(IV-3-15)
where JSZ)(M) is to be used if the observer's point is inside the

relaxation zone for all times 0 < to £ To , and 363)(w) is to be

used if r > R (t ) for all t such that 0 <t < T . Similarly
s' o o} - o0o- o0

- (o) ()
the coefficients Cﬂm and ng are given by
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cg) @ aéf) 2
=¥ T Z (- VT (o) (20H)
pﬁ) (w) béxga) * v=|2-2|
J\(f*) () if r < R (t).
’ %ﬁﬁ%:g*ﬁ%: (Avm0 |2m((v00|20):-
0 ifr >R (),

(IV-3-16)

The functions Jéz)(m) 5 JSB)

(w) and JéA)(w) are integrals which
are given by

T 5
- 3 j.(k_R)
), . _ [ ° 7ty gr° I1UGR) "y
Jv (w) = [ e —dto —kaR i, (k,d) dt_ (1V-3-17)
(o]

To —iwt 3rj.(kR) j.(kR)
J\()B)(w)=[ & odR[l o - l o s

i, (k. d) dt_ ,
I dt | kR kR, ] va 0

(IV-3-18)
and
T . 2)
o -iwt 3 h1 & R)
(4 _ o dR os’ . o
35Y (W) = e B o Jy(kd) At . (Iv-3-19)
o o's
o
In the above expressions, R , d , and RS are all functions
of t, - If RS is a constant (independent of t )

, then the



—221~

(4)

integral Jv is simplified by bringing the Hankel function outside

the integral. We write

(2)
OISR e s Y T
v k R v s
o, 8
with
T .
o -iwt 3
(1) _ o dR™ 9y
(w) f e dt J\)(k d) dt . , (Iv-3-20)
o
In that case also, JSB)(m) is a linear combination of ng) and J(z)

For reasons of simplicity we shall take Rs to be constant throughout

the remainder of this section.

iii) Discussion

The solution (IV-3-14) is of the same form as that obtained in
section IV-2, except for the fact that the terms £=0 and £&=1 are
now present. These terms correspond to a monopole and a dipole field
respectively. In terms of point force equivalents they correspond
respectively to an isotropic dilatational (or compressional) nucleus
of strain, and to a single couple.

This is a somewhat startling result since 1) a monopole radiator
corresponds to an "explosion-like' component of radiation (e.g.,
Archambeau, 1972) and the reason for its appearance here is not

intuitively obvious since we assumed the prestress to be pure shear,
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and since we did not take into account a possible density change in the
rupture zone; and 2) a single couple point force does not lead to the
conservation of angular momentum (e.g., Burridge and Knopoff, 1964).

Let us first note that the appearance of all multipoles different
from the quadrupole (£=2) occurred when we applied the addition theorem
(Iy-3-11) . In other words, for an expanding, non-propagating sphere
we obtain here again a pure quadrupole radiation. In fact, we can
easily satisfy ourselves that, in that case, the results obtained are
identical with those obtained in section IV-2.

The excitation of the monopole and dipole terms, as well as the
multipoles of degree greater than two is thus intimately associated with
the propagation of the rupture. But since observations support the
fact that the radiation field should be dominantly quadrupole in nature,
at low frequencies, an important check of the validity of our model
is then to show that it possesses this property. This is done below
from long-period asymptotic expressions. Further, since conserva-
tion of angular momentum was inherently assumed in the basic formulation
of the problem, the net angular momentum carried by the dipole term must
be counterbalanced by the angular momentum carried by all other multi-
poles of odd degree. Unfortunately, this is quite difficult to show
analytically, and cumbersome to show numerically.

The solution (IV-3-14) is suitable for numerical computations,
although it is more complicated than the solution obtained in section

1,(2),(3)
v

IV-2. Here again the integrals J (w) may be evaluated
numerically as finite Fourier transforms, by use of Filon's method of

integration .
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The Clebsch—Gordan coefficients appearing in (IV-3-15) and
(IV-3-16) may be evaluated by a number of well-known techniques found
in textbooks on quantum mechanics (e,g., Edmonds, 1957), in particular
through recursion relations. However, we note that the second of these
coefficients vanishes identically unless 2+v+2 is even. This means
that the sum over VvV in (IV-3-15) or (IV-3-16) reduces to the three

terms
v=|2-2] ; v=20; v=242

We can then transform these coefficients into 3-j coefficients by the

relation (Edmonds, 1957)

j;=i,-m

_ L =2 “3 5 - TIPS

= (-1) (234*1) 77 (35 3, my m, |33 my)
(Iv-3-21)

so that the only coefficients which we need compute are of the form

|8-2| s & 5 242

>
<
N
&

I

s, With
m=20,1,2 ,

(IV-3-22)

A table of closed forms for these nine coefficients 1s given in
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Appendix 10..

iv) Asymptotic behavior of the potential spectra

The various asymptotic cases.that we shall investigate now are
identical to those discussed in.the previous section. Therefore, we
shall not describe in detail their meaning, and range of validity, but
shall refer the reader back to.section IV-2 for a discussion.
Asymptotic forms for the integrals Jsl) 5 JSZ) and JSB) are

discussed in Appendix 4, both in the high frequency and low frequency

limits. We assume RS to be independent of tg

a) High frequency behavior

In that case, from Appendix 4 we have, for w >> 1 , and

assuming that R(to) and d(to) are linear in t0 i

30
1B w ) =oandy, (TV-3-23)

3
and thus, from (IV-3-20)

JS“)(M) = 0(1/ed) . (1V-3-24)
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o)

Therefore the multipole coefficients .

and U;ﬁ) are negligible with

Q.
respect to Aém) and Béz) and the high frequency spectral content of

the radiation field is insensitive to RS . From (IV-3-15) and

(IV=-3-23) we see that the multipole coefficients behave as w_l for

large values of w , and since

-ikar
(2) H1l e
hl (kar) b kar

for w>>1,

we have

X, (rs0)| = 0™ for w>>1 . (1V-3-25)

This result is identical to the one obtained in section IV-2, equation
(IV-2-28) . We shall not repeat the discussion presented at that time.
The relative importance of the monopole and dipole terms to the
other multipoles is rather difficult to evaluate analytically. We shall

comment on this on the basis of numerical results in Chapter VII.
Because the addition theorem (IV-3-11) holds for r > d(to) 5

we can expect the solution to converge rather well at large distances

from the source. However, a detailed discussion of the convergence rate

will not be attempted here: it depends on the size of the multipole

coefficients (IV-3-15) , which is quite difficult to investigate.
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b) Long—period behavior

We shall consider here the same cases as in section IV-2.

a) T > RS , near—field approximation

This case corresponds to w << 1 and kar <<'1 . Then from

Appendix 4 we have

% v+2/

30 To ar3(e )
(&) a \Y - o
J\) (w) ~v T35 (D) [ d (to) [RS-R (to)] —E-o—— dto (IV-3-26)

o

Thus from (IV-3-15) , for £ > 2 the multipole coefficients will be

controlled by the term v = 2-2 , and

(o)
Azm
= 0(w£+2) . (IV-3-27)

(o)
Bim

For the dipole % =1 , and the dominant behavior is obtained for

vV =1 , thus

(o)

Alm
= O(ws) g (IV-3-28)

(@)

Blm
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For the monopole £ =0 , and the only value taken by v is v =2

so that
A(OL)
00
- @) . (IV-3-29)

B(u)

00

Furthermore, in the near field

(2) i(2)!
h (k 1)~ . (IV-3-30)
2 o 222! kOL,Q,+1 r,Q.+l

Thus in the multipolar expansion (IV-3-14) the monopole field behaves
asymptotically as ws , the dipole field behaves as w3 , and the

multipole fields of higher degree behave as w . Therefore

|§a(r,uo| = 0(w) for w<<1 and kr<<1, (Iv-3-31)

In addition, because of the radial dependence of the multipole fields
shown in (IV-3-30) , and because r > Rs , we expect the quadrupole

term to dominate here again.

B r > RS , far-field approximation

This case is identical with o) , except that we have

kar >> 1 so that
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—ikur
i!2,+1 e’
k. ‘

th) (kar) v
o

(Iv-3-32)

By comparison of (IV-3-32) and (IV-3-27) through (IV-3-29) , we
see immediately that the asymptotic behavior is obtained for £ =2 ,

and

|%,(r>0) | = 0(w™) for w<<1 and kx> 1, (IV-2-33)

The far-field radiation is controlled by the quadrupole at long periods.

Yy E< Rs , near-field approximation

This approximation corresponds to the limits w << 1 and

kar << 1 . From Appendix 4 we have in that case

Q

v T 3
k o dR™(t )
J\Sl) (w)y v 3J(2) (w) f dv(to) -—-d—;g“' dt .
o]

v 1+3+5...(2v+D) L 2

Then, following the same reasoning as in the case 0) , we obtain

(@) (@)

Aoo Alm
4 3

() (o)

Boo Blm
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and

(o)
A%m
= O(wﬂ') fox LB E . (Iv-3-35)
(o)
Bﬂm
R () (o)
The asymptotic behavior for the coefficients C'Q']n and ng is easily
obtained hy multiplication of (IV-3-34) and (IV-3-35) by the factor

hl(_z) (kOtRs)/kor.Rs . Their contribution will be the largest in the case

where kas << 1 since then

(2)
hl (kOLRs) o i :
kaRs ka3Rs3
so that

(o) (o)

Coo Clm

= 0(w) ; = 0(1) 3} (1V-3-36)

(@) (o)

Doo Dlm

and
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(o)
Con
= 0w ) for & 53 ., (IV-3-37)

(o)
Dzm

Now the coefficients Aﬁi) and Béz) are associated with the

Hankel function

(2) i(29)!
h: ™ (k1) Vv ) (IV-3-38)
2 ol 22 l!(kar)2+1

and the coefficients ng? and Dgg) are associated with the Bessel

function

2 L
(kar) 27 11

otk ) ™ TN . (IV-3-39)

By comparison of the results (IV-3-34) through (IV-3-39) we see
that 1) the terms associated with the Bessel function jz(kar) are
negligible at long periods for all degrees % ; 2) the monopole and
dipole terms associated with the Hankel function hgz)(kar) vanish as

wWw=>0 ; and 3) the tefms proportional to héz)(kar) for £ > 2

behave asymptotically as w_l for w<< 1 . Thus

|§a(r,w)| = O(w—l) for w<< 1 and ku; £ 1% (IV-3-40)
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and this result is insensitive. to Rs .

Furthermore, let us recall that the fundamental Green's function
solution (IV-3-1) , which we started from, is only wvalid for ¢t > T, 3
it will thus yield corrgct.restltS‘only for (roughly) r > VpTO . -Also
the addition theorem for spherical wave functions (IV-3-11) requires
r > d(Io) . Thus the particular results derived here hold only for r
relatively large, and from the radial dependence present in (IV-3-38) ,
one sees that the quadrupole term becomes more and more predominant as
r increases.

At very short distances, the quadrupole will not be predominant
any more; but in such cases our analysis is no longer valid and the
correct Green's fu#ction solution for t < T, should be used (see
section IV-l) .

§) r< R, far-field approximation

The only difference with the case 7Y) 1is that now we assume
deS > kur >> 1 . The results (IV-3-34) and (IV-3-35) still hold,

but we now have

(o) ()
C A
im 2m _ —ikaRS
" —fi———ji ’ (IV-3-41)
(k_R_)
(a) (o) oS
Dﬁm Bbm

and
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-ik r
(2) i+l e
hﬁ (kar) g ~g==
o
-ik r
" A+l e |
_]R’(k.ar) N Re |1 —ka—r—

Clearly the Bessel function terms may be neglected. Furthermore the
behavior of the spectrum is controlled again by the quadrupole term and

we have

[ia(r,w)| = 0(w) for w<< 1 and kar >» 1 . (IV-3-42)

We have therefore proved that in all cases, the solution obtained
in this section has the same asymptotic behavior as the solution
obtained in section IV-2. This provides at least a partial check on the
correctness of our approach and of our results. Further, we have shown
that except possibly in the close vicinity of the rupture zone, the
radiation field is dominantly quadrupole at long periods. 1In particular,
the monopole and dipole fields are negligible at low frequencies. The
same holds at very high frequencies, as we saw earlier. Also, just as
in section IV-2, none of the limiting cases we just discussed is
sensitive to RS , so that when the observer's point lies within the
relaxation zone, we can again take RS = o

It is very difficult to characterize the spectra at intermediate

frequencies other than by numerical calculations. Such calculations
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will be undertaken in Chapter VII . However, since most of the

obhservational work concerns displacement spectra, we still have to show
how to obtain the displacements from the potentials. This is done in

the next section.
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IV-4) The displacement spectra

The dynamic solutions which we obtained in the previous sections
were given in terms of potentials. However, seismological observations
do not yield the dilatation or rotation potentials as a function of
time. The measured quantities are the displacement, velocity or
acceleration fields, depending on the instrument used. Mainly for
that reason most of the observational work in seismology or in earth-
quake engineering has been concerned 1) with displacement spectra
(e.g., Ben—-Menahem et al, 1965; Molnar, 1971; Wyss, 1970; Linde and
Sacks, 1972; Hanks and Thatcher, 1972; Hanks and Wyss, 1972; Tucker and
Brune, 1973; Niazi, 1973; etc.); or 2) with displacement as a function
of time (e.g., Berckhemer and Jacob, 1968; Helmberger and Wiggins, 1971;
Mitchell and Helmberger, 1973; Burdick and Helmberger, 1973; Usami et al,
1970, etec.); or 3) with the velocity and acceleration fields, both in
the time domain and in the spectral domain (e.g., Trifunac and Hudson,
1971; Hanks, 1972; Trifunac, 1973; etc.).

Similarly, and for the same reasons, theoretical investigations
have been oriented towards the interpretation and the prediction of
these fields (e.g., Archambeau, 1964, 1968; Haskell, 1966; Randall, 1966;
Savage, 1966; Aki, 1967; Brune, 1970; Burridge and Halliday, 1971; Ida
and Aki, 1972; Cherry et al., 1973; Dahlen, 1973).

We shall, therefore, devote this section to the derivation of the
displacement spectra from the potential spectra obtained in the previous
sections. Velocity and acceleration spectra may be readily obtained
from the displacement by simple differentiation with respect to time.

Asymptotic limits will be discussed much along the same pattern as we
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followed for the potential spectra. This will allow us to discuss the
range of possible spectral shapes allowed by our model, and thus to
complete the discussion of source representations initiated in

Chapter II. In particular, we shall emphasize the long-period
asymptotic behavior of the displacement spectra, and clarify one of the
controversial topics of seismology: is the displacement spectrum "flat"
at long periods (e.g., Aki, 1967; Brune, 1970) or is it peaked (e.g.,
Archambeau, 1968, 1972)? In addition we shall present a short discussion
of the phase spectra, scaling laws and seismic moments associated with

our source model.

i) Evaluation of the displacement spectra

The potentials XO! that we used in the former sections were the

cartesian components of the rotation vector potential

i-= 1,2,3,

and the dilatation

0= x4 R

We showed in section I-4 how the wave equations satisfied by these
potentials were derived by taking the curl and divergence of the
equations of motion in an elastic medium. It is easy to show that the

displacement spectrum is then given by (e.g., Archambeau, 1968)
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Ar,w = - —% v B(r,0) + 2—2 v x fi(r,w0) . (IV-4-1)
K K
S

o

Here, the wave numbers kp and ks are

kp = w/VP : ks = w/V ¥ (IV=-4-2)

where VP and VS are respectively the P-wave and S-wave velocities
of the medium.

Archambeau (1964) derived the analyticai expressions for the
components of the vector U in orthogonal curvilinear coordinates with
arbitrary metric coefficients. We must here again emphasize that
Qi », 1=1,2,3 represent the cartesian components of ) in a chosen
reference frame.

Since the potential solutions derived in sections IV-2 and IV-3
were obtained by use of spherical coordinates, and since these spherical
coordinates appear explicitly as independent variables in the multi-
polar expansions, it is logical and convenient to use the spherical
components of U . Furthermore, longitudinal and transverse waves
separate naturally in spherical coordinates. The first term in
(IV-4-1) represents the P-wave radiation and the second term represents
the S-wave radiation. But we shall see that while this separation is a
valid one in the far-field, it is purely mathematical in the near-field,

and is not very convenient in that case. The analytical expressions

for the spherical components ﬁr y Ge . G¢ of the displacement
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vector U are rather complicated and are given in Appendix 5. We shall
not reproduce them here in their totality, but the far-field components

will be useful to us in this section. They are obtained in the limit

kr>kr>1
s P

N ) ™
[“:]F 2 S
P
af af
~ =2 ; b, _2 e
[ue]F = kz [51n ¢ T cos ¢ T ] | (IV-4-4)

03]

-~ ~

o8 af of2
[ﬁ¢]F=% [cosecos¢a—rl-+cosesin¢§-;g-—sin¢f] "
s

~

(IV-4-5)

Indeed, one can see from Appendix 5, equations (A-5-2a,b,c), that all
the other terms appearing in those equations have an additional factor
of 1/r attached to them, and thus are negligible in the far-field.
We note that only the radial derivatives of the various potentials (in
fact, their far-field approximations) survive in the far-field. This
is a useful observation: since all potentials have similar multipolar
expansions, we can see immediately that all components of displacement
will have roughly similar spectral shapes in the far-field. We need,
therefore, only study one of them.

Also, the P-wave displacement is pﬁrely radial in that case and

the S-wave displacement is purely transverse. This corresponds to the
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usual notions of longitudinal and transverse waves. The € component
of displacement may also be called the SV-wave and the ¢ component

the SH-wave, but these definitions are purely arbitrary in an homo-
geneous space, and are only useful when the waves encounter an interface
between two different materials.

The displacement components in other coordinate systems, such as
cartesian or cylindrical coordinates may be obtained directly from
general formulae given by Archambeau (1964). However, it is
considerably more convenient to operate on the vector U , as shown in
Appendix 5. Its spherical components are the easiest to obtain, and
components in other coordinate systems can then be obtained by the
standard methods of vectorial analysis.

For obvious reasons of simplicity we shall consider only one
component of motion to discuss the character of the displacement spectra.
The simplest case is the radial component of the P-wave. As pointed
out above, the other components will exhibit similar properties. We

have

L. (IV-4-6)
3 o

H
ool

where the radial derivative of the dilatation is taken without
approximation in this case. From the results of Appendix 5, combined

with those of sections IV-2 and IV-3, we can write
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e ~ 1 i
P (r,w) = Z Z- @, P} (cos 6)

2=0 m=0

(2) (2) (4) (4)
{ [Rhl_l(kpr) - (2+1) h£+l(kpr)] [Azm cos mdp + Blm sin m¢]
+ [ljz_l(kpr) - (2+1) jéii(kpr)] [Cgi) cos m¢ + Déi) sin m¢] } .

(IV-4-7)

It is immediately obvious from Appendix 5 that the other components of
displacement, particularly for the S-waves,will have even more compli-
cated expressions.

The velocity and acceleration spectra can immediately be obtained
by differentiation with respect to time. With reference to our choice
of Fourier transforms as shown in equations (IV-1-6) and (IV-1-7)

we have for the velocity

V(r,w = -iuli(r,w) (IV-4-8)
and, similarly, for the acceleration
alr,w) = —wzﬁ(r,m) . (IV-4-9)

Thus the kinetic energy spectrum is
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k(r,w) = (IV-4-10)

N
<l
<

This represents the energy flux at r as a function of frequency. The

total energy radiated through a sphere of radius r is

27 T [ 9
E =[ [ f k(r,w) dw r” sin 6 d6 d¢ : (IV-4-11)
o o Yo

The total energy flux at any given point is given by

K(r) =[» K(r,w) dw . (IV-4-12)
o

We require it to be finite everywhere: This constraint will be used to
place an upper bound on the displacement amplitude spectral demsity in
the various limits considered below. These limits will be the same as
those considered for the potential spectra in sections IV-2 and IV-3.
In all these limiting cases we found that the asymptotic behavior was

insensitive to R, . This means that only the terms involving Agi)

and BE;) need be considered both at high frequency and at low

frequencies.

ii) High frequency asymptotic behavior

We just pointed out that the total energy flux must be finite at



T

every point. From (IV-4-12) this requires that

K(r,w) = O(wa) as W+ ™ ,

(IV-4-13)
o <=1,
This in turn generates the constraint
[¥(r,w) | = O(ws) as w > @,
(IV-4-14)
B < -0.5
Or, from (IV-4-8)
[i(r,w)| = 0(w) as @+,
(IV-4-15)
Y< _1-5 .
As an example, let us consider the radial component Ggp) given by

(IV-4-7) . We have

1 |8 } (2) ] s =2
o [ka_l(kpr) (1) hr (k) | = 0(w™) for w>>1 .

And we saw in sections IV-2 and IV-3 that the dominant multipole

coefficients at high frequencies were Aég) and Bég) , and that
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they behaved asymptotically as w_l . Thus

lﬁp(r,w)l = 0(0.)—3) for w>1 , (IV-4-16)

The same behavior should hold for the other components of displacement.
However, as pointed out in Appendix 4 this asymptotic result holds as
long as VR < VS & Vp , and we also know (e.g., Archambeau, 1972) that
sonic or supersonic rupture velocities yield a spectral behavior of w_g
at high frequency. Thus if the rupture velocity VR approaches the
shear wave velocity Vs , we expect the spectrum to decrease as w—3
only for very high frequencies. Numerical calculations show that when
VR approaches VS , the S-wave spectrum decreases as W over a
rather large frequency band before it eventually steepens to w_3 %
Also the multipole fields of higher dégree are important at high
frequencies, and affect the spectral shape differently at different
azimuths, because of interferences between the various fields. The net

result is that the observed high frequency behavior of the amplitude

spectrum may be given by

[i(r,w | = 0w”) for w > 1,
(IV-4-17)
@< -2 .
and the value o = -3 given by (IV-4-16) is to be understood in a

gross average sense.

iii) Long-period asymptotic behavior

In order for the total energy flux to be finite at every point, we
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need

K(r,w) = O(wa) as w~>0,

(IV-4-18)
=1 <0 o
This means that we require
[U(r,w)| = O(wB) as w >0,
(IV-4-19)
—l-5< B .

Further, we note that B takes the value -1 if the displacement
presents a net (static) change as a function of time (cf. the Fourier
transform of a step function H(t) , which is —iw-l

We shall adopt the same pattern of discussion as we did in tﬁe
previous sections. But we already know from our study of the potential
spectra that we need only consider the quadrupole term, and also that
the results are insensitive to Rs + The analysié will be performed

(p)

on the component Gr > in which we only keep the Hankel function term
for £ =2 . From the results of the previous sections we can
summarize the behavior of the multipole coefficients Ag;) and Bg:)

in the following table
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r <R r 2R
S S

kpr << 1 O(wz) O(wl')
kpr 5% 1 O(wz) O(wa)

The corresponding table for the factor
241

i (2) N (2)
kp [@hl_l(kpr) (#+1) h (kpr)]

may be written as follows

r<R r >R

S S

kT << 1 0w ™) 0(w™)
kx> 1 0w 0w

(IV-4-20)

(IV-4-21)

By combination of (IV-4-20) and (IV-4-21) and by comparison

with (IV-4-7) we obtain the following table of asymptotic behavior

for Iﬁip)(r,w)’



r< R r >R
s S
" . n ‘3 -l
kpr << 1 , "near-field 0(w ™) 0(w ™)
kr>> 1, "far-field" 0(1) 0(w?)

(IV-4-22)

Identical results hold for the other components of displacement, as can
be shown numerically (see Chapter VII).

A puzzling result, at first sight, is the near-fieid behavior for
r < RS . Clearly the restriction (IV-4-19) is violated, and it seems
that the energy flux is unbounded in that case. This is also the result
obtained by Randall (1972) for the case of a stationary rupture and
with RS = ®© , (On that basis, Randall attempts to define a '"long-
period corner frequency.'") A similar result would be obtained by
expressing the Green's tensor Pmk(r*,t*) given in Chapter I--equation
(I-3-35)--in the frequency domain.

The answer to this puzzle is that one cannot physically separate a
P-wave and an S-wave in the near-field: the two waves merge in that
case into one single pulse, especially at long periods. The separation
which we suggested in equation (IV-4-1) is purely mathematical and
does not bear any relation to the physical situation and to the
observations.

The correct quantity that we should consider in that case is
|G£p) - GES)| . It may be shown analytically, although with great
difficulty, that the mathematically defined '"P-wave" and "S-wave"

cancel each other exactly at long periods and that in such a case
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|ﬁip) - Gis)| =0 for w<<1 . (IV-4-23)

and similarly for the © and ¢ components.

We shall omit the proof here; more importantly, however, this
cancellation should and will be obtained numerically as well. This will
obviously provide an exceedingly useful check on the correctness and

accuracy of our numerical calculations.

iv) Discussion: 'peaked" and "flat" spectra

As we said earlier, one of the main interests of analytically
evaluating_asymptotic forms for the various spectra considered in this
chapter is that they will provide a check on eventual numerical
calculations. But they also give us preliminary information on the
general shape of the amplitude spectra predicted by the model. For
instance, we see that while the high frequency side of the displacement
spectrum is quite the same in most cases considered above, the spectral
shape at long periods may be very different under different circumstances
as shown in (IV-4-22) .

It is usual in seismology to plot the logarithm of the amplitude
spectral density against the logarithm of frequency. For that reason
the asymptotic behavior O(wa) is said to have a "slope" of o . This
is a convenient phraseology and we shall use it here.

For example, we found that the amplitude spectrum has a slope of

-3 at very high frequencies. This is an asymptotic limit and our
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analysis did not predict when it should be reached. As we pointed out,
the average slope is controlled by the rupture velocity for the S-wave
spectrum, and is also azimuthally dependent because of interferences
between the multipole fields of various degrees; in particular, it could
be steeper at certain azimuths, and less steep in other directions.
Furthermore, Archambeau (1972) shows that this slope becomes -2 for a
supersonic rupture velocity, such as might occur in the case of an
underground explosion.

These results may be compared with the slope of -2 obtained from
simple dislocation models (e.g., Aki, 1967). Brune (1970) also obtained
a slope of -2 for his model.

Observations yield a rather wide range of high frequency slopes,
although the value -2 appears to be roughly adequate in many cases
(e.g., Hanks and Thatcher, 1972; Hanks and Wyss, 1972). There is no
real discrepancy here since the term "high frequency" should be defined
as that frequency range for which the wave length is very much smaller
than the source dimensions so that the predicted asymptotic behavior
may not be observable in most cases. Further, at such high frequencies
the observed spectrum must be corrected for instrument response, the
effects of attenuation must be taken into account, and the spectral
amplitude becomes comparable to that of the seismic noise (e.g., Tucker
et al., 1973). These effects all add up to rather uncertain spectral
amplitudes. Of course, the critical test will be to try and match the
model against the observations, and this requires computing a complete
spectrum, so that we shall defer a more complete discussion until later.

However, we may already point out that a rupture velocity
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VR = 0.9 VS is high enough to yield a slope of =2 for the S-spectrum
over much of the observable frequency range. On the other hand, we
shall also show that our model-predicted slope of -3 would provide a
ready interpretation of a large body of data obtained by plotting the
body wave magnitude m, against the surface wave magnitude MS for
many events.

The long-period near-field behavior does not generate a lot of
argument, mostly because of observational difficulties, and also because
a slope of -1 1is readily explainable in terms of a net static offset
in displacement. Static and quasi-static displacement studies fall
outside the scope of this discussion, aﬁd are generally treated by a
variety of numerical methods (e.g., Alewine and Jungels, 1973; Alewine,
1973). In addition, most of the available near-field strong motion
data were gathered for engineering purposes and were high-pass filtered
with a cut-off frequency of about 0.1 hz (e.g., Trifunac and Hudson,
1971; Trifunac, 1973).

Much more controversial is the long-period spectral behavior in
the far-field. The results in (IV-4-22) show that if the observer is
inside the relaxation zone, the long-period spectral amplitude has a
slope of 0 , and similarly, if the observer is outside the relaxation
zone, the slope is 2 . The former case yields a spectral shape which
is flat at long periods; in the latter case, however, the spectrum must
clearly exhibit at least one maximum and is therefore peaked. We saw
earlier that the first behavior is insensitive to RS and that, for
practical purposes, R.S may be taken to be infinite in that case. 1In

the second case, however, the size of the relaxation zone has a definite
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effect on the shape of the spectrum. Quantitative results will have to
be obtained numerically, but it is clear on intuitive grounds that the
finiteness of the relaxation zone will only be felt at periods long
enough so that the wave length is comparable to RS » S0 that the
predicted slope of 2 will only be observed at such periods. (See
also the next section for the analytical treatment in a particular
case.)

"Flat" spectra are typically obtained on the basis of dislocation
models in which the time dependence of the displacement jump is chosen
to be a step function or some variation of it (e.g., Aki, 1967; Savage,
1966) . Such is also the case for Brune's (1970) model. This is
consistent with the equivalence theorem proved in Chapter IV, between
such models and a relaxation source in an unbounded medium.

In contrast, Archambeau (1964, 1968) proposed a relaxation source
model in which Rs was kept finite and the observer was outside Rs 3
he predicted on that basis a marked peak in the far-field displacement
spectrum. In an effort to reconcile the various models, Randall (1973)
suggested that it is erroneous to keep RS finite, and by making the
relaxation zone extend to infinity, obtained the same behavior as we do
for r < RS 5

It would be superfluous for us to repeat here the arguments
concerning the introduction of a finite relaxation zone. This was done
in the introduction to this chapter. It is essential, however, to
comment on the interpretation of body wave spectra.

Much of the interpretation of such spectra in terms of various

source parameters is based on their low frequency end, and more
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gspecifically on the fact that the spectrum is flat at long periods and
exhibits a '"corner'" at some intermediate frequency. The spectral level
in the flat portion is thus assumed to be about the same as it is at the
corner frequency (e.g., Brune, 1970; Hanks and Wyss, 1972; Wyss and
Molnar, 1972 ). We just saw that this holds when 1r < RS . For the
case r > RS , the spectrum presents a peak instead of a corner; but
the peak level is identical to the corner level provided that Rs is
large enough (i.e., a few rupture lengths). In other words, if RS is
large enough, the finiteness of the relaxation zone will affect the
spectrum only at frequencies lower than the corner or peak frequency.
Thus the interpretations based on this spectral level shouid be correct
whether the spectrum is indeed flat or not. This will be discussed in
greater detail in Chapter VII.

But this leaves a fundamental question unanswered: is RS to be
chosen finite or infinite? And, if RS is finite, what is its size in
relation to the size of the rupture?

The answer may only be obtained on the basis of reliable long-
period data. As pointed out by Linde (1971), such data are rather
difficult to obtain. In fact, Linde argues that most problems associated
with their obtainment, such as correction for instrument response, and
limitations in the time series amnalysis-—-truncation, detrending, noise
contamination——all contribute to an overestimate of the long-period
spectral level. Therefore a seemingly flat spectrum might really be
peaked.

Linde and Sacks (1972) found indications of a spectral peak in

their analysis of South American deep earthquakes. This suggests a
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finite relaxation zone. On the other hand, the excellent study of
S-wave spectra by Tucker and Brune (1973) for aftershocks of the
San Férnando earthquake shows that the spectra for these events may be
quite flat over a relatively broad frequency range. Their observations
were gathered at close range, and one may speculate that the assumption
r < RS might apply in that case.

Hanks and Wyss (1972) showed that the body—wave spectra of three
shallow earthquakes could be interpreted in terms of flat spectra, and
showed how such an interpretation can be used to estimate sourcé para-
meters. However, in most cases, their data could also be interpreted
in terms of peaked spectra. This is also true of many of the body-wave
spectra of the San Fernando earthquake computed by Wyss and Hanks (1972).
On the other hand, some of the averaged spectra for deep earthquakes
gathered by Wyss and Molnar (1972) require a relatively wide spectral
peak—a decade in frequency--if one wishes to interpret them in terms
of peaked spectra.

In the absence of a large body of data pertaining to a wide class
of different events, which would prohibit a dual interpretation, we
shall take the position that there is no clear cut choice for RB . The-
twq cases r < RS (or RS= ©) and r > Rs which we investigated in
this chapter represent two possible extreme situations, and the truth
probably lies between these two extremes. In other words, we feel that
the two extreme spectral shapes--flat spectrum and peaked spectrum—
bracket the range of possible observations. The figures of Chapter VII
give a more quantitative description of this range.

Molnar et al. (1973) show that a flat spectrum corresponds to a



—-252-
unipolar far-field displacement pulse in the time domain (one for which
the displacement in any direction does not change sign as a function of
time). A peaked spectrum corresponds in turn to a pulse which is not
unipolar. In terms of a dislocation model, a unipolar pulse can only
be generated if the time derivative of the displacement dislocation jump
does not change sign (i.e., in the absence of "overshoot"). This fact
is entirely consistent with the equivalence theorem between relaxation
sources and dislocation sources shown in Chapter II in the case
RS = o , since we predict a flat spectrum in that case. We argued
then that no overshoot occurs for transparent sources. The spectrum is
peaked in the case r > Rs , but the fact that the far-field displace-
ment pulse is therefore not unipolar does not mean that "overshooting'
takes place in that case. Rather, it means that the equivalence theorem
does not hold any more; one can still find (probably with great
difficulty) an equivalent dislocation source generating the same
radiation field in that case, but the displacement jump of this
equivalent dislocation will no longer repfesent the true displacement
on the rupture boundary. As proven by Molnar et al., this equivalent
dynamic dislocation will exhibit an overshoot, but we cannot conclude
that there is physical overshoot.

We see, therefore, that the model that we propose in this chapter
is very flexible, and that a broad range of possible spectral shapes
may be interpreted in terms of it. For completeness, we shall discuss
next some other aspects of the solution which require a more

quantitative knowledge of the spectral amplitude.
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IV-5) Phase spectra, scaling laws, moments

We shall discuss in this section a number of miscellaneous topics
concerning the radiation fields obtained earlier in this chapter. Since
the discussion necessitates that we compute more complete expressions
for the displacement spectrum, we shall center it around a very
particular example.

We shall assume a symmetrically expanding rupture ("explosion-like'");

of the prestress is

we also assume that only the component Gig)

present. Thus, from (IV-1-13) the only non-zero static coefficient

for the dilatation is

(o)

5(1-20) ©
Y- 13 . (IV-5-1)

21 u(7-50)

a

Furthermore, we have a pure quadrupole field in that case. Taking the

results of section IV-2 we have

Igz)(w) for

~
A
==

2

(4) _ . W e
Ay () = al; =% (IV-5-2)
P

L]

153)(w) for * >R

1

We shall take R(to) = VRto , and define L

characteristic dimension of the rupture (its final radius). Then, from

R(To) as the

Appendix 4, we have
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Igz)(w) " L3/3 for w-+>0 ; (IV-5-3)
and
3) W2 R:LB ‘i
12 (w) v —= |3 -3 for w=>0 . (IV=-5-4)

10v
P

Then by using the various results of section IV-4 and the expression

(IV-4-7) for the radial component of the P-wave, we obtain the

following low frequency limits

a) ¥ RS , far-field

-ik r

a! 2 32 P
3P o 21 |g2 3L | Luwe sin 26 cos ¢ . (IV-5-5)
20 s 5 3
Vo r
P
b) r > RS , near—-field
(p) 273 a'21 R§ L2 L3
U.r QY ——2'6—'— 3— - ‘5—' —Z; sin 206 cos ¢ . (IV-S-G)
wr
c) r<R , far-field
(o) . %31 3 -ikr
G\P) 4 e B P 5in 26 cos o . (IV-5-7)
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d) r< RS , near-field

. (IV-5-8)

This last equation yields the mathematically defined P-wave in the near-
field, and should really be combined with the corresponding S-wave
component as we showed earlier. But we shall only use it to define a
frequency range where the near-field effects become important.

As shown in Appendix 4, the high frequency spectrum is more
complicated and the solution does not lend itself to convenient

asymptotic expansion. According to equation (A-4-8) we may write

3V3 WL/V

19w = —2 el (0 A, (IV-5-9)
8w

(o]
or

2) v T -izt [ein t

L% (w) = —13’- e [—-t—— - cos t] dt, (IV-5-10)
8w

where [ = vp/VR is greater than one.

It is pointed out in Appendix 4 that the integral in (IV-5-10)
has no limit, but stays finite as w + o . Archambeau (1972, equation
5-8) investigates precisely this integral, but did not find any

convenient analytic form for it either. His series expansion in terms
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of hypergeometric functions is only convenient for low frequencies.

Just as in Appendix 4, we write

wa/Vp [X j.wL/VP
= + "
o o X

where X 1is a fixed number, chosen large enough so that ¢t jl(t) may

be approximated by - cos t in the second of these integrals. Then
3
3v X z
22 yas B e Xt ¢ 5. (b) at
2 3 1
8w o

i(1l-) mL/Vp

. 10 X

i
*t3 =

-i(147) mL/vp 1) X

1+z ;

e

-
2

(Iv-5-11)

Now the first term in the bracket is a number that depends only on [
and thus on the rupture velocity VR 5 in particular, it does not
depend on the frequency w . However, on account of the parity of the
function to be integrated in (IV-5-10) , we can investigate this
integral further. Let us designate by K the integral on the right-

hand side of (IV-5-10) . We have
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wL/Vp
2Re.(K) =[ & ok [sinTt - cos t] dt
- v
wL/ :

As w goes to infinity, we recognize that this integral converges to

the sum of distributions

2Re(K) —— B(ZH) - H(Z-1) - 8(z+l) - §(z-1) (IV-5-11)

so that, for 7 > 1 , the real part of K tends to zero. On the other

hand, we have

(uL/Vp
Im(K) = —[ sin zt [-S-i—:—i - cos t] dt

(s}

As ® tends to infinity, the first term tends to the sine transform of

of &tt , and the second term can be evaluated by two successive

integrations by parts. We get

1
IM(K)m =5 Ln

il
=1

= é [sin -(“;i sin (‘%L- + C(cos (“;—L— cos :;—L -l) ] .
A | P R P R

(IV-5-12)
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It is not our purpose to discuss here the nature of the convergence in
those various cases. It is sufficient to point out that we have a
singularity for ¢ =1 , which is consistent with the fact that our
solution is no longer valid when the rupture propagates at sonic velocity.
For that reason, the above proof does not achieve complete rigor.
Nevertheless, we can see that the dependence of the high frequency
spectral level on the rupture length is weak: both in (IV-5-11) and
(IV-5-12) L appears only in the argument of trigonometric functions,
and thus does not affect the average amplitude of Igz)(w) . On the
other hand, we note that rupture velocity is an important parameter at
high frequency, and that it affects the spectral amplitude in a very

complex fashion.

i) The phase spectrum

Niazi (1973) computed the phase spectrum as well as the amplitude
spectrum for the body waves of a number of earthquakes. Little work has
been done on this aspect of the problem, in particular fo: relaxation
source models. Ben-Menahem (1962) shows that the phase spectrum should
be a decreasing function of frequency for a moving source.

From (IV-5-7) and (IV-5-9) we see immediately that, in the near-
field, the phase is * m/2 , depending on the sign of the radiation
pattern coefficient. This agrees with the fact that the Fourier
transform of a step function is imaginary.

The far-field phase spectrum is more interesting, since it
corresponds to teleseismic observations, as well as high frequency

observations. Of course, the dominant term will be -wr/Vp , 4S we can
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see from (IV-5-6) and (IV-5-8) . This term is easily recognized as
the phase of a wave travelling over the distance r , and can be
deleted from the solution.
It is more difficult to evaluate analytically the initial phase at
the source, and more particularly its frequency dependence. This initial
phase is controlled by the multipole coefficients Azm(m) and Bzm(w) g

(3)
2

expand these integrals for small w and find, for the quadrupole term

and thus by I (W) and I

§2) (w) . In the long-period limit, we can

3 3T
Igz) (w) = I:;— (1 -1 T" w) + O(mz) 3 (IV-5-13)
and
2 2 2 2
2.3 R L R L
(3) _ WL | ey P ‘ 4 T
I, (w) = 10v2 [(3 5 ) i Tom(l. 5 )] + 0(w’) . (IV-5-14)

Thus we find that, in the far-field, the long-period phase is 0 or

m ——depending on the sign of the radiation pattern coefficient--and that
it decreases with increasing frequency. The derivative of the phase
with respect to w, at the source, has dimension of time and is called
the group delay at the source (e.g., Archambeau et al., 1965; Alexander,
1965). We shall denote it by tg(m) . This group delay comes in
explicitly in the theory of mode separation for surface waves
(Alexander, 1963). If it is large, it should be noticeable in body
wave observations as well. From (IV-5-13) and (IV-5-14) we see

that, if RS is large with respect to L , then in both cases
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for w<< 1

~lw
~

t (w)= (1IV=-5-15)

We take the convention that tg is positive if it is indeed a delay,
as is the case here. The numerical factor in (IV-5-15) 1is dependent
on the specific history of growth chosen for the source; that is, on
the functional form of R(to) in particular.

(2)
L

At high frequencies, we showed that I becomes pure imaginary,

and thus its phase does not depend on frequency any more, so that

tg(w) +0 as w->o (IV-5-16)

The group delay at the source is therefore not a constant function of
w . The immediate conclusion is that our source model is a dispersive
radiator. More specifically, the radiation is inversely dispersed,
according to the seismological terminology: the high frequency part of
the wave train travels ahead of the long-period part.

This requires a physical interpretation or, at least, a heuristic
explanation. For a growing rupture, the major part of the long-period
energy will be radiated during the last stages of the phenomenon, that
is, when the rupture has reached its maximum size. On the other hand,
the high frequency radiation emanates essentially from the vicinity of
the rupture front and the source is an efficient high frequency
radiator even during the early stages of the phenomenon. One therefore

expects intuitively the long-period radiation to be delayed with respect
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to the high frequency radiation, and the delay should be of the order of
the total rupture duration, as shown in (IV-5-15) .

The long-period group delay can be quite large: for a 20 km rupture
and a rupture velocity of 2 km/s., it approaches 10 seconds. This is
consistent with the data obtained by Niazi (1973). Burdick (personal
communication, 1973) also finds delays of this order. If this
phenomenon yields different delays for P-waves and S-waves over signifi-
cant frequency bands, then this could be a source of complications in
the interpretation of seismic data, in particular, travel time data
which might have to undergo a sizeable 'base-line correction.'" However,
further investigations of this particular aspect of the problem will
have to be undertaken before any significant conclusion can be reached:
for instance, alteration of the phase spectrum by attenuation effects
could be important.

Similar results hold for the S—waves; the radiation pattern and
static coefficients are then different, but, for reasons of homogeneity,
Vp must clearly be replaced by VS .

This elementary treatment does not cover all the characteristics
of the phase spectrum. Niazi (1973) notes that bilateral ruptures have
a phase spectrum different from that of unilateral ruptures. Savage
(1966) points out that the source geometry (i.e., very long faults
versus nearly circular faults) may also be a significant parameter.
Introduction of multipole fields of higher degrees will complicate the
global phase spectrum. In particular, there may be some fine structure
of the spectrum, as suggested by Niazi's (1973) data, and azimuthal

effects will then be taken into account. A numerical investigation will
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be undertaken in Chapter VII.

ii) Scaling laws

Aki (1967) attempted to define scaling laws for the seismic spectrum
in order to facilitate the interpretation of seismological data.

The asymptotic forms (IV-5-5) through (IV-5-8) permit us to
derive also a number of such scaling laws which will be found useful.
Figure IV-5-1 shows a sketch of the various asymptotes given by these
equations, and thus giyves us a rough idea of the global shape for the

amplitude spectrum.

]

21

which is proportional to the prestress. This i1s a very general result:

The most trivial of the scaling laws is given by the fact a

the spectral amplitude is directly proportional to the prestress.

We have seen in the former section that, provided RS is large
enough, the displacement spectrum is '"flat'" at long periods, at least
in some frequency band. For this reason, it has become customary in
seismology to talk about a corner frequency Wy which is a frequency
separating the high frequency side from the low frequency side of the
spectrum in a gross sense (see figure IV-5-1). However, we have been
unable to obtain a simple asymptotic expression for the spectral density
at high frequency. Furthermore, there is no insurance that an approxi-
mation which holds at very high frequency is still adequate at inter-
mediate frequency. We shall therefore obtain an approximation to I§2>
in the following fashion:

The ascending series for spherical Bessel functions converge very

well even for arguments of moderate size. We therefore replace jl(t)
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by its ascending power series in (IV-5-9) , integrate term by term, and

use the following high frequency result

Then by regrouping terms we obtain

BiVRV L —ino
W v —5e %5 /v .
w

1)

Replacing the spherical Bessel function by its asymptotic term we

eventually get

3vRv2
" ——-§P- for w> 1 . (IV-5-17)
w

’152)(m)

There is no analytical proof that the procedure truly yields an
asymptotic series, but this result is in remarkable agreement with
numerical calculations. Equating (IV-5-17) with the long-period

asymptotic value (IV-5-3) , we find that the corner frequency is then

given by
2
EVA
wg = —R—3P— : (IV-5-18)

Comparison of (IV-5-18) with numerically calculated spectra showed
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Figure IV-5-1. Schematic representation of the displacement amplitude
spectrum based on asymptotic forms. When RS is finite and the

observer is outside RS , a peaked spectrum is predicted.
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that it gives an excellent measure of the corner‘frequency for P-wave
spectra. The same formula was found to hold for S-spectra if one
replaces V_ by VS . The formula was also found to give good results
in the case of a unilateral rupture, even in the presence of higher
degree multipoles. In such a case L represents the rupture length,
and not the final radius (recall that L = VRTO). We note that
(IV-5-18) predicts a corner frequency occurring at a lower frequency
for the S-spectrum. This is consistent with the observations (e.g.,
Hanks, 1972).

Similarly, by taking the intersection of (IV-5-18) and (IV-5-4)

we can get a '"'peak frequency" which is given by

4
10V_V
5 Rp
w = . (IV-5-19)
P ;3 [RZ B Q_LZ]
s 5

This formula is to be used when the spectrum is truly peaked, in
particular, when RS is small. The difference between P and S peak
frequencies is slightly more pronounced in that case. In the case where
RS is relatively large one can define a new characteristic frequepcy

w (see figure IV-5-1), associated with the size of the relaxation

1
zone. By comparison of (IV-5-3) and (IV-5-4) we find

2 lOV2
wy = “_2_2 . (IV-5-20)
2 3L



-266-

The relative size of wo and ml

peak width is a decade in frequency if 4, = 100& . In the case where

is a measure of the peak width. The

L Vb/Z s we get by comparing (IV-5-18) and (IV-5-20)

R = 20L >
s

Of course, this does not mean that the spectrum will be exactly flat
over a decade, since we extrapolated the asymptotes to arrive at this
result. But it is clear that if RS is about ten rupture dimensions,
the peak amplitude is a good approximation of the "flat level"
amplitude.

It is worth noting at this point that Rs can easily be much
greater than L for small events, but that this cannot be the case for
large earthquakes, so that the spectra for small events can be quite
flat in the far-field while those for large events must be peaked.
However, the free surface of the Earth is usually not further than one
rupture length or less away from the failure zone of great earthquakes,
and such earthquakes are often multiple events (e.g., Wyss and Brune,
1967), and the problem is more complicated in such cases.

Finally, the intersection of the far-field and near-field
asymptotes at long periods yields a frequency w, at which near-field

effects become important:

. (Iv-5-21)
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The range [wz,wo] will be an order of magnitude in frequency if

r & 20

The geometrical relationships between these various quantities is shown
on figure IV-5-1. Thus the corner frequency W, given by (IV-5-10)
leads to a tradeoff between VR and L for purposes of interpretation
if the wave velocity is known. This was pointed out by Berckhemer and

Jacob (1968). Similarly, from (IV-5-18) and (IV-5-20) the measure

R
Tf A.p is the peak amplitude (or flat level), we see from (IV-5-8)

of the peak width yields a tradeoff between RS s L, and V

that it does not depend on the rupture velocity. Thus, at constant
prestress, the long-period level is proportional to L3 , and for
events smaller than a certain size, the surface wave magnitude is a
measure of the rupture dimensionms.

On the other hand, we pointed out earlier that the high frequency
asymptote is independent of L but is strongly dependent on VR .
thus for events larger than a certain size, the spectral amplitude at
1 hertz will be independent of L . Within these restrictions, the
body wave magnitude of such events is a measure of the rupture velocity.

It is easy to see from their definition that the ratio of the
coefficients aéllbél is proportional to Vi/Vi . Therefore, the
ration S/P of the long-period spectral amplitudes given by (IV-5-7)

is proportional to V;/Vi . This 18 confirmed by the observations

(e.g., Hanks, 1972).
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All the scaling laws described here were obtained from the asymptotes

in a very particular situation. Of course, because of higher degree
multipoles, and because of the radiation pattern modulation, they will
only hold in an average sense. However, we shall see that they are

upheld by numerical calculatioms.

iii) Moments

Archambeau (1964, 1968) shows that the general theory of tensorial
moments used in electromagnetic theory (e.g., Jackson, 1962) may be
adapted to elastodynamic theory as well. However the expressions that
he gives are rather complicated and cumbersome to use, so that we shall
not duplicate them here.

The notion of multipole moments is essentially a long wave length
concept (e.g., Stratton, 1941). For our mddel, however, a seismic
moment can be usefully defined only where the (static) initial value
fields do not vanish, that is, inside the relaxation zone. Then by
using (IV-5-8) and the usual expression for the seismic moment, we

get, for a Poisson solid

- 60T
23

3 (o)

M L 013 . (IV-5-22)

This is the expression given by Aki and Tsai (1972) and obtained by
Randall (1973) for the case RS = oo , Now, because we have shown that
"flat-level" and "peak-level" are the same for our model, provided that

RS is not too small, it is clear that the seismic moment can be
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obtained from the peak level as well. Thus our model does not require a
reinterpretation of published data: Inside the relaxation zone, the
long-period level is used much in the same way as it is for dislocation
sources, and outside the relaxation zone, the peak level must be used

to get the same result.
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Conclusion

The elastodynamic relaxation source model presented in this chapter
is a specialized case of the very general class of models presented in
Chapter II. It is a volume source as opposed to the usual boundary
source models such as dislocation and stress pulse models. The
radiation field is obtained as the solution to an initial wvalue problem
as opposed to a boundary value problem. The very concepts behind this
model and the more classical models are thus different. The equivalence
of the various source models was shown in Chapter II, and confirmed in
this chapter on the basis of a particular example. However, whereas
boundary source models implicitly assume the rupture phenomenon to
take place in an infinite homogeneous space, our model permits us to
introduce explicitly an additional parameter of the source: the size
of the prestressed region in which rupture takes place. This parameter
was first introduced by Archambeau (1964, 1968). Because Archambeau

considered only the case of an observer external to the relaxation

zone, he predicted a peaked displacement spectrum in the far-field.

This contrasted with the flat spectrum predicted, in particular, by
dislocation models. The results of this chapter permit us to pinpoint
the fundamental similarities and differences between the two model
types, and to determine exactly the cause of this discrepancy. In

fact, we confirmed this discrepancy while at the same time reconciling
the various models.

This chapter contains a detailed study of a growing and propagating

spherical rupture model; we can summarize the conclusions as follows:
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The critical parameter controlling the shape of the displacement
amplitude spectrum is the position of the observer with respect to the
relaxation zone. If the observer is inside the relaxation zone, the
far-field displacement spectrum is flat at long periods, and the
relaxation radius may be chosen to be infinite for practical purposes.
If the observer is outside the relaxation zone, a spectral peak will
be observed in the far-field. The argument as to whether the far-field
spectrum is flat or peaked is thus now shifted to a physical argument:
For any particular event, what is the size of the relaxation zone in
relation to that of the rupture zone and to the hypocentral distance of
the observer? This is a much more satisfying question because it bears
directly on the physical conditions in the vicinity of the event.

The near-field is only important at long periods and causes the
spectrum to have a slope of -1 at such periods. On the other hand,
the high frequency slope is independent of RS and of other source
parameters, and is equal to =3 . Multipole fields of higher degree
become important at intermediate to high frequencies, but their effects
must be evaluated numerically. The phase spectrum is asymptotically
constant at high frequency and a quasi-linearly decreasing function of
frequency at long periods.

A most important aspect of this study is that the interpretation
of observations based on the spectral levels in the vicinity of the
peak frequency (peaked spectrum) or of the corner frequency (flat
spectrum) is relatively model independent. Thus many of the concepts
developed on the basis of dislocation models, for example, and most of

the observational work found in the seismological literature retain
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their value, in the light of our model. In fact, we have shown how
the various source models proposed earlier may be reconciled.

The theory presented in this chapter may be adapted to include
more complex as well as more realistic situations. We shall show in
Chapter VI how to treat analytically the case of a fairly general
ellipsoidal rupture. But in as far as analytical models can hardly
take into account the complexities of a real phenomenon, one can also
use this theory in connection with finite difference or finite element
numerical techniques. The multipole coefficients can then be computed
numerically for very complicated rupture geometries, and also for
very general rheological properties of the material within the failure
zone. Further investigations along these lines will be undertaken in
the future.

Some numerical applications of the spherical rupture model will
be presented in Chapter VII. We shall then discuss the spectral
characteristics of the displacement field in more detail, especially

at intermediate frequencies.
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Chapter V

USE OF MULTIPOLAR RADTATION FIELDS IN SEISMOLOGY

Introduction

We have used in the previous chapter the theory of multipolar
representations of an elastodynamic radiation field. This provides, in
fact, an equivalent point source representation of the source (e.g.,
Archambeau, 1968, 1972), especially in view of the fact that multipole
fields can be generated by various nuclei of strains and their deriva-
tives (e.g., Randall, 1971; Turnbull, 1973). Further, inasmuch as
spherical wave functions form a complete set (e.g., Morse and Feshbach,
1953), any radiation field which is not pathological affords a
multipolar expansion. In addition, if the source of radiation is
bounded in extent, the fields outside a closed surface surrounding the
source region will afford an expansion in outgoing waves only (incoming
waves will be required if a scatterer is found at some distance from the
source).

These properties of multipolar expansions, along with uniqueness
theorems, have been used extensively in electromagnetic radiation theory
(e.g., Stratton, 1941). The elastodynamic problem, as treated on the
basis of a fairly simple model in Chapter IV, is complicated by the
fact that the source is a volume source, the extent of which is not
necessarily well known. An electromagnetic antenna is a well defined
source; the relaxation zone defined in Chapter IV will not, in general,
have a sharply defined boundary, and any attempt to model it will

necessarily involve some approximations.
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Nevertheless, the use of multipolar expansions permits us to extend
the notion of equivalent seismic sources mentioned in Chapter II in a
somewhat more axiomatic fashion. Given two sources of limited spatial

extent, we can always enclose them in a "black box," and worry only

about the radiation field emerging from this "black box." We shall say
that the two sources are equivalent if the two observed radiation fields
have the same multipolar expansion with respect to the same origin. Now
two multipolar expansions with respect to two distinct origins and
related by the addition theorem of Appendix 9 are obviously equivalent,
so that one cannot, in general, obtain a unique physical interpretation
of the phenomena occurring inside the "black box.'" Further interpreta-
tion requires, therefore, that one use other information. This
information can be extraneous, such as field observations of a fault,
or it can be present in the multipolar expansion, but hidden in such a
way that it is difficult to extract: The hypocenter of the earthquake
can be located from time domain information such as first arrival times
at an array of stations. If the hypocenter is used as origin to compute
a multipolar expansion, there is a good chance that the expansion will
be simpler (as it is for the model of the previous chapter). If any
other origin is used, the multipolar expansion so obtained will contain
the necessary information to locate the hypocenter but the location will
be rather difficult to perform.

This chapter will be concerned with the manipulation and use of
multipolar radiation fields for seismological purposes. We shall not
make any assumption about the physical nature of the source, nor shall

we assume any particular source model. We shall only assume that the
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radiation field is known in the form of a multipolar expansion in a
given coordinate system. Without loss of generality we can take this
coordinate system to be a natural reference frame of the rupture,
labelled "source system'" in Chapter IV. The z-axis is oriented along
the direction of propagation, and the y-axis may then be chosen to lie
in the fault plane.

On the other hand, wave propagation problems can be best treated
in a coordinate system where the z-axis is along the local vertical.
This reference frame may also be a cartesian system, or a cylindrical
one, or yet a spherical one. We shall define in this chapter a
"geographical" reference frame, where the z-axis is along the upward
vertical, the x-axis is arbitrarily chosen in a northerly direction,
and the y-axis points therefore to the west. Such a frame is reasonably
convenient for wave propagation problems. These problems include the
propagation of body waves in the Earth, according to ray theory (e.g.,
Julian and Anderson, 1968), or generalized ray theory (e.g., Gilbert
and Helmberger, 1972). They also include the propagation of surface
waves in a layered Earth model (e.g., Harkrider, 1963). The excitation
of free oscillations of the Earth can also be treated by use of such a
frame.

We shall address ourselves essentially to the problem of represent-
ing the radiation fields in a new coordinate system when they are known
in the source system. In the first section the operation will be
performed on the displacement vector fields, and is rather simple. The
next two sections will be concerned with the transformation of a

multipolar expansion under rotation and translation of the reference
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frame. Finally, we shall present a very succinct discussion concerning
the use of potentials other than the dilatation and rotation.
Because no use is made in seismology of left-handed systems, we

shall confine ourselves to proper transformatioms.
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V-1 Elementary transformations of the displacement fields

We saw in Chapter IV how to obtain displacement spectra from
potential spectra, and this operation may be performed in the source

system S . As shown in figure V-1-1, a ray can be defined in the

(G)
A

The take-off angle is usually measured from the downward vertical

geographical frame G by its azimuth ¢ and its take-off angle T

A

: G
direction so that Ty &0 = 9; ) . The point A 1is taken to be on the

focal sphere of unit radius so that the vector EK has geographical

components

rxéG) = sin T, cos ¢£G) ’
ﬁ in) = sin T, sin ¢§G) ’ (V-1-1)
LZASG) = - CcO0B TA .

The first problem is now to find the spherical coordinates of A
in the source system. This is easily done if one knows the orthogonal
transformation matrix T transforming the system G into the system
S . This matrix is given in Appendix 7, both in terms of "fault
orientation parameters''--strike, dip, and plunge angles—-and in terms
of Euler angles. Then the cartesian coordinates of A in the source

system are given by
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A
Up A Zg
Q(G)
A
A

-G

West
~ 7 North
X6

ray
Figure V-1-1. Specification of a ray by its azimuth ¢iG) and take-

off angle T in the geographical coordinate system.

A
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— B

S
X§S) xiG)

yis) - T yic) (V-1-2)
hz§S)~ zic)

*
where T denotes the transposed (and therefore the inverse) of T
The spherical coordinates of A in the source system are then trivially

obtained as

g
BI(XS) = (:os_l zlis)
< (Vv-1-3)
cos_l (xis) p-l) if yis) >0 ,
5% =
L 2T - cos (xés) p_l) if yis) <0 ,

where

- L) 6T

Knowing the spherical coordinates of A 1in the source system, we can
easily get the spherical components of the displacement fields at A ,

in the source system, where the fields are given by multipolar

W& | o® U;S)

expansions. These components are , and , and

are computed in Appendix 5.



-280-

The spherical components of displacement at A in the geographical

frame are then obtained by a sequence of three rotations: uis) s ués)
and ués) are transformed successively into the cartesian components
of displacement in the source system by a rotation of matrix Dll 3
these are in turn transformed into the cartesian components in the
geographical frame by the rotation of matrix T ; finally the
components uiG) 4 uéG) and uéG) are obtained through a rotation
of matrix Dlz . Thus we have
i F o)
L(©® (8
r r
©]| _ (s) -y
ug = qu T Dql ug (V-1-4)
o(©® ol
L ¢ L &
If we define
Fsin 6 cos ¢ cos 6 cos ¢ -sin ¢
M (8,9) = sin 6 sin ¢ cos O sin ¢ cos ¢
cos 6 -sin © 0
(V-1-5)

then we have
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_ (s) ,(S)
i, = 3 (90.4)
(V-1-6)

- Mm*[-(G@) (G)
MZ—M(eA ,¢A) .

Clearly the second one of these matrices can equally well be expressed
in terms of the take-off angle Ty, - It is also evident that the
radial component of displacement is left unchanged under the rotation

© _

of reference frame, so that (V-1-4) yields u’ L .

In the far-field approximation, uiG) is the P-wave displ;cement,
and is measured along the ray. Similarly uéG) is the SV displacement
and uéG) the SH displacement, and these components are measured
perpendicular to the ray, in two orthogonal directions. All the
operations described above can be performed in the frequency domain on
the various spectral components, which must obviously contain both
amplitude and phase information.

Given the displacement on the focal sphere in the frequency
domain, and given a layered Earth model for which the ray path can be

calculated as a function of take-off angle, then the displacement

spectrum at the emergence point B of the ray can be written as

(B0 = F W) « G40 . (V-1-7)

Here ‘EﬁzB(m) is the transfer function of the ray. It contains the

integrated effects of both geometrical spreading and attenuation in each
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layer (e.g., Julian and Anderson, 1968). Note that for the same take-off
vector OA the rays are different for P and S waves, and also that
longitudinal and shear wéVes undergo different attenuation, so that the
transfer function must be defined for each ray and each component of
displacement. Conversely, at fixed emergence point B , the record is
composed of a number of body phases having each a different path in the
Earth and a different take-off angle at the source. It must also be
emphasized here that the transfer function is complex and that its phase
contains both the phase shift as a function of distance for a travelling
wave, and the phase shift due to attenuation (e.g., Futterman, 1962).
Failure to take into account the phase shift due to attenuation in
(V-1-7) would yield a non-causal signal at the receiver point B 1in
the time domain.

Through equation (V-1-7) , one obtains the radial and/or
transverse components of displacement along the ray at B . The spectra
for the actual components of ground motion can be derived by the
reflection and refraction coefficients at the free surface. They are
obtained as solutions to the Zoppritz equations (e.g., Richter, 1958),
and are given in Appendix 6. Further multiplication of the spectra by
the transfer function of a chosen instrument and Fourier transformation
into the time domain yields a theoretical seismogram. Each body phase
can be treated separately in the same fashion, provided that the proper
take-off angle and ray transfer function are used in each case.

Generalized ray theory may be applied in a similar fashion. 1In
such a treatment, the source is handled via a "source-function,"

suitable for far-field representations (e.g., Burdick and Helmberger,
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1973). Because a multipolar expansion does not represent in general a
separable source, the source function is different for each generalized
ray; and the radiation pattern effects cannot be represented by a
simple multiplication factor. The simplest way to get the source
function for a particular generalized ray is to compute the far-field
approximation of the displacement (or of a potential) at some distance
r, from the source in the direction of the ray, and then divide it by
-ik I,

& /kuro . The procedure is quite lengthy, however, and some

attempts should be made to incorporate multipolar sources in the
analytical theory of generalized rays.

An interesting aspect of the source problem which may be discussed
in the frame of ray theory arises for shallow events (and, in particular,
for underground explosions). As shown on figure V-1-2, the wave train
observed at teleseismic distances will then be quite complicated as it
will contain waves reflected from the free surface. Let us consider
more particularly the P-wave train. For such a shallow source, it
contains the direct P-wave, the reflected wave pP , and the converted
wave sP . The time delays between these different phases may be |
derived from elementary geometrical arguments.

At high frequencies, for which the wave length is small compared
to the depth h , three separate arrivals will be observed; in fact,
the difference in arrival times provides a convenient measure of the
focal depth (e.g., Richter, 1958). On the other hand, for long enough
periods, the three waves will be essentially blended into one. Now,

the incidence of pP wupon the free surface is very nearly normal for
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Free surface

pes

Figure V-1-2. Generation of pP and sP rays by interaction with a
free surface. F 1is the focus, located at depth h
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teleseismic distances so that the reflection coefficient approaches -1 .
If the radiation in the direction FP is comparable in amplitude and
phase to the direct P radiation, then pP will nearly annihilate P
at long periods. The long period spectral content of the first arrival
train at teleseismic distances may then be controlled by sP ,
especially since the long-period amplitude is grossly an order of
magnitude larger for the S-wave than for the P-wave.

We already know that the long-period radiation patterns for the
various fields are quadrupole in nature. It is thus not difficult to
see that the efficiency of the phenomenon will depend on the orientation
of the quadrupole with respect to the free surface. In particular, the
ray FQ to be considered on figure V-1-2 is an SV ray in the geographi-
cal frame and its radiation pattern is to be determined by taking into
account the orientation of the rupture and that of the prestress through
the methods described above. Thus for an underground nuclear explosion
detonated in a highly sheared material, with a shear plane normal to
the surface, the phenomenon can be very efficient (Archambeau, 1973,
personal communication). On the other hand, the orientation of the
focal mechanism for the San Fernando earthquake of 1971 is such}that
this phenomenon is unlikely to occur in that case (Hanks, 1973, personal
communication). In fact, for this particular case, the ray FQ
corresponds to a node of the SV radiation pattern.

Finally, let us recall that one can easily obtain the cartesian and
cylindrical components of displacement from the spherical components.

This is done in Appendix 7, and will not be repeated here.
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The cylindrical components of displacement will also be given in
section V-4, in the case where the potentials are given by cylindrical
multipolar expansions.

The discussion presented in this section assumes essentially that
ray theory is applicable; in other words, it breaks down in the vicinity
of caustics and also at very long periods. Where ray theory is not
valid, one must resort to other methods of solution of wave propagation
problems (e.g., asymptotic ray theory, mode theory). Discussion of

such questions lies beyond the scope of the present treatment.
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v-2 Transformation of multipolar expansions under rotation of the

coordinate system

As was pointed out in the introduction to this chapter, it is
sometimes more convenient to manipulate the radiation fields described
in Chapter IV in their multipolar form. This is true in particular when
solving a wave propagation problem by use of the mode theoretic
representation. For a propagating source (see Chapter IV) the natural
spherical coordinate system to be used has a polar axis oriented along
the direction of rupture propagation. But many wave propagation
problems will be most easily solved in a spherical coordinate system
with polar axis along the local vertical (e.g., Gilbert and Helmberger,
1972), or in a cylindrical coordinate system when use is made of a flat
Earth approximation (e.g., Harkrider, 1970).

These circumstances raise the following question: knowing the
multipolar representation of the radiation fields in a particular
coordinate system, what is the equivalent representation in a new
coordinate system, obtained by rotation of the first one? A solution
to this problem was obtained by Y. Satd (1950). Unfortunately, Satd's
solution is somewhat bulky and certainly cumbersome for use in numerical
applications. In addition, the published solution suffers from numerous
misprints and possibly some confusion in the definition of the Legendre '
associated functions (Hobson, 1931; Ferrers, 1877). Indeed, the product
of two rotations inverse to each other will generally not yield the
original multipolar expansion if Satd's results are used in their
published form.

In this section we shall obtain a very simple solution as a direct
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application of group theory. We shall use representations of the
rotation group described by Gel'fand et al.(1963), and used by Burridge
(1969) and Phinney and Burridge (1973). The notation used for ultra-
spherical functions is that of Gel'fand, and Jacobi polynomials will be
introduced in the notation of Erdelyi (1953). Edmonds (1957) uses a
similar approach to describe the transformation of angular momentum
under finite rotations.

An arbitrary rotation of the coordinate system can be represented
by three Euler angles 0 < @l < 2m 3 0<O<m , and

0<%, <2m . These angles are described on figure V-2-1 . We have

2
used here Gel'fand's choice for the line of nodes (L) , that is, the
new x-axis after the vertical rotation of angle @l . Edmonds uses
the new y—-axis . The expression of these Euler angles in terms of the
usual "geological" fault orientation parameters--strike, dip, plunge--
is derived in Appendix 7, and will not be reproduced here.

We call the original (source) system S , and the rotated

, © be the usual

(geographical) system G . Let r >y O .

s 8

spherical coordinates in the system S , then from the results of
Chapter IV, the multipolar expansion of a scalar potential of the

radiation field is

» n
%(rs,m) - E héz) (krs) Z [Anm(w) cos m¢s + Bnm(w) sin quS]
n=0 m=

+ Pl(cos 8) . (V-2-1)
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Figure V-2-1. Definition of Euler angles. The rotations of angles

@l s O @2 , are performed successively. (L) 1is the line

of nodes, axis of the rotation @
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Here Anm(w) and Bnm(m) are the multipole coefficients. We can

rewrite this expansion in the more convenient form

~ b n
X(rs,m) B Z hrEZ) (krs) Z A;:(w) Yl::(es,q,s) ’ (V-2-2)
n=0

=—n

where Yi(es,cps) is the normalized spherical function given by

im¢
_ m (n - m! 2ntl 1 s _m
Yz(es’(ps) = (=1) v ( +m)! V > ’_-2“— e Pn(cos SS)

. -
H=l.g P an(cos GS) " (V-2-3)

Here _fnm(p.) is the normalized associated Legendre function (e.g.,

Jahnke and Eknde,+ 1945), satisfying ?n-m(u) = (-1)m T’-nm(u) . Then the

coefficients A:;(w) are obtained by identification of (V-2-1) and

(V=-2-2) ; we get

T The definition of P"(1) given by Jahnke and Emde (p. 114) can

hardly be correct since it 1s in conflict, for m = 0 , with the

recursion relation given just below (cf. Appendix 5).
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( -n" J—(M 42:;_1 (A . = ian) form > 0.

n _ J / T
Am(m)'h . 2n+l Aho for m

(n+{m|)! T ' .
(n-|{m|{)! ‘/2n+1 (Ah|m| * 1Bnlm[) for m

I
o

A
o

(V-2-4)

Let us now denote by R both the rotation transforming the system §
into the system G , and the matrix representing this rotation in S

That is, the components in G of a vector Vv known in S are given

by

(G) (s)
Vi TRk :
- ;s /\(S) /\(G)
In particular, if ei - are the basis vectors of S and G
. .th A (8)
then Rik is the i component of e in the G system. By

definition the functions Y‘;(G,r,b) form the canonical basis in the
space of spherical functions of the nth degree. In this space the
rotation R is represented by an operator 'I‘R . In the canonical
basis this operator is represented by an n X n matrix; we denote the
(m,k) element of this matrix by Tik , adopting the notation in use
in the geophysical literature (Phinney and Burridge, 1973).

The inner product of two spherical functions, £ and h , of
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degree n , is defined by

2r pm =
< f,h > =f [ £(0,9) h(0,9) sin 6 d6 d¢ , (V=2-5)
o 0o

where E(G,cp) is the complex conjugate of h(0,9). With respect to the
inner product the transformation TR is then unitary, that is

< TRf,TRh>=<f,h> "

The analytical form of 'Iﬁk is derived by Gel'fand (1963);
changing his notation slightly, we have

-imd -1kd

Tﬁk =e . P:k(cos 0) e : ’ (V-2-6)

where the functions P:k(u) are called generalized spherical functions
by Gel'fand, and are related very closely to ultraspherical functions
(Erdelyi, 1953); they are computed in Appendix 8 and are given below.
Burridge (1969) and Phinney and Burridge (1973) make use of such |

functions to define generalized spherical harmoniecs. Since TR is

n
unitary, then E lpzk(cos e)|2 =1 (Gel'fand, 1963).

i 1
Since (V-2-6) 1is the expression of T:k in the canonical basis
Y?;(B,qb) , We can now operate with TR on the expansion (V-2-2) to

get
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" L@ n
X(xg,w) = Z h:E )(krG) Z G:](m) Y‘I‘;(eG,an) ’ (V-2<7)
n+0

where

n = n
Gm(w) = E 11:'@1,@,4:2) Ak(w) . (V-2-8)

k=-n

To complete the transformation we rewrite (V-2-8) as

© : n
?('(rG,w) = Z hr(12) (kr ) Z [Cmn(w) cos mg, + Dnm(w) sin md)G']
n=0 m=0

. Pﬁ(cos GG) . (V-2-9)

The new multipole coefficients are then given by

m
c_ () = (‘g) ﬁ; E %: J;'fl [Gz(w) # (-1)" G‘_‘m(w)] for m >

I

- L "Zn_+1 n, .. - -
ﬁ Cno(w) > = Go(w), Dno(w) 0 for m

_i-D" n={m|)! 2n+l [.n il ]
Dnm(w) adae {(n+ X J [Gm(m) (-1) G_m(w) for m >

m

(V-2-10)
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These coefficients are those of the multipolar expansion in the new
coordinate system.

We still have to express the ultraspherical functions in closed
form, in order to apply (V-2-6) . The derivation is made in

Appendix 8, and the result is

s !s !

P = (% 2™ J a2 a2
+ - ;
S.fs_+a\ /s _+8B s -] . 7
Z( ) ( Je-n T Tamy? (V-2-11)
i s =13

j=0
where the following definitions hold

a = |m—k| s, B = |m+k| » S_=n —‘%(a+ﬁ) , S, =n +-%(a+8)

All these quantities are integers. The formula (V-2-11) is then
particularly easy to use since it is merely a polynomial. It yields
good results, especially for low n . From the discussion in

Chapter IV, we are rarely interested in computing more than a few
multipoles, and (V-2-11) is more than adequate. For larger degrees
and orders, Edmonds (1957) gives recursion relations which are easy to
use. The reader should be cautioned, however, that Edmonds' choice of

Euler angles is slightly different from ours .
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The adaptation of Edmonds' results does not pose any major theoretical

problem.

Because of the unitarity of the operator T s, the coefficients

R

appearing in (V-2-8) correspond to the inverse rotation of Euler angles

m - @2 s O 5 and W= @l . In other words, we can write
km
T(@,,0,0,) = T (1-0,,0,7-0)) . (V-2-12)

That this property should be satisfied constitutes a useful check on
numerical calculations. Another important check is that, for each n ,

the power should be comnserved under rotation, that is

; |A§|2= i: |G$|2 ; (V-2-13)
=-n

m=-n

This result expresses the intuitive fact that the relative excitation of
the various multipoles is unchanged by rotation of the coordinate system.
This is not the case for a translation as we shall see in the next

section.
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¥-3 Transformation of multipolar expansions under translation of

the coordinate system

The necessity to be able to express a multipolar expansion in a
new coordinate system obtained from the original one by pure translation
arose in Chapter IV. This is particularly useful to study propagating
ruptures, where the most convenient coordinate system is chosen
according to the symmetry of the rupture zone, and moves along with the
rupture. Then a fixed reference frame is needed to solve wave propaga-
tion problems.

The theorem needed for this purpose is an addition theorem for
spherical waves. Satd (1950) proved such a theorem in the case of a
translation along the polar axis. His results are given in the form of
recursion relations which can be easily coded on a high speed numerical
machine. A more general theorem was derived by Friedman and Russek
(1954) for an arbitrary translation. Ben-Menahem (1962) used their
results to obtain an elegant operational form for the theorem.
Unfortunately, there is an error in Friedman and Russek's results, which
is pointed out in Appendix 9. In this appendix, we derive the theorem
in a general form, and show how it reduces to Miller's (1964) results
for the case of standing waves. Miller attacked the problem from the
point of view of group theory; we adapted the method of Friedman and
Russek, and used some classical results of quantum mechanics given by
Edmonds (1957).

Let S be the original system, and T the new system obtained by
translation of vector d = (d,Bd,¢d) . Then as in section V-2 we

write
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© 1
% " n (2)
Rrsw = 30 ) AW e Y66 (V-3-1)
n=o m=-n
where the coefficients Ag(w) are given by (V-2-4) . Because the

general addition theorem is quite complicated and would lead to rather
cumbersome algebra, and because we have seen in section V-2 how to

operate a rotation of the coordinate system, we need only consider here

a translation along the polar axis of S . In that case ¢d can be
taken to be zero, and Gd is 0 or
Then according to the results of Appendix 9, we have for I; >

[o2] n+v
h(Z)(krS) Yo(0_,0,) = h I ¢, (v, 2|n,m)

R v=o0 = n—U|

e 3 kd) n$P (k) Y5(0,,0) (V-3-2)
with
¢, (v, 2|n,m) = € R 0a1y (2241) Y 2 2001y "2
*(Avm0|nm) AvO0O|no0), (V-3-3)

where € = cos Gd and we have used the fact that ¢T = ¢S . The

coefficients appearing on the right-hand side of (V-3-3) are
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Clehsch—Gordan coefficients. The coefficient.c1 vanishes unless
f4n+v is even, m < &, and |&-n| < V< &m . Thus the inner sum is
a finite one, and it is possible to interchange the order of summation

and to reorder the terms so that

B ) Y (0,9 = g,);, v}g_n[cl(v,z]n,m)

ERCIRICIRE (V-3-4)

We observe that the order m 1is left unchanged in such a translation.
This makes the analysis much more tractable. The series (V-3-4)
converges uniformly with respect to rn provided that rp >d . If
we suppose that the series in (V-3-1) converges uniformly with respect

to rS in the same region, then by combining these two equations we

can write

oo

n
X = L Y Tow wi? ) 56,00 (V-3-5)

=0 m=-n
and the new multipole coefficients are given by

2 © 24n @
T = 2 AL C (v, 2[n,m) 3 (kd) . (V-3-6)
n=0 V=|%-n

In Chapter IV, we encountered the case where only one value of n ,
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(n=2) , was present in the initial expansion (V-3-1) . 1In that case,
there is no convergence problem since we have only a finite sum in
(V-3-6) . For the case where Tp < d , the same analysis can be easily
duplicated by interchanging the roles of rT and d from the beginning
(see Appendix 9).

It is clear that a translation does not preserve the power con-
tained in a multipole of a given degree. This is intuitively
understandable since a translation does not preserve spherical symmetry.
In fact, if a pure double-couple source is expanded in the coordinate
system satisfying its symﬁetry, the expansion will be a pure quadrupole.
But if it is a shallow source and we want to expand it in a geocentric
system, it is obvious that a large number of very high order multipoles
will be necessary to represent it: When seen from the center of the

Earth this source is very localized, and seems like a singularity at

the surface.
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V-4 Use of displacement potentials

The introduction of the dilatation © = Y , and of the rotation

4
vector potential (] = (Xl’XZ’XB) was made essentially to reduce the

elastodynamic problem to the solution of wave equations. We saw that

these potentials may be given in terms of multipolar expansions such as

L
n

ia(r,w) = (kar) [6§g) cos mp + Béz) sin m¢] P:(cos 0).

n=0 m=

(V-4-1)

However, for wave propagating problems in plane stratified media (e.g.,
Ewing, Jardetsky and Press, 1957), one uses, in general, a cylindrical
coordinate system with polar axis normal to the stratification. Let

P , ¢ , 2 be the cylindrical coordinates, then, by using the results
of Satd (1950), Archambeau (1964) and Harkrider and Archambeau (1973)
show that the cylindrical multipolar expansion corresponding to (V-4-1)

is
© n

ia(ps¢,z;w) = E E [Aiz) cos mdp + Béz)‘ sin m¢]
n=0 m=0

—i\)a]z’

0

— m e
1 f Jm(kp) P n(\)a/ka) T k dk (V-4-2)
o

where k 1s a wave number and where
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1/2
(kz—kz) if k<k .
o o
v = (V=4-3)
- .l |
—1(k. -—ka) if k >k,

s m - .
Here P - denotes Hobson's definition of the associated Legendre

functions and we have

m 2.m/2 d° :
¥ E) =Q-8)" "= D) ,
dg
/2 m
= m o 2 - d
PO = (E°-D e B (5 .

Then the multipole coefficients appearing in (V-4-2) are given by

A@ | A
) (_1)2nﬁm 2 2 mtn (V-4-4)
ky  \lzl '
ON g(®)
nm nm

The displacement components in cylindrical coordinates are then derived

by Archambeau (1964) and found to be
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ot r ~ ~ ~
., Loy, 2 X X, 9,
u —'-——2'—+—2- p sin ¢ — - p cos § =— %= s
e k-3 ok~ L 3z 3z 3
P ]

. 1 324 2 EN 322 323
u¢=——2-—+—2- cos ‘¢ ———F gin @ —= = == ’
pk~ 99 k- L 9z oz op

P S
19}, 2 3 3
?iz=——3—-+——2- psin ¢ — + cos ¢ — 5'(1
k~ 9z pk ap 3¢
2 3
+|pcos  — + sin ¢ — Xy .
ap L]

(V-4-5)

On the other hand, wave propagation problems in layered media are best
handled via the following implicitly defined displacement potentials

(e.g., Harkrider, 1964)

(V-4-6)

-
I
I
+
I
|

(=}
I
+
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Here (V-4-2) was used in the last equation. By simple identification

of (V-4-5) and (V-4-6) one sees immediately that

~ l -
P, =

1 o3 4

P (V-4-7)

~ 2 -
B == ¥, =

3 2%

S

These potentials are called the dilatational and SH potentials
respectively, and their multipolar expansions may be found trivially
from (V-4-~7). The SV potential @2 may then be found by comparing the

last equation in (V-4-6) and the last equation in (V-4-5); this yields

—= . =1 . (V-4-8)

Thus the SV displacement potential is, in fact-—up to a multiplicative
factor--the 2z component of the curl of the rotation vector potential
1 . This last relation will yield the multipolar expansion for @2 g
The algebra may be found in Harkrider and Archambeau (1973), in the
context of the generation of Rayleigh waves by a buried multipolar source
in a layered medium.

It is clearly possible to develop a large number of possible
applications for multipolar sources, but each application is best

handled in the context of a specific problem and we shall 1imit our

discussion to the brief description given above.
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Conclusion

Each one of the four sections of this chapter has been concerned
with a specific application of multipolar sources. Although the
discussion was rather confined to specific operations, suitable
combinations of these various operations provide us with a very flexible
tool which should find numerous applications in seismology.

We want to emphasize again the generality of the types of sources
considered here. Since no mention is made in this chapter of the
specific physical nature of the source mechanism, it is clear that the
methods presented above may be used to handle a broad range of different
source models. These include separable and non-separable sources,
explosions, earthquakes, any of the models discussed in Chapter II, as
well as numerically modeled sources. The only constraint is that one
should be able to find a multipolar expansion for the radiation field.
This constraint may be a very stringent one for analytical models, but
is not very severe for numerical models. Numerical models using finite
difference or finite element techniques are mostly useful to perform the
complex near-source calculations. The dynamic fields may then be
computed at an array of points, and then expanded in multipoles by
numerical integration and by use of the orthogonality properties of the
various multipoles. Once the multipolar expansion is known, the methods
described in this chapter can be used to study the propagation of the

dynamic fields away from the source region.
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Chapter VI

THE ELLIPSOIDAL RUPTURE

Introduction

The major properties of elastodynamic sources were described in
Chapter IV on the basis of a rather simple geometry: that of a spherical
rupture. We argued then that this model should be excellent for the
case of underground explosions, and should exhibit most of the desired
features to model adequately spontaneous phenomena such as earthquakes.
Nevertheless, there is no question that a spherical geometry does not
even approximate the geometry of the failure zone for shallow earth-
quakes; and, even for deep earthquakes, the idea of a spherical failure
zone with a radius of several kilometers is somewhat disquieting. For
that reason we shall attempt to investigate in this chapter the case of
an ellipsoidal rupture zone. This does not invalidate the arguments
and conclusions presented in Chapter IV. Instead, the results obtained
for the spherical case will play a fundamental role insofar as they
give us some insight into the problem, and therefore give us an idea of
what results we should expect from the ellipsoidal model. This insight
should in turn be of great help when we seek a convenient mathematical
formulation of the results.

Archambeau (1964) made some attempts to solve the problem of an
ellipsoidal elastodynamic source. However, his attack leads to rather
inconvenient algebraic expressions, which lack symmetry. The main
difficulty encountered is not theoretical since the theory presented in

Chapter II does not require any assumptions about the geometry of the
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problem. Rather, one is faced with the difficulty of having to

manipulate extremely large algebraic equations. Another difficulty
arises from the fact that the problem is to be solved by use of
ellipsoidal coordinates, and that harmonic functions must therefore be
expanded in terms of Lamé products. The literature is somewhat
confusing on the subject of Lamé's equation. As pointed out by Arscott
(1964), there are five different forms used for the equation itself,
and there is no standard notation. We shall use the Jacobian form of
the equation (e.g., Erdelyi, 1953). Most of the standard results
concerning Lamé's equation and its solutions, as well as the Jacobi
elliptic functions can be found in Erdelyi (1953), Whittaker and Watson
(4th Edition, 1969), Arscott (1964). Additional references are Hébson
(1931) and Jahnke and Emde (1945). The reader will find in the above
referencés extensive bibliographies about the original research papers
on the suﬁject.

The problem of the static ellipsoidal inclusion in a stressed
matrix was investigated by Eshelby (1957), who gives solutions valid
immediately outside the ellipsoid, and also asymptotic solutions at
large distances. Sadowsky and Sternberg (1949) determined the stress
concentration around an arbitrary ellipsoidal cavity in the case where
the principal stress directions at infinity coincide with the principal
axes of the ellipsoid. Robinson (1951) extended their results to
include the case of an elastic inhomogeneity under thermal stresses.
These cases are not appropriate for our purposes, however, since one
expects the material to fail under shear during an earthquake, so that

the principal axes of the ellipsoid do not coincide with the principal
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stress directions. Turnbull (1973) adapted Archambeau's (1964) method
of solution to the case of an ellipsoidal cavity under shear. However,
he does not use uniformized ellipsoidal coordinates, so that his
solution holds only for problems with a large degree of symmetry. We
shall give the solution for the case of an arbitrary, triaxial
ellipsoidal elastic inclusion embedded in an infinite space, under a
stress homogeneous at infinity, but with.arbitrary relative orientation
of the principal stress directions and the principal axes of the
inclusion.

This represents a formidable algebraic problem and we shall not
give all the details of the solution. However, a large number of
useful relations between Jacobi elliptic functions will be given in
Appendices. We shall also give a flow chart of the solution algorithm
which will hopefully permit the interested reader to reconstruct the
line of reasoning. The method is essentially the same as the one
adopted by Sadowsky and Stermberg (1949) and the reader may find it
helpful to read their publication beforehand, since they treat a simpler
problem. |

The dynamic problem is even more complicated. First of all, since
we are in the presence of a volume source (see Chapter II) we should
know the initial value fields at every point around the failure zone
and we should also be able to perform a volume integration over the
relaxation volume, just as in Chapter IV. 1In addition, in order to find
a multipolar expansion of the source, one needs to expand the Green's
function to the Helmholtz equation in wave functions. Very little is

known about ellipsoidal wave functions (Arscott, 1964), so that the



-308-
most promising approach is to try and express both the static and
dynamic solution in a spherical coordinate system. We have made little
progress in that direction at this point, so that we shall confine
ourselves to a description of possible methods of solution and to a
discussion of the problems which are likely to arise.

In an effort to strike a reasonable middle ground between terseness
and completeness, we shall confine the discussion to the minimum
necessary for the solution of the problem at hand, but at the same time
shall attempt to define each new quantity or symbol as it appears,

without relying too heavily on the literature.
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VI-1 Elastic fields associated with an elastic triaxial ellipsoidal

inclusion

We consider in this section an arbitrary triaxial ellipsoidal
inclusion, filled with elastic material, and embedded in an infinite
homogeneous elastic matrix. The problem is to find the (static) elastic
fields everywhere when an homogeneous stress field is applied at infinity,
with arbitrary orientation relative to the inclusion.

Such a boundary value problem is much easier to solve if the
boundary of the inclusion is a coordinate surface. Therefore, we shall

use ellipsoidal coordinates (e.g., Sadowsky and Sternberg, 1949).

i) Ellipsoidal coordinates

Consider a cartesian system with axes along the principal axes of
the ellipsoidal inclusion. In that frame the surface of the inclusion

can be represented by the equation

x2 ZE z2
=5 + > +-—§ =1 , ) (VI-1-1)
a b [of

where a , b , ¢ are the principal axes of the ellipsoid and we

can assume, without loss of generality,

a>b>c>0 . (VI-1-2)

Then the equation



—+2—+-2—= (VI-1-3)

represents a triply orthogonal family of confocal quadrics parameterized

by © . Thus the equation 6 = Go represents one of the following

quadrics
2

if - <9 Ellipsoid ,

if —b2 < @< —c2 Hyperboloid of one sheet,

if —a2 <0< —b2 Hyperboloid of two sheets,

if 06 < -a2 Imaginary quadric.

sl 2 2

The values 6 = -a”, -b“, -c¢~ correspond to degenerate quadrics (e.g.,

cones, focal ellipse). If we solve (VI-1-3) for 6 , we obtain a
cubic equation, and for each point (x,y,z) not belonging to any of the
degenerate quadriés , this equation always has three roots, one in each
of the intervals described above (e.g., Hobson, 1931). Thus, through
each point pass three mutually orthogonal quadrics, corresponding to

99 93 . The ﬁhree roots in © may be used as curvilinear
coordinates. However, these roots can only be expressed in terms of

xz, yz, z2 , so that the eight apices of a cube centered at the origin

6 =6,,86

and with edges parallel to the axes have the same curvilinear coordinates.
In order to generate uniformized coordinates (e.g., Erdelyi, 1953) we

define the following moduli
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2 g2ap? 2_2

&~ a=c
(VI-1-4)

DLk, K" XL 4

The quantities k and k' will be the modulus and complementary
modulus of Jacobi elliptic functions and will be referred to in those
terms hereafter.

Let us introduce the following shorthand notation for the Jacobi

elliptic function of modulus k and argument

s_ = sn(k,Z) s c, = san(k,Z) 5 d‘g = dn(k,Z) .

(VI-1-5)

The properties of Jacobi elliptic functions are extensively discussed by
Whittaker and Watson (1927) , the most important one being their

periodicity. If we define

1 -1/2 -1/2
K = f (1-t% (162t dt (VI-1-6)

(o}

and K' in a similar fashion, then

s has periods 4K 4 2iK' 5 4K+41K"

c has periods 4K 5 41K’ 9 2K+21iK' ,

Y

d has periods 2K 5 41K’ 5 4K+41K"

Y
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We can now define the three coordinates o, B, Y implicitly by (e.g.,

Erdelyi, 1953).

D
Il

~(ac)? - (s ?,

D
I

~(acg)? - (bsp)?,

@
]

2 2
3 = ~(ac)” - (bs))" .

These relations are invertible, and one can in fact establish the

following correspondence (e.g., Sadowsky and Sternberg, 1949)

BY
vVIi-1-7
y o CQCBCY ’ ( )
im
FA w dad Bd_Y
1/2
where m = (az-bz) .

These equations establish a one-to-one mapping between the triplets
(x,v,z) and (0,B,Y) . 0o,B,y are the uniformized ellipsoidal curvi-
linear coordinates that we shall use throughout this chapter. Because

of the periodicity of the Jacobi elliptic functions we can restrict

their range to

iKY € @ < BHK!
K < B K+2iK',

0 <y<U&4K .
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Furthermore the first octant corresponds to the range

iK' < a < KHK',
K < B < KHK',

0 <yYy<K .

The quadrics at constant o are confocal ellipsoids. We shall define
the boundary of the inclusion by a = o, - Note that the value

0 = K+iK' represents the focal ellipse. Similarly the limiting values
for B and Y represent degenerate quadriecs. By analogy with spherical
coordinates o represents the radial coordinate, B the latitudinal
one, and Y the longitudinal one.

If we define the square of the differential arc length by

2 2 2
dsz - (.‘.i.g ) + ( i.B. ) + (.6'_1) ’ (VI_]__B)
h h h
a B T

then the metric coefficients are given by

h:-l— . h=__L___ . ;
o TEeE T Eag

(VI-1-10)
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The angle between the unit vectors & and X is given by

- 9X_1 3da
cos(a,x) = ha B ™ ha = (VI-1-11)

Similarly the gradient operator is given by
- 9 9_ 3_ -1~
v [ha Y * hB 38 ° hY 3y ] . (VI-1-12)

We shall also make use of similar formulae valid for orthogonal curvi-
linear coordinates. Such formulae are given, for example, by Morse and

Feshbach (1953).

ii) Potential solutions to the equation of equilibrium

We are seeking solutions of the elastic equations of equilibrium

2 I _ &
V- u +I_—25V(V'U) =0 , (VI-1-13)

such that |u|= O(ra) at large distances, with o < -2 (e.g.,
Archambeau, 1964). Here O represents the Poisson ratio of the elastic

medium. We shall use the general solution of Boussinesq

2uu =V(p+rw - 4(1-0)w , (VI-1-14a)

.

where the scalar potential ¢ , and the cartesian components
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W ,my and w, of the vector potential « are all harmonic functions.
Following Sadowsky and Sternberg, we seek the solution as a super-

position of elementary solutions of the four types

¢ Wy wy w,
1) W 0 0 0
2) 0 X 0 0
3) 0 0 Y 0
4) 0 0 0 A

(VI-1-14b)
If we write Laplace's equation in the form
2 2 2
AU [ 23 2 9 28 ]

— = | S +q,—+ ¢ —]|Uu=0 ,

kmhahBhY 2ol aa2 B aB2 Y ayz
and look for normal solutions of the form

U(a,B8,7) = A(a) B(B) C(Y) (VI-1-15)

then, by the usual method of separation of variables, we find that A,
B, and C all satisfy Lamé's equation. In Jacobian form, this equation

reads

dA(z) _ [n(n+1) kzsz - h] Alz) =0 (VI-1-16)
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where n and h are separation constants. Discussion of the properties
and periodicities of the solutions of this equation can be found, for
example, in Arscott (1964). Without entering into the details, let us
note that if n is a non-negative integer, there are 2n+l values of
h for which (VI-1-16) admits solutions with periods 4K and 4ik"
We shall also call them Lamé functions of the first kind, and of degree
n . Let A(z) be such a function. If B(B) and C(y) both are
Lamé functions of the first kind, their product will be called an
ellipsoidal surface harmonic.

If A(a) is also a Lamé function of the first kind, then the Lamé
produét (VI-1-15) is regular inside any ellipsoid o = ao , and is
called an ellipsoidal internal harmonic. Lamé products which are
regular outside o = o, are called ellipsoidal external harmonics. In
such a case A(a) must be a Lamé function of the second kind, defined

by the integral relation

z
du
A(z) =W, A (2) (VI-1-17)
n A n f' ()\n(z))z ’

so that it vanishes at infinity.

In the future we shall denote the Lamé functions of the first kind
by lower case symbols, and the Lamé functions of the second kind by
capital letters. Note that if we choose the normalization factor Wi
to be

o -1

° 4
W, = 4 ’ (VI-1-18)
X ) ()2
iK' n
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then we have

A () =2 () . (VI-1-19)

Furthermore, it is easy to show that, in that case

WX = A;(ao) An(ao) - An(ao) A;(ao) y (VI-1-20)

so that, for this particular normalization, WA is the wronskian of
An and An , computed at o, - We shall always assume this to be the
case in the future.

The ellipsoidal.harmouics possess completeness and orthogomnality
properties similar to those of the spherical harmonics. In particular,
functions defined on the surface of an ellipsoid may be expanded in
ellipsoidal surface harmonics; functions defined and regular inside the
ellipsoid may be expanded in ellipsoidal internal harmonics; and
functions defined and regular outside may be expanded in ellipsoidal

external harmonics.

iii) Displacements and stresses in ellipsoidal coordinates

The elastic fields inside the ellipsoidal inclusion will be sought
in the form of a superposition of elementary solutions of the type
(VI-1-14) , and the harmonic potentials will then be expanded in
ellipsoidal internal harmonics. Similarly, following Sadowsky and

Sternberg (1949) we shall obtain the fields outside the inclusion by
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extending the fields at infinity everywhere, and then superposing
elementary solutions (VI-1-14) where external harmonics are then used.
The boundary conditions to be met are as follows: The external
fields should match the applied fields at infinity, and there should be
continuity of the displacements and the tractions on the surface of the
inclusion a = Oy - This assumes that the inclusion does not generate

any intrinsic fields and is consistent with the discussion of Chapter II.

(o)

o]
i e Téx) be the cartesian components of the homo-

Let T
geneous stress applied at infinity. Then the ellipsoidal components of
the stress field--which we shall call the "prestress''--are given by

(Love, 1927)

T(o) = 22 T(o) 2 m2 T(o) + n2 T(O) + 2m n T(o) +
o0 o xx o yy o zz oo yz

2n £ T(o) + 28 m T(o)
oo zx o 0 Xy

(o) (o) (o)
Txx + mamBTyy + nanBTzz

(o) _
oB Eaz

—
I

B

(o) (o)
+ (manB+namB) TZY + (naﬂs+£an8) L
+ (maf_B-}mBZa) T:(c;) ’ (VI-1-21)

and the other components are obtained by circular permutation of the

indiceé 0 BY . The direction cosines ﬂa 5 KB ,...etc., are given by
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£ s cadasss g - 1sachBs . g - —sasgc d
o g B 4\ 9y Y 9498

) sa?ach R icu?BdBc I —ca?Bs d

@  kiqgq, B k'q.q, ¥ k'q,9,

o —isa?aded o - daSBCBd Cn - idu?gs c

o k dgdy B k 1,9, Y k 998

(VI-1-22)

Similarly, by simple integration, the displacement associated with the

prestress is, up to a rigid body displacement

as | U(TQH;;MQ;)) Al
L T 2 (1+a) BEx gy Y ¥ g @
(o)

and similar expressions hold for uy
components are then
-~

(o) _ (0) (0) (0)
a, = ﬂa u +m, ug + n, u,

I\

0 w2 ol gm0

g B Ux g Yy B

(o) _ (o) (o) (o)
uY = ZY ux C mY uy + uz

(VI-1-23)

and uio) . The ellipsoidal

(VI-1-24)
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Equations (VI-1-21) and (VI-1-24). allows us to express the fields
that would be présent in the absence of any inclusion, in terms of
ellipsoidal coordinates.
We also need to be able to compute the various fields associated

with the four types of elementary solutions (VI-1-14b) .

a) Solutions of the first kind

Then, with reference to (VI-1-14) we have ¢ =W , W=0

and

2uu =h = (VI-1-25)

B

stress is obtained by use of the general expressions valid in arbitrary

u, and uY are obtained by cyclic permutation of the indices. The

curvilinear coordinates (Love, 1927). Sadowsky and Sternberg (1949)

give the following expressiomns

2 2 2
a2t m W Rmw fmow
o 0402 %34 9o h 88 98 h_ 3y 3y
a o
3% ohg oW 3h_ oW
T, =hh ——+h, — —+h, —L — ,

Ba "B avag Yoy a8 P oag ay

(VI-1-26)

and the other components are obtained by cyclic permutations of a, B,

Y
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b) Solution of the second, third and fourth kind

In that case ¢ =0 , and @ = X& , for example, then we have
: 3% a_x]
2uu, =h [x - (-4 X . (VI-1-27)

The other components are obtained by replacing o by B or 7Y ; the
components for solutions of the third and fourth kind are obtained in

a similar fashion, by replacing the couple (%,X) by (y,Y) or (z,2Z)
respectively (note that x, y, 2z, are given by (VI-1-7)). The stress

components have been computed by Sadowsky and Sternberg (1949) and are

9°X oh o9x oX

o 2 _a 2 " | =
T..=h_ x + [ha X 2ha ]

2
39X h° 3h_ aX
B - s - SO i - P

h_ 9B aB ha oy oy

2
R s i T o s . i et s
@ 3¢ 3 P 3p 9B hYayay

[ZBXBX , 9% 9K axax]

BY ~ "B apan

By
(VI-1-28)



-322-

Again, the other stress components, and those for solutions of the third
and fourth kind are obtained through suitable cyclic permutationsg of

(a,B5Y) » (x,y,2) and (X,Y,2)

iv) Formulation of the problem

We are now in a position to replace the potentials W, X, Y, Z by
suitable Lamé products. First of all, by careful comparison of the
prestress field (VI-1-21) and the solutions (VI-1-26) and (VI-1-28)
as well as the associated displacements, it can be shown that only Lamé
functions of degree 0, 1, 2 are to be used. This is consistent with
the results obtained in the spherical casé (see section IV-1l). These

Lamé functions are,in the notation of Erdelyi (1953)

o i ! 1
Eco =1 s Ec1 = dZ 3 Ecl -8, ! Esl -

o_ 2 e . . _ . 2 _ 2 _
Ec2 of Pl = 22 s Ec2 = szdZ = W, 3 Ec, = s, P, =n,
Es,_ = d =o : Es2 = =

2 - %% z s 2 = 5,6, TPy

(VI-1-29)

where we define our own simplifying notation. Here P1 and P2 are

constants given by

1

1
B e B, g P . (VI-1-30)
L 1%kl 27 1l +N1adk'?
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Functions of the type Ecz are even functions of z - K, and functions
of the type Est afe odd.functions of z - K, where K is given by
(VI-1-6) . Further properties of these functions can be found in
Arscott (1964) or Erdelyi (1953) . We shall use below the notation
defined in (VI-1-29) which will considerably simplify the algebra.
Note that the symbols 22, o, n, have been redefined in (VI-1-29).
There is little danger of confusion with the direction cosines (VI-1-22)
since these direction cosines will not be used again.

The solutions (VI-1-26) and (VI-1-28) should also exhibit the
same periodicities and symmetries as the prestress (VI-1-21) (e.g.,
Sadowsky and Sternberg, 1949). A systematic, but lengthy survey of all
symmetries of the Lamé functions reveals that because of the arbitrary
relative orientation of the prestress and the inclusion, the only help-

ful symmetry is the following

(%x,¥,2)

(-x,~y,~2)

A 4

¥2Y +2K s B=>2K+ 2iKk' - B

and then

oo QoL

T S =i

oB
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Using this symmetry, we find that the only Lamé products which are

acceptable for the various potentials are the following:

a) For W, sz is a convenient homogeneity factor)

Internal harmonics External harmonics Solution number

2 2
m m Q i
2 2
: L L . . 11
" oty ™ tatgty
mzmumsmY szumBmY 12
mzn n,n mZN n,n 13
a By a By
m2 0,° BoY m2 an BOY 14
2 2
P 15
b) For X, Y, Z , (m is a convenient homogeneity factor)

Internal harmonics External harmonics Solution number

X Y Z
mdadeY mDadBdY 2 5 8
mSaSBSY mSuSBSY 3 6 9
mcuch,Y mCOLchY 4 7 10

We are therefore in the presence of 30 elementary solutions (15 external

If T(N) and u(N), N=1,...,15

(N)

solutions and 15 internal solutions).

indicate the 15 external stress and displacement solutions, and ¢
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)]

and v , N=1,...,15 , indicate the 15 internal solutions, then
the boundary conditions—continuity of tractions and displacements——

on the boundary o = ao may be written as

15
@ Ea@ Tal
N=1

): By cgg) !

N=1

(o) (N)
TOLB * Z A‘N ¥

To(t;)) + E AL T, T(N) - 2 By g) , (VI-1-31)

15
(o) (N
“ozo & E AN Y

N=1

15

(M)
E By Va ’
N=1

o 5 o g WO
N=1

15
(o) (N) _ )]
o+ Z Aoy = Z By vy .

N=1

These equations must be identically satisfied in B and Y for a = oy
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v) Reduction of the system

The system (VI-1-31) possesses 30 unknowns. This number is
immediately reduced to 29 if one notices that the internal elementary
solution associated with the coefficient Bl is identically zero. Thus
B, =0 . The system (VI-1-31) must be satisfied identically in B

1

and Yy for o= ao . This means that each independent function of B
and Y appearing on both sides of each boundary condition equation
gives rise to a separate equation, obtained by equating its coefficient
on the left-hand side with its coefficient on the right-hand side.

The developed forms of these equations are given in Appendix 11.

The necessary identities to reduce these equations and the list of
independent functional dependences on B and Y emerging in (VI-1-31)
are given in Appendix 12. One obtains a redundant system of 39 equations
for 29 unknowns, which is extremely lengthy to write, but does not
present any fundamental difficulty. ?his system is compatible and
separates very conveniently into four subsystems, as described in

Appendix 12. Some of the elementary solutions proposed above are found

to be linearly dependent on the others. Thus coefficients B , B

11 12

B13 S BlA 5 B15 are found to vanish. We get three systems of five

equations and five unknowns, corresponding each to a pure shear loading

at infinity. There is a separate system for each of the components

(o) (o) (o)

T s T w T . In addition, we obtain a system of nine
ZX Xy vz
equations and nine unknowns, where the only prestress components

appearing are the diagonal components. These systems are given below

in matrix form. The constants ¢ and U are the Poisson ratio and the
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rigidity of the matrix, respectively, ©' and H' are those of the
inclusion. All the functions of o appearing in these equations,
including the wronskians such as Ws » are to be evaluated at o = oy -

For simplicity, we have defined the function Ha = Sacada in these
systems. In the case where the inclusion should be filled with a
liquid, the systems are greatly simplified. For a pure shear prestress,
a liquid inclusion behaves to first order as a cavity, since we did not
take into account the perturbation of the boundary. For the diagonal
stress components, the fluid pressure can be taken into account very
easily by introducing it on the right-hand side of (VI—1—35) below.
In the case where the inclusion is in fact a cavity, no internal
solution should be present and the coefficients Bi’ i=1,...,15 all
vanish. However, when we have a liquid inclusion, the system is
reduced by application of the following rules:

a) Expressions of the form (1-0')/y' are unbounded and the
corresponding coefficient must accordingly be set to zero.

b) Expressions of the form (1-20')/U' must simply be replaced by
their limiting value as M' -+ 0 and o' > 1/2 , which is 1/A'

where A' is the bulk modulus of the liquid.

These rules are easily applied below.
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The system to be solved for the case of diagonal stress component
is much more complicated. We write it in matrix form as
Mc =4d (VI-1-35) .
Here ¢ represents the vector of 9 unknown coefficients

- k_ i K o i
G~ [Al’k Ags= 17 ApaiaerBgefy1oA 30K By v Bosign By ]

The vector d appearing on the right-hand side has the following

components
2 2 2
- __k (o) - __k (o) L kK (o)
dl - 2 Ha Txx = d2 2 o vy d d3 2 HG Tzz

and d9=12‘—i'—2|:-r§;)—i-2- (0)]+2—(Té+6")

The matrix M is given here by rows:

First row

M.. =0 ; M., = =(1-0)(W_HI) ; M. = -k' 201[ :
11 12 s o 13 ol

= l‘ I2 .
Ml4 k'k UIIOl 3



S(IR'G.

= -g! .
Ml7 (1O)Ha 5

Second row

MZI-O ,MZZ——GII
Z 412
M24 k'k chIOt
M =ca9”a
25 s d

M is obtained from M

26

My, =o'y, 5 Myg
Third row
My =0 5 My =0l

.
3

kl
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_ _ ) 22 1 2.22\(, 5,22
M, Bl [ (1 Pl) (1 k Pl)(3k s Pl) + (da+k Ca)(l Pk Sa) ]

M16 is obtained from MlS by changing P P_. and R'a into o,

_4l2l
k'K "ol

1 into 2
2 [ " -
o*ly i Mg =
M, = k20w -T)
23 c o 2
1 2 21.2 .2 2
-I;I)— Plk Ca(da_k su):l

M

33

= k’z(l—U') l'[a i M

= k' ZUH
o

3 Mg,

2
o 14510
k 'k OTIO‘

- oy 4L g 2
kk (10)(deﬂa)
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d e
_ oo % 2% L 2f{2 2
M35 = saca[ Ey U8y (3k Sa ~ P1)+ P14y (ca'sa)]

M36 can be obtained from M35
= ' . = 120 : — '
M37 -0 Ha s M38 k' "o Ha : M39 k'k "(1-0") Ha
Fourth row
M&l = Wa H M42 =0 s M43 = Wc s M[.4 = Wd
W W
_me X 2 - Be I 2
M45 = Pl T + ZPlsu.Ha 2 M46 P2 - + ZPZSOLH
o o
M47=0 $ M48=0 - M49=0 .
Fifth row
M. =20 M.. =0 M., =W M_, = kZW
51 ! w53 . - c > 54 d d
wl Wn
Mg =By =+ 0, & M=P, ~+200L 3
o o
M57=0 s M58=0 3 M59=0
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Sixth row
M _ =0 M, =W M W M, = kW
61 S s > 763 c > 64 d ’
Mo = z—i+ 2, % ; Mg = :—Z + 28, Cg:“
Mgz ™0 & Mgg=0 5 U =0
Seventh row
Mp=0 3 M= ()W, Mo=(-9) W M, = k*(1-0) W,
p =0 §F Ee=9 4
- Eﬁ—ﬁi (1-26") 3 M=~ B (1-2¢") ; Moo= %° 3*—?.*—'(1—20')
Eighth row
Mo =0 3 M, =0 ; M =-(10)VW ; My, = 1 (1-0) Wy
Hos =0 4 M =0 3

-
M_=0 3 M =E-u—l,1—(l—20') ; M8

o 30 P e oy
38 k 5 (1-20")

9
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Ninth row

Mgy =0 5 M, =0 ; M, =12 ; M, = k2 (1-20)
Mas = Prhy 3 Mg = “Poly

My, =0 5 Myg=-Br o205 oM - a2 & (1-20")

In the case where we have a cavity, then the system reduces to the
upper left 6 X 6 subsystem, and the coefficients B3 5 B7 4 B8
vanish.

In order to be able to compute all the terms in the above systems,
we still need expressions for the various wronskians appearing in the
matrix elements. These wronskians are given in Appendix 13. The
results of Appendix 13, together with the expression sn ao = a/m
(cf. Sadowsky and Sternmberg, 1949), are sufficient to compute all of the
terms in these systems. Clearly, the analytical solution of the systems
given above is not convenient, and one must resort to a numerical

solution for the coefficients Ai and B1 . However, a few aspects

of the problem can be discussed at this point.

vi) Discussion
The systems (VI-1-32) through (VI-1-35) permit us to compute
the elastic fields at every point in the medium. The first remark we

wish to make about these systems concerns the fields inside the inclusion.
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12 ° 313 5 314 , and Bl5 do not

appear in the solution, then the only Lamé products contributing to the

Since the coefficients Bl 5 B4 s B

fields inside the ellipsoid are those appearing in the expression for
the prestress (VI-1-21) . Recalling that we assumed the prestress to
be uniform, we see that the stress is uniform inside the inclusion.

This is in agreement with the results of Eshelby (1957). The fact that
we did not assume this to hold from the beginning, but instead proved

it independently as a result of our amalysis,constitutes a favorable
check of our solution. Furthermore, if the material inside the inclusion
is chosen to be identical to the material constituting the matrix, it
can easily be shown that 1) all the coefficients Ai o T2 inagdd
vanish, and 2) the coefficients Bi that do not vanish are identical to
the coefficients of the Lamé products appearing in (VI-1-21) . 1In
other words, there is no perturbation to the prestress field outside the
inclusion, and the field inside the inclusion is found to be identical
to the prestress, as should indeed be expected.

We can see from (VI-1-32) through (VI-1-35) that the solution
for the coefficients Ai and Bi depend on the prestress, the elastic
properties of the matrix and the inclusion, and the moduli k and k' .
These moduli may in turn be written in terms of the aspect ratios
pl = b/a and Py = c/b of the ellipsoid. By comparison with equations
(VI-1-25) through (VI-1-28) , and with the definition of the Lamé
products used here, we note that 1) the stress concentrations in the
vicinity of the inclusion do not depend on its absolute size, but only

on its shape, but 2) the displacement field depends on the parameter

m , which is a measure of the size of the inclusion. As pointed out
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by Sadowsky and Sternberg (1949), the first of these conclusions is

characteristic of all problems of this type. The second conclusion is
intuitively correct.

In the case of a liquid inclusion, we pointed out earlier that
expressions of the form (1-0')/u' are unbounded, so that the corres-
ponding coefficient must be set to zero in the above systems. Applying
this rule to systems (VI-1-32) through (VI-1-34) , we see that mno
fields are generated inside the inclusion (in particular, ﬁo pressure
is generated in the fluid) when the prestress is pure shear at infinity.
Thus a liquid inclusion behaves as a cavity under pure shear. This
result stems from the fact that we ignored perturbations to the boundary
of the inclusion, and applied the boundary conditions (VI-1-31) on the
boundary o = ao of the unstressed inclusion. This is correct to first
order and is in agreement with the results of Eshelby (1957). This
author shows how to calculate the average elastic properties of a
material containing a dilute distribution of ellipsoidal inclusions.
Using Eshelby's results, Anderson, Minster and Cole (1973) showed that
for liquid inclusions, the shear properties of the composite material
do not depend, to first order, on the bulk modulus of the liquid.

Examination of (VI-1-35), on the other hand, shows that the
quantity (1-20')/W' appears in this system. This quantity must be
replaced by 1/A' in the case of a liquid inclusion, where A' is the
bulk modulus of the liquid. Therefore, the system (VI-1-35) does not
simplify appreciably in that case, and the solution depends on Ao
This is consistent with the results of Anderson, Minster and Cole (1973).

Robinson (1951) investigated the deformation of the inclusion when the
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prestress tensor is diagonal, and found that the ellipsoid is deformed
into a new ellipsoid in that case. This holds also when thermoelastic
effects are taken into account.

One last special case is easily discussed: in the case of an
ellipsoidal cavity, the system (VI-1-35) reduces to its upper left
6 X 6 subsystem. There is here a discrepancy, since Sadowsky and
Sternberg (1949) found a system of 5 equations and 5 unkpowns in that
case. Specifically, these authors claim that the elementary solution
with coefficient A13 is not linearly independent from the others. We
should, therefore, be able to reduce our 6 X 6 subsystem further. Now
the first three equations of (VI-1-35) must be independent since

(o) (o)

their right-hand sides contain Txx s T and Té:) respectively.
Thus the fourth, fifth and sixth equations must be those which are
linearly dependent. However, we have been unable so far to find any
vanishing linear combination of these equations. Similarly, repeated
efforts to show any linear dependence between the elementary displacement
7 A8 " All , and Al3 have

also failed. Sadowsky and Sternmberg have shown their solution to reduce

solutions with coefficients Al % A3 , A

to the correct results in the limiting cases of spheroidal and spherical
cayities; although this does not constitute absolute proof of the
correctness of their results, there is here a suggestion that the system
(VI-1-35) 4is incompletely reduced and could be further reduced to an

8 X 8 system. The discrepancy between Sadowsky and Sternberg's results
and ours may be related to another discrepancy pointed out in Appendix 13.

Our expressions for the wronskians wg and wn (associated with the
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coefficients All and A13 ) are not reconcilable with their
expression for the Lamé function of the second kind La . After care-
ful checking of our analysis, we feel that our results are error free,
but, of course, we shall need further verifications before we can reach
a definitive conclusion.

Further verifications of the solution presented in this section
should include a thorough study of various limiting geometries, such as
spheroidal and spherical geometries. However, this is not an easy task
to perform analytically, and it is best to compare numerical results
for this purpose. We shall attempt to do so in future work.

We need not point out here the many possible uses of the solution
presented in this section. We refer the reader to the Engineering
literature for this purpose. In the context of the present study, the
static solution given above yields the initial value fields needed to
investigate a relaxation source with ellipsoidal rupture geometry.

This is the first step towards a dynamical solution, discussed in the

next section.
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Vi-2 The dynamic ellipsoidal rupture

As we pointed out in the introduction to this chapter, we shall not
give here the complete dynamical solution to the elastodynamic source
with ellipsoidal geometry. We shall confine ourselves in this section
to a discussion of possible ways of attacking the problem.

First of all, it is clear that the results of Chapter II are
applicable here as well. Much of the discussion of Chapter IV also
retains its validity. For example, since we wish to make the rupture
zone transparent, we only need to know the initial value fields outside
the rupture zone. Thus we need only consider the elementary solutions
with coefficients Ai » i=1,...,15 , obtained in the previous section.
Similarly the question of whether the material inside the rupture
retains any rigidity can be discussed just as it was in Chapter IV. We
recall that a finite rigidity may be used to model approximately the
high frequency behavior of the material. We also recall that the
energy release process is most efficient when the rupture zone is a
zone of vanishing rigidity. The discussion concerning the size of the
relaxation zone also retains its validity and will not be repeated here.

As shown in Chapters II and IV, the only problem that needs to be
solved is the case of the instantaneous rupture. Growing and propa-
gating ruptures can then be treated, for example, just as in section
IV-3. The major difficulty which we are now confronted with is a

mathematical one. Let us separate the problem into two major steps.

i) Dilatation and rotation potentials

We saw in Chapter IV that there are considerable advantages in
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reducing the elastodynamic problems to the solution of scalar wave
equations by means of potentials. These potentials were the cartesian
components X; , X, X3 of the rotation vector potential, and the
dilatation X4

By taking successively the curl and divergence of the static

initial displacement fields given in the form
*
2pu =V + ree) -4(1-0)e ’ (Vi-2-1)

Archambeau (1964) showed that the initial values for rotation and

dilatation potentials are

@
|

= x: = -2(1-20) V * @ s (VI-2-2)
* * *x %
i = [xl,xz,x3] = =2(l-g) VX@ , (VI-2-3)

We note that only the Boussinesq potential « 1is involved. From the
previous section, we know its cartesian components as combinations of
Lamé products. In fact, only ellipsoidal harmonics of degree one are

present in w . We have

= +

W m[A2D dBd + ABS SBS Ahc ch ]
= +

w m[ASD dBd + A6S sBs A7C ch 1

W = m[ASDadBdY + AgsasBsY + AlOCacﬁcY] &

(V1-2-4)
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In order to perform the differentiations in (VI-2-2) and (VI-2-3)

we can either find the ellipsoidal components of «© by means of a
relation similar to (VI-1-24) and then apply the operator V in the
form (VI-1-12); or we may differentiate the Lamé products of (VI-2-4)
with respect to the cartesian coordinates by use of the chain rule. The
algebra is rather complicated and will be omitted here. The necessary
formulae to carry out the differentiations may be found in Appendix 12.

(Recall that we need to compute the cartesian components of {1 .)

ii) Solution of the initial value problem

The most difficult part of the solution lies in computing the
Green's function solution presented in Chapters II and IV. Let us
suppose that we know the initial values x; sy 0=l,...,4 in the form
of (finite) series of ellipsoidal harmonics. Then in order to follow
the method used in Chapter IV one needs to expand the Green's function
to Helmholtz' equation in a series of ellipsoidal wave functions. To
our knowledge, such a result is not known. In fact, Arscott (1964)
points out how little is known about ellipsoidal wave functions, so
that this approach, although the most natural one, does not look very
promising.

Since we know how to solve the problem in spherical coordinates,
it is reasonable to try and express the initial value fields in terms
of spherical harmonics. The easiest method, proposed by Archambeau
(1964) is to expand each ellipsoidal harmonic in spherical harmonics by
Niven's theorem (e.g., Hobson, 1931). However, we are in the presence

of external harmonics and, in that case, Niven's theorem has only been
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proved to converge outside a sphere of radius a(/f +1) , where a is
the major semi-axis of the ellipsoid. This is not sufficient for our
problem since we want to compute the initial value integral over the
volume lying immediately outside the rupture zone; in particular, we do
not wish to ignore contributions coming from the vicinity of the tip of
the ellipsoid since much of the radiated energy comes from that region.

Thus it seems that such conventional methods are apparently doomed
to failure. On the other hand, we know that such a physical problem
must have a well behaved solution. It is this author's feeling that,
unless a more sophisticated mathematical apparatus is used, the
analytical solution will be most likely obtained through some mathemati-
cal trick-~-possibly by insPectioh! It should be noted in that respect
that, if it were not for the presence of Lamé functions of second kind,
the Lamé products in (VI-2-4) would simply be the cartesian coordinates
%5 ¥ 2

Faced with the obvious impracticality of purely analytical attacks,
we now turn to numerical solutions. Let us note first that, although
the initial values @* and (]* can be found analytically, the solution
to the static problem of section VI-1 is most conveniently obtained by
numerical inversion of the systems (VI-1-32) through (VI-1-35) .
Thus the potentials x; , 0=1,...,4 can be computed numerically at
any point in the medium. Being harmonic functions, they afford an

expansion in solid harmonics. We write

© n
x; = Z 2;:114-—1 [at(n?l) cos mp + br(lz) sin m¢:| P::(COS 8) .
n=0 m=0

(VI-2-5)
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*
Thus, if Xa is known on the surface of a sphere of radius Ro , the

a(“) (o)

nm

static coefficients and b

can be evaluated as integrals over
the surface of this sphere and by use of the usual orthogonality relations.
This is a classical problem of potential theory (e.g., Hobson, 1931).

These integrals may be evaluated numerically on a high speed computer

by a number of well known techniques. Then (VI-2-5) provides a
representation of x; valid for r > Ro

Since this method is tantamount to expanding ellipsoidal harmonics
in spherical harmonics numerically, there is no insurance that the
method should yield a convergent series for Ro < a(v¥2 +1) . However,
it is intuitively clear that the complications arise mainly from the
complicated azimuthal dependence of the fields caused by the ellipsoidal
geometry, which is more pronounced in the close vicinity of the ellipsoid
itself. When X; is known only at discrete points over the éphere of
radius Ro , much of its "high frequency" azimuthal dependence is
filtered out by the discretization, and we can expect (VI-2-5) to
converge relatively fast, even if Ro is chosen as Ro =a . Of
course, in that case, (VI-2-5) yields a '"'smoothed" potential X: a
But the error made will involve only the harmonics of high degree, and
should be felt only in extreme near-field studies.

Once we know (VI-2-5) , the entire mathematical apparatus of
Chapter IV is at our disposal to complete the dynamical solution. The
radius Ro is used in exactly the same fashion as it was in section
IV-2. Here also, any contribution to the radiation fields coming from
inside the sphere of radius Ro is ignored. However, this omission

can be justified by exactly the same arguments as in section IV-2:
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The essential contribution to the radiation field comes from the vicinity
of the rupture front, and the energy which is ignored is assumed to be
absorbed in the non-elastic processes of the failure.

We saw in section VI-1 that the elastic fields associated with
the ellipsoidal inclusion scale in a very simple fashion with its size,
provided that the aspect ratios pl = a/b and 02 = b/ec are kept
constant. Thus the problem of an ellipsoidal rupture undergoing self-
similar growth does not pose any major difficulty. In addition, the
results of Chapter IV concerning the propagation of the failure zone
can be applied without modification.

This approach presents the enormous advantage that x; could have
been obtained by an entirely numerical method such as a finite element
technique. Thus very complex geometries can be handled in that way.
However, we should note that growing sources for which the initial field
does not scale simply with rupture size must be handled through a
succession of static computations at a discrete sequence of source

times tgn)

, n=1,...,N . This may be time consuming, but does not
add to the difficulty of the problem since the integrals over the source
time t (Chapter IV, Appendix 4) are evaluated numerically anyway.

As a final remark, let us also point out that the dynamical near-
source calculation can also be performed through a numerical scheme.
If this is the case, the connection with the results of Chapter IV must
be done via the dynamic multipole coefficients; which are then to be
calculated numerically, either as functions of time or as functions of

frequency. This scheme is rather more complicated, but perfectly

feasible.
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Conclusion

The major result of this chapter is the derivation of the elastic
fields associated with an arbitrary ellipsoidal inclusion. In spite of
considerable work needed to solve the problem, it should be noted that
the final systems are remarkably simple and exhibit a fairly high degree
of symmetry.

As pointed out earlier the correctness of the final solution has
not yet been checked completely. One particularly useful check would
be to compare the results given here with numerical calculations based,
for example, on a finite element technique.

The method of solution, which we propose for the dynamical problem,
is of great importance because of its great potentiality. Purely
numerical solutions to elastodynamic problems'are notoriously limited,
given the present state of the art. In particular, far-field calcula-
tions are next to impossible to perform, especially at high frequency,
because of physical limitations placed on the grid size, the coarseness
of the mesh, and the allowable computing time. On the other hand,
finite element techniques have proved to be gxcellent for static near-
field calculations (e.g., Alewine and Jungels, 1973). The method that
we describe above provides a very convenient tie between such techniques,
and our elastodynamic solutions. This opens the possibility of
constructing realistic models for seismic sources, and of predicting
their théoretical radiation by use of the methods described in

Chapter V.
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Chapter VII

NUMERICAL APPLICATIONS

Introduction

Theoretical work in an applied field such as geophysics is of
limited help if one does not develop simultaneously a capability to
translate mathematical expressions into numbers. We shall now present
the computed radiation field for the spherical rupture model described
in section IV-2.

The most important lesson which one caﬁ draw from these numerical
applications is that even such a simple model depends 6n enough para-
meters so as to be, in fact, quite complex. A complete discussion of
all of its aspects is thus a major undertaking in itseif. We shall
focus in this chapter on the major features of the radiation field,
which we shall discuss on the basis of selected examples.

The far-field radiation will be analyzed first, and then some of
near;field effects. Starting from the simplest model of a symmetrically
expanding sphere, we shall continue with a discussion of the effects of
unilateral rupture propagation. The azimuthal dependence of the
radiation fields will be discussed as a function of frequency, both on
the basis of selected amplitude spectra and of selected radiation
patterns. Phase spectra will be shown which further illustrate the
complexity of the radiated fields and may revive the concept of the
Z phenomenon. Finally, for the sake of completeness, a brief comparison
with the observations will be given.

We wish to emphasize in this chapter the fact that there is a
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de facto trade-off between model flexibility and convenience. Of course,
the dilemma must be solved according to the quality of the data to be
interpreted. But in view of the complexity of this simple model, there
can be no doubt that an earthquake is a very complicated phenomenon
indeed, and we are probably still a long way from understanding it well.

In order to fix the ideas we shall assume throughout this chapter
that the stress field is pure shear, and such that it should generate a
north-south vertical strike slip fault. In the source coordinate

system (see Chapter V) this corresponds to the condition

(o) _ (o) _
O3 “ U =8 &

e = efg) rather than the prestress. Furthermore, whenever the rupture

propagates it is assumed to propagate towards the north. Azimuths are

Uig) # 0 . We shall in fact specify the prestrain

then measured from the northern direction, and take-off angles from
the downward vertical (e.g., Chapter V). The free-space radiation is

computed in all cases, so that we are discussing source effects only.
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VII-1 The far-field amplitude spectra

We already know from the discussion of Chapter IV that, at fixed
rupture dimension, two essential parameters affect the shape of the far-
field amplitude spectrum: the rupture velocity VR controls the high
frequency spectral shape, while the relaxation radius RS determines
the long-period behavior. Let us start with the simplest case of a non-

propagating, expanding spherical rupture of final radius Ro

i) Stationary rupture with equilateral growth

In that case we know from the analytical solution that' the
radiation field is pure quadrupole at all frequencies. Figure VII-1-1
shows the high frequency part of the displacement amplitude spectrum
computed for a sequence of several rupture velocities. The lowest
rupture velocity is .3 km/sec, which is very low, and the highest one is
3.45 km/sec, which approaches the shear wave velocity, chosen at
3.5 km/sec. The figure exhibits several noteworthy features.

First of all, we note that the average slope of the spectra always
tends to -3 at high frequencies. However, this asymptotic behavior is
only reached at very high frequency for the S-spectra when the rupture
velocity approaches VS . This confirms the analytical results of
Chapter IV, and one can see quite clearly that the S-spectrum will have
a slope of -2 when VR = VS . We should note that this effect becomes
strong only when VR is greater than, say, 0.9 VS . No such effect
is observed for the P-spectrum, since VR never approaches Vp .

On the other hand, for low rupture velocities P- and S-spectra are

affected in a similar fashion. In fact, it is clear from the figure
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that the dependence of the spectra on VR is nonlinear. As the rupture
velocity becomes slow, we note the development of an intermediate
frequency range, where the spectrum has approximately a slope of -1,
before it steepens to -3 at higher frequencies. There is clearly no
simple scaling law of these curves as a function of VR 3 in fact, one
wonders whether a '"'corner frequency" may be usefully defined. If fo is

such a corner frequency, then according to the results of section IV-5,

we have

2'Irfo = . (VII-1-1)

We may therefore computé the following values of fo , in hertz

P-spectrum S-spectrum
VR = 3. km/sec 1.6 1:1
VR = .3 km/sec 0.74 0.51

It is clear that (VII-1-1) yields the intersection of the high
frequency asymptote with the long-period level. Should one insist in
defining a corner frequency in all cases, this is a self-consistent way
to do it. However, it is doubtful that such a concept is very useful
for low rupture velocities.

Let us point out in passing that the frequency at which the

spectrum reaches its long-period asymptote apparently scales linearly
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with rupture velocity. Unfortunately, this point is rather difficult to
pick on theoretical spectra (figure VII-1-1), let alone on observed
spectra.

Finally, we wish to comment on the observational result that S-
corner frequencies are lower than P-corner frequencies. For various
reasons discussed earlier, observed spectra are rather band-limited.
Now, if the spectra of figure VII-1-1 were only given in the frequency
band .5 cps to 10 cps, then we see that the average high frequency
slope of the S-spectrum can easily be underestimated, and thus the
corner frequency will be biased towards longer periods. This bias is
not present for the P-spectrum, and therefore from band limited data,
the difference between S- and P-corner frequencies will exhibit a
tendency to be overestimated.

Let us now turn to the long-period spectral behavior. Figure
VII-1-2 shows three P-wave spectra computed for Rs = 5 km, 20 km, and
R ==« | If RS is unbounded, the long-period spectrum is fiat, as we
also know from Chapter IV. On the other hand, a finite value of Rs
leads to a peaked spectrum. However, even when Rs = 5 km, which is
two and a half source dimensions, the peak level is very nearly equal
to the "flat level." And a more acceptable value of ten source
dimensions yields a spectrum which is quasi-flat over almost a decade
in frequency. Of course, this only corroborates the findings of

section IV-5 and we shall not repeat the discussion here.

ii) Propagating rupture, unilateral growth

The model discussed so far is adequate to model the tectonic
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release due to underground explosions. Let us now investigate the case
of a rupture growing unilaterally, since this is more appropriate to
model an earthquake.

Recall first that multipoles of higher degrees are excited in
addition to the fundamental quadrupole, and that their effects are
essentially felt at high frequencies. Figure VII-1-3 shows how these
multipoles of higher degree affect the spectra--in a particular
direction. The first impression is that this effect, although clearly
noticeable, is not particularly large. However, under closer scrutiny,
the figure reveals that the S—-spectrum character has been radically
changed by the additional multipoles. Indeed, because of the rapid rate
of growth chosen in this case (VR ~ ,98 Vs) the quadrupole spectrum
exhibits a high frequency slope of almost -2. However, since the
rupture is unilateral, the radiation field must "see" a different
propagation velocity in different directiomns. In particular, the
propagation fate in the direction indicated on the figure 1s certainly

less than V . This explains why the multipoles of higher degree

R
steepen the spectrum at high frequency. When ten multipoles are taken
into account, the slope is in fact -3.

From the explanation given above, one expects this effect to be
strongly dependent on azimuth; this is indeed the case, and we shall see
later that this effect is very strong for back azimuths for which the
azimuth makes an obtuse angle with the direction of propagation. As
we pointed out in Chapter IV, one should probably add a few more multi-

poles (up to & = 15) in order to reach convergence. However, the

computation becomes then quite lengthy, and necessitates a more
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efficient algorithm than the one we used. Convergence problems are only

critical at very high frequencies, and for azimuths close to 180°, and
we shall simply keep this in mind for the present discussion.

According to the analysis of section IV-5, if one wishes to define
a corner frequency in that case, one should simply replace Ro by L
in (VII-1-1) . This means that the corner frequency obtained at
convergence should be about twice that obtained from the quadrupole only.
Figure VII-1-3 seems to agree with this result reasonably well.

However, here again, one expects azimuthal effects to be rather strong,
and the concept of a corner frequency thereby loses some of its
usefulness.

The spectra scale with VR and RS much in-the same way as we saw
earlier. Figures VII-1-4 through VII-1-6 show a variety of possible
spectral shapes obtained by varying these parameters. This is shown
separately for P , SV and SH spectra. Note also that these
figures correspond to an azimuth and a take-off angle of 30° each. It
seems at first glance that the spectral shape changes rapidly as a

function of RS and V However, we should point out that if

R °
Rs > 10L , and if VR is greater than, say, V8/3 , then the range

of possible shapes is somewhat reduced. Nevertheless, there is a
definite dependence of the general far-field spectral shape on the
rupture velocity and the relaxation radius. The parameter VR controls
the high frequency side of the spectrum, while RS controis the long-
period side. Furthermore, unless one goes to small values of both Rs

and VR , there is little interference between these parameters; in

particular, the spectra are rather insensitive to either one at
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intermediate frequencies.

Much simpler is the scaling with rupture length, as shown on
figure VII-1-7. To simplify the matter we assume that RS is propor-
tional to L , which is an acceptable assumption. The calculations
are plainly in agreement with the results of Chapter IV. A change in
rupture length simply results in a translation of the whole far-field
spectrum. In fact, increasing L by one order of magnitude results in
an increase of the peak level by three orders of magnitude, and a
shift by a decade in frequency towards long periods. Thus the points
A,B,C are transformed into A'B'C' . For convenience, the segment
AA' was graduated in terms of length. The figure illustrates several
fhings. First, since the average high frequency slope of the spectra
tends asymptotically to -3, the scaling as a function L consists
essentially in sliding the spectra along their high frequency asymptotes.
This is particularly true for the P-spectrum. Now if we assume that
the body wave magnitude n, is closely related to the P-wave spectral
amplitude at 1 cps, we may conclude that, at constant prestress, m,
possesses an upper bound. The. S-wave magnitude, however, could be
unbounded if VR approaches VS since the slope of the S-spectrum may
be close to -2 in that case. Of course, this opens the possibility that
efficient SV to P conversion near the source--for example, at the free
surface-—could result in large measured values of LR Clearly a
similar analysis can be made for the surface wave magnitude MS s
which may be related to the S—-spectral amplitude at 0.05 cps. We shall

return to this question below.
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VII-2 . The near-field amplitude spectra

Discussion of the near-field spectra is somewhat less informative
for several reasons. First of all, we are evaluating here a very
simple model, and it is precisely in the near-field that the details of
the source mechanism should be felt the most strongly. Thus near-field
observations will depend very much on the fault geometry, on the history
of rupture, on the complexity of the stress field (e.g., Hanks, 1973),
and we do not take any of these into account. Furthermore, it is also
in the near-field that most of the approximations made in Chapter 1V
lose some of their validity. However, we can point out several
interesting general features which should hold independently of the
particular model chosen.

Since near-field effects are only important at long periods, only
the quadrupole term contributes to the radiation, and there is in
that case no convergence problem. Let us discuss first the case of an
observer lying inside the relaxation zome, that is, the case where RS
is infinite.

As we showed in Chapter IV, there is little point in talking about
P- and S-waves in that case. The reason for this is clealy 1llustrated
by figure VII-2-1. The spherical (r,0,¢) components of the so-called
P- and S- displacement spectra behave as m—3 at long periods in that
case. This is obviously unphysical since the radiated energy would be
unbounded in that case. On the other hand, the total spectra--also
shown on figure VII-1-2 as P+S—-behave as w-l which is what should be
expected for a net offset in displacement. This figure also shows that

only the r component of the P-wave, and the © and ¢ components of
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the S-wave—-SV and SH respectively-——are the only components which survive
at high frequency. This means, of course, that the high frequency
radiation is far-field in nature, and that no near—-field effects are
felt at such frequencies.

Let us also point out that near-field spectral observations can be
quite complicated because of interference phenomena, which give a
scalloped aspect to the spectra. In addition, for example, the © and
¢ components of the S-spectra exhibit a quasi-flat portion at inter-
mediate frequency, while the r component, which is pure near-field, is
monotonic . On the other hand, one notices that the 6 and ¢
components of total radiation are not flat but exhibit a broad peak.
The shape of that peak will, of course, be azimuthally dependent since
the quadrupole patterns for P, SV and SH waves are different.

Figure VII-2-2 focuses on the dependence of the near-field with
hypocentral distance. Only the radial component of the P-spectrum is
shown, but similar results obviously hold for other components as well.
Two cases are considered:; for a source length of 10 km, R, is chosen
successively at 100 km and at infinity. The most obvious effect is
that the greater the distance, the longer the period at which the near-
field is observed. This stems from the fact that far-field terms decay

with distance as r-l , while near—-field terms have a faster decay of

r-z i 1:—.3 and r_4 . It is interesting to note that when RS is
finite, the far-field spectrum is of course peaked, but that this peak
practically disappears at short distances, due to the near-field

radiation. Of course, inside the relaxation zone, only the case

RS = @ jsg relevant.
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These are the only aspects of the near-field radiation that we can
usefully discuss here. More complete investigations must be undertaken
on the basis of each particular event, by taking into account the
details of faulting, the inhomogeneities in the vicinity in the source,
etc. Such investigations have been undertaken, for example, by Hanks

(1973) or Cherry, et al. (1973).
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VII-3 Azimuthal effects, radiation patterns

The azimuthal dependence of the radiation fields was mentioned
several times in the preceding discussion. To be complete, a description
of this dependence should include a presentation of the spectra at many
azimuths and many take—off angles. Similarly, three dimensional
radiation patterns should be plotted on the focal sphere, using a
contour representation on a stereographic projection. This is well
beyond thé goals of the present discussion and we shall try and show, on
the basis of selected examples, how complex the radiation field really

is.

i) Azimuthal dependence of the spectra

Figure VII-3-1 shows two sets of spectra computed for a
propagating rupture, at the same distance, the same take-off angle, but
at two complementary azimuths. The difference is striking.

First of all, there is clearly more high frequency energy radiated
in the forward direction (azimuth 20°) than in the backward direction
(azimuth 160°). This is accompanied by a drastic change in the
character of the spectra. The spectra are indeed smooth in the forward
direction and very scalloped in the backward direction. This is of
course due to different interference phenomena. As we pointed out
earlier, because the rupture is unilateral, the rupture velocity ''seen"
by the radiation field is greater in the forward direction than in the
backward direction. This effect is rather more pronounced for the S-
spectra than for the P-spectra, which is to be expected since VR is

closer to VS than to Vp s
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We should comment on the remark made earlier that the convergence
of the multipolar expansion is slower for back azimuths. A total of
ten multipoles have been added to compute the spectra of figure VII-3-1.
To check the convergence of the series, we compared the partial sum of
five multipoles with figure VII-3-1. The result is that convergence is
practically attained with only five terms at the forward azimuth, while
ten multipoles are not quite sufficient in the other case. In fact,
the details of the high-frequency spectra at azimuth 160° can be
slightly modified by adding a few more multipoles, particularly
for frequencies higher than 0.5 cps. Our numerical experiments
indicate that the spectral levels shown on this figure are a little too
high, so that the average slope will be increased by the additional
terms.

Figure VII-3-1 also illustrates how the '"corner frequency' may
depend on azimuth. No coﬁment is needed except to emphasize once again
that such a concept can only be used in a gross sense, and that a
suitable averaging over all directions should be performed in evaluating

it.

ii) Radiation patterns

In order to better illustrate the azimuthal dependence of the
radiated field, we computed radiation patterns at periods of 20, 10, 5,
and 2 seconds. These radiation patterns for P, SV, and SH waves were
computed at constant take-off angle 30°, for the same model as used in
figure VII-3-1 for two rupture velocities. They are given in figures

VII-3-2 through VII-3-4. In addition, because of the obvious symmetry
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of the source, only one half of the pattern in given in each case. The
left-hand side of each figure corresponds to VR = 3 km/sec and the
right-hand side to V, =1 km/sec . For completeness, both amplitude
and phase are shown as a function of azimuth.

The simplest patterns are obtained at long periods, where the
radiation field is dominantly quadrupole in all cases, and where no
effect of the rupture velocity can be noted. We note, however, a
slight alteration of these patterns at a period of ten seconds, and, by
comparison with figure VII-3-1, this corresponds, of course, to a
period where higher degree multipoles begin to be felt. We see that the
holes in the amplitude pattern are not as pronounced, the phase discon-
tinuities not as sharp, and we also note a very slight distortion
towards the direction of rupture propagation.

At shorter periods, these effects are much more pronounced, aﬁd
the patterns change very rapidly with frequency. At the same time,
several phenomena take place: it seems that the SH pattern at 5 seconds
possesses a rather strong monopole component, while P and SV develop
apparently dominant dipole components at the same period. We know that
this cannot be the case since the solution used for the computation
contains neither monopole nor dipole (see section IV-2). It may thus
clearly be misleading to try and deduce the multipolar content of a
radiation field from observations at one frequency, and one take-off
angle. The converse situation is also true: for instance, a dipole
could be excited such as in the solution of section IV-3, but its
contribution could be negligible at some frequencies and certain

directions (for instance, in the holes of the dipole spectrum).
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Figure VII-3-4. Same as figure VIT-3-2. SH-wave.
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Note that the details of the SV and SH radiation patterns at two
seconds and for low rupture velocity are probably not real, and would
be altered by adding a few more multipoles.

In all cases we observe that more high frequency energy is
radiated in the direction of rupture propagation than in the other
direction, and that this effect is stronger for higher rupture velocity.
All of the short period patterns are indeed distorted in a forward
direction. This was to be expected, and is consistent with similar
results in electromagnetism (e.g., Stratton, 1941).

It is clear from these figures that the quadrupole is no longer
dominant at high frequenciés. In fact, no multipole dominates. It is
fascinating to see that ten multipoles, with individual patterns of
great complexity, can add up to yield such simple results. This
requires a very particular combination of their amplitudes and phases,
which could be easily destroyed if an error is made in the calculation.
We may thus consider this simplieity as an indirect check of the correct-
ness of our calculation.

Finally, let us note that the loss of the quadrupolar character of
the radiation field--at high frequencies-—does not invalidate the deter-
mination of focal mechanism from first motion data. Indeed, the
direction of first motions, which is a time domain concept, is essentially
controlled by the very beginning of the rupture. It cannot be assouciated
in any way with the radiation pattern at any particular frequency, which
depends on the whole time series. In fact, in order to retrieve a
theoretical time series from the spectra given here, one must know the

phase spectra as well. This is the object of the next section.
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VII-4 The phase spectra

In order to eventually be able to retrieve time domain information
from spectral results——in particular, to construct synthetic seismograms
—one must know the phase spectra as well at the amplitude spectra.
Because the phase is rather more sensitive than the amplitude to numeri-
cal uncertainties, we only tried in this preliminary investigation to
study it for frequencies lower than 1 cps. We shall recall that
convergence problems started to be important for higher frequencies
(see figure VII-3-1).

Although it is sufficient to know a phase angle modulo 27w , there
are a number of advantages in "unwinding' the phase spectrum. This is
true in particular for purposes of interpolation, and also to study the
slope of the phase spectrum as a function of frequency (group delay).

We also confine ourselves to the far-field case since near-field effects
may be evaluated analytically (see section IV-5).

Figure VII-4-1 shows the phase spectra for various displacement
components, computed at a hypocentral distance of 100 km, or ten source
dimensions. The immediate observation is that, even at such a short
distance, the phase spectrum is overwhelmed by the propagation term—
kar . The spectra are very linear, and show very little fine structure
(at least in that particular direction). The figure also shows that an
additional term is present in the spectra, which depends quite strongly

on the rupture velocity V This is definitely a source effect, and

R °
it appears to be strong enough to be detectable in close range observa-
tions. A slow rupture velocity yields a steeper phase spectrum, and

thus implies a larger group delay at the source.
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Figure VII-4-1. Far-field phase spectra computed at a distance of
ten source dimensions, and for two rupture velocities.
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When the propagation term -kur is removed (figure VII-4-2), one
is left with the phase at the source. This is the initial phase of an
equivalent multipolar point source (see Chapter V). This reduced phase
spectrum is much more interesting, and yields important information
about the rupture phenomenon.

First of all, the initial phase does not depend linearly on
frequency. This means that our source model is inherently dispersive.
As discussed in section IV-5, one defines the group delay at the source

by

_ _ 9(phase) _ -1 3(phase)
tg (@) -3 BE

(VII-4-1)

Since the steeper slopes in figure VII-4-2 occur at long periods, we
deduce that long-period radiation is rather more delayed than high
frequency radiation. This delay clearly increases with decreasing
rupture velocity, and it is not difficult to see that the long-period
group delay is of the order of L/VR » the rupture duration. This is
quite consistent with the results of section IV-5. Recall that we found
the long-period delay to be 0.75 L/VR for a stationary source. We have
confirmed this result on the basis of numerical calculations not shown
here. For propagating sources (figure VII-4-2) we see that the delay is
closer to L/VR , and that it is slightly larger for S-waves than for
P-waves at this particular azimuth.

Just as we predicted in Chapter IV, the group delay tends towards
zero at high frequencies. This 1is especially clear for S-waven and lor

hilgh rupture veloclties. The group delay lor P-waves does nol converge
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Figure VII-4-2. Far-field phase spectra corrected back to equivalent
point source. Effects of rupture velocity.
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to zero as rapidly, and this can be intuitively explained by noting that

VR stays rather small compared to VP ,» even when it approaches ¥y

As a result, our source model is less dispersive for P-waves at low to
intermediate frequencies than it is for S-waves. Of course, one
wonders whether this is azimuthally dependent. Figure VII-4-3 shows
phase spectra (at the source) computed for three different azimuths, and
at constant take-off angle. It is immediately obwvious that, just as
the amplitude spectra, the phase spectra become more complicated as
back azimuths. The portions marked with question marks correspond to
frequency bands where the phase varies-extremely rapidly with frequency.
Each one of these bands is associated with a hole in the amplitude
spectrum, while the regions where the phase varies smoothly with
frequency are to be correlated with peaks of the amplitude (see e.g.,
figure VII-3-1). When the phase varies rapidly, it can only be unwound
by sampling it very densely. Because our frequency sampling was not
dense enough, each one of the jumps shown in figure VII-4-3 is only
known up to an undetermined number of full cycles (2m) . Furthermore,
since the holes in the amplitude spectra are due to destructive inter-
ference phenomena, these frequency bands are precisely those for which
numerical noise is critical. On the other hand, and for exactly the
same reason, little power is radiated in the same frequency bands, so
that spectral details in such bands are not essential.

Outside the narrow frequency bands where the phase varies rapidly,
one notices little azimuthal dependence of the slope. The strongest
dependence is found for the P-wave, for which the group delay at the

source 1is slightly smaller at forward azimuths than at back azimuths.
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Figure VII-4-3. Far-field phase spectra corrected back to equivalent
point source. Azimuthal dependence.
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This is consistent with the idea advanced earlier that the radiation
field "sees" a slower rupture velocity at back azimuths. Azimuthal
effects seem to be smaller at long periods, which was also to be
expected.

The fact that P- and S-waves may have different group delays at
the source is somewhat unsettling and deserves further discussion. It
seems to indicate that P- and S-waves should exhibit different apparent
origin times. This effect has been called the "Z" phenomenon. The

International Dictionary of Geophysics gives the following definition:

"Z phenomenon: it has been suggested that the main P and

S waves may issue from some earthquake foci at times
separated by the order of some seconds. Such a separation
is called the Z phenomenon, but it is now thought to be
much less significant than formerly."

Observational evidence for such a discrepancy in P and S apparent
origin times is relatively abundant in the seismological literature prior
to 1950. For example, Jeffreys (1927) found that the linear travel time
equations for the direct P- and S-waves from two British earthquakes had
different constant terms by two or three seconds. The S radiation
appeared to have originated earlier than the P radiation. Having
observed this phenomenon in several other instances, Jeffreys (1937)
concluded that the two waves both originated from the rupture zome but
at different times. Gutenberg and Richter (1943) developed an explana-
tion of the phenomenon first suggested by Reid (1918) and used later by
Benioff (1938). This explanation calls for a tramssonic rupture

velocity, that is, such that Vs <V, < Vp . If this is the case, they

R
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argue, the first arrival of the S—wave actually comes from the point on
the fault which is closest to the observer, while the P-wave first
arrival comes from the point of initial rupture, hence the discrepancy
in origin times. As pointed out by Bullen (1963), the concept fell into
disuse and thus into obscurity after the work of Richter (1950). Richter
plotted P arrival times against S-P times for several Southern California
earthquakes and defined the origin time as the intercept of this curve
for S-=P = 0 . This method presents the advantage of yielding origin
times independent of the velocity (at constant Poisson ratio), but also
the procedure will hide a hypothetical Z phenomenon by a shift of the
origin time. In fact, if the Z phenomenon really takes place, the
origin times so obtained should be slightly too late, and thus the mean
velocities deduced from them slightly too high. If one tries in turn to
locate an earthquake by using this high velocity, either the solution
may be difficult to find, or the hypocentral depth will be too shallow.
Figure VII-4-2 shows that no transsonic rupture velocity is required
for the occurrence of the Z phenomenon. We have here a frequency
dependent effect, but since we are only talking about arrival times, and
since instrument responses are generally band-limited, this dependence
may be neglected. From figures VII-4-2 and VII-4-3, we see that in the
case VR = 3.0 km/sec , Vs = 3.5 km/sec , the group delay for S-waves
at 1 sec is practically negligible, while that for P-waves is of the
order of two or three seconds. This matches Jeffreys' (1927) observations
very well. Furthermore, this result is only weakly dependent on azimuth.
The phenomenon is even more pronounced for low rupture veloclties.

=

For instance, for Ve, = 1.0 km/sec, Ffigure V1I-4-2 shows Lhat at .5 c¢ps
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the S delay is 6.5 sec while the P delay is 9.5 sec, a Z phenomenon of
three seconds.

To go even further along this line of discussion, one may wonder
whether premonitory apparent changes in the Vp/VS ratio before
earthquakes (e.g., Whitcomb and others , 1973) could not be partly
interpreted as a source effect. In order to create an apparent decrease
of that ratio, one only needs to assume that the failure mechanism of
small events preceding larger ones changes—-—for example, VR may increase
so that S-P decreases. Thus, the premonitory phenomenon would not be
due to a wave propagation effect only, but also due to a change in the
failure characteristics of the medium. The dilemma will bé solved by
obtaining conclusive data both from local and from teleseismic events.
Although this is the object of much current research, we feel that the
question is still open at this time. This is a vast subject, full of
promising ramifications, and this is not the proper place for an
extensive discussion.

Although it is probably too early to reach definitive conclusions,
we suggest that the long forgotten Z phenomenon may have to be revived,
and that only careful observations will prove or disprove it. Since it
is rather difficult to retrieve the initial phase of the radiated fields
with sufficient accuracy, we propose the following procedure: seismic
records could be filtered by narrow band causal filters, and the S-P
times could be plotted against frequency for several events with
neighboring foeci. Changes in group delays at the source from cvent to
event might be observed in thils fashion. This is, ol course, subject to

improvements, and further theoretical and numerlcal work is needed in
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that respect.

Before leaving the subject, we should point out that only the
curvature of the phase spectrum, as well as the slope difference
between S and P, are of importance. The linear trend present in the
spectrum will only yield a net shift in the origin time, which is of

course impossible to retrieve from observations of arrival times only.
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VII-5 Evaluation of the model

The examples given in the previous sections give a general idea of
the radiation fields predicted by our model. Let us now turn to an
evaluation of how this model compares with observations, and with
completely numerical models. The present section does not do justice
either to the flexibility of the model, or to the large body of observa-
tions currently available (e.g., Tucker, et al., 1973; Hanks, 1973). But,
then again, an extensive discussion would be too voluminous to insert

here.

i) Magnitude data

As mentioned earlier, the spectral shape which our model predicts,
and the scaling laws presented in this chapter permit us to discuss the
relationshib between the body-wave magnitude ms and the surface-wave
magnitude MS . Of course, because magnitude scales have been
empirically defined from time domain observations (e.g., Richter, 1958),

a quantitative comparison can only be made by computing synthetic seismo—
grams and following the usual procedure to calculate magnitudes.

However, by plotting the S-spectral amplitude at a period of 20 seconds
against the P amplitude at one second as a function of source dimension,
one obtains an idea of the character of the mb/MQ curve predicted by
the model. A sketch of such plots is given on figure VII-5-1, for three
relaxation radii and three rupture velocities. The axes are scaled so as
to correspond to the source and medium parameters used in the previous

sections. The distance was kept constant and equal to 100 km.
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Figure VII-5-1. Plot of S spectral amplitude at 20 seconds versus
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The low magnitude part of the graph is controlled by RS and the
large magnitude part by the rupture velocity. The net result is that a
band of possible observations is defined in the m o= Mé plane, which
allows for much scatter in the data. In addition, a change of the
prestress yields a shift of the whole graph along a direction inclined
at 45° on the axes. Since there is an observational cut-off, we do not
expect to observe the lower part of the curves. Furthermore, we pointed
out in Chapter IV that RS may equal many source dimensions for small
events so that the observations should cluster towards the upper limit of
the zone defined in figure VII-5-1 for low magnitudes.

The diagram predicts an upper bound forrboth m and MS ; at
fixed prestress. In particular, the curves bend sharply upwards when the
bognd on m.b is reached. The bend occurs for a fault dimension between
5 km and 10 km, depending on the rupture velocity. This corresponds to
a magnitude between 5 and 6. Of course, an increase in the prestress
would bring the points A,B,C to A',B',C' respectively, and this
complicates the problem. The latitude offered by the three parameters
VR 5 RS » and the prestress level may account for the very large
scatter of the observations (Evernden, 1973, personal communication).

The character of these curves provides an explanation as to why no
earthquake with local magnitude larger than 6 % has been observed in
Southern California (Hanks, 1973, personal communication). Furthermore,
observations of a large number of events with widely differing locatiomns
and depths show that the mb/Ms diagram does indeed exhibit this
character, in spite of the scatter (Evernden, 1973, personal communica-

tion).
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Figure VII-5-1 shows an upper bound for Ms as well, which agrees
with the observations since no earthquake with magnitude greater than 9
has ever been recorded. However, when the rupture velocity equals the
shear velocity, we saw earlier that the S—-spectrum has a high frequency
slope of m_z and thus MS should be unbounded. But it seems difficult
to envision a rupture propagating for 700 km or 800 km at the shear
velocity since this wpuld require very high stress levels on a large
regional scale.

Let us again emphasize that spectral levels are not simply related
to time domain amplitudes, so that we shall confine ourselves here to

this qualitative discussion.

ii) Comparison with numerical models

Cherry (19?3) constructed a two dimensional fault model for
which the rupture propagation is controlled by a failure criterion such
as the one described in Chapter III. A minimum of plastic work is
required before failure, and a dynamic friction is imposed on the rupture
surface. The radiation field is calculated by combining a finite
element technique with a finite difference scheme for the time dependence.

Figure VII-5-2 shows the near-field radiation obtained by Cherry at
a particular station. The components x and y are measured parallel and
orthogonal to the fault line respectively. Also shown on the figure is
the radiation spectrum calculated from our model, using the average
rupture parameters obtained by Cherry. The agreement i1s very good at
high frequency. In particular, both models predict an average slope of

-3
w . On the other hand, one observes a discrepancy at long periods.
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The field is practically radial for both models, but we predict a smaller
relative long-period amplitude — by a factor of 4 .

Recall however, that Cherry uses a two dimensional model, while we
use a three dimensional one, and since the distance is about two rupture
dimensions, the finiteness of the fault should not be neglected.
Furthermore,Cherry assumes a significant hydrostatic pressure, while we
have a pure shear prestress; it is also rather difficult to evaluate
the effects due to different boundary conditions, both on the fault
surface, and at large distances: Cherry "freezes" the fault when the
relétive velocity of the two lips vanishes——unless the shear stress
exceeds the dynamic friction--and thus he may freeze the fault in an
"overshot" configurationf.

In spite of the extreme differences between the two models, the
agreement shown on figure VII-5-2 is still excellent. The comrmer
frequency chosen by Cherry (1973) at .3 cps is almost exactly that
predicted by our model, and since the high frequency spectra are quite
comparable, it is likely that the far-field spectra would also compare

favorably.

iii) The Harris Ranch earthquake of 27 October 1969

Figure VII-5-3 shows an example of spectral data compared with

T Cherry (1973, personal communication) overestimated his spectral

levels by a factor of 27 . Thus the two models can be better recon-
ciled, since we must then scale our prestress to 160 bars, which is of
the order of his static stress drop (" 110 bars) and his dynamic stress

drop (v 250 bars). The long-period difference is thus geometrical.
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a theoretical spectrum. The data were computed by McEvilly and Johnson
(1973). This is a displacement amplitude spectrum computed for the
Harris Ranch earthquake of 27 October 1969. This was a magnitude 4.6
strike-slip event on the San Andreas fault system; the focal depth was
12.5 km; the epicentral distance was 1.25 km; the spectrum shown corres-
ponds to the EW component, and the entire wave train shown on figure
VII-5-4b was used to compute it. The theoretical spectrum was simply
obtained by use of the scaling laws from one of the cases computed
earlier. We see that a good fit is obtained for a rﬁpture length of
1.4 km, a rupture velocity of 3.0 km/sec, a prestress of 300 bars, and
a relaxation radius of about 10 fault lengths. The interaction of the
incident wave with the free surface was simply taken into account by
doubling the free-space aﬁplitude.

Of course, we are not capable of reproducing the high frequency
details of the spectrum, which are most likely due to surface layering,
and which come from the long coda shown on figure VII-5-4b. However,
the general shape of the spectrum is.matched reasonably well. It is
probable that the slightly high spectral amplitude predicted by the model
around 1 cps could be corrected by using, for example, a slightly lower
rupture velocity. The fit is good at long periods, and a finite value
of Rs is required to match the marked trough at 0.1 cps. Note that
the very long-period slope of the observed spectrum is steeper than m—l 3
which suggests that there is significant contamination by long-period
noise.

There is no doubt that this fit could be improved by suitable

manipulation of the fault parameters. For instance, one could try a
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larger rupture dimension, combined with a smaller prestress, themn a
smaller value of RS would be required. But the results shown here are
sufficient for our present purposes. In particular, it seems that a
finite value of RS is required in order to match the long-period
spectrum. The trough seen at about 0.1 cps is also present on the NS
component (McEvilly and Johnson, 1973). This feature should be translated
into a particular pulse shape in the time domain.

Figure VII-5-4 shows synthetic far-field pulses computed for a
stationary spherical rupture of radius 750 m. When RS is infinite, the
pulse is unipolar (e.g., Molnar, et al., 1973). This is no longer the
case where RS is finite. It is easy to compare qualitatively these
pulse shapes with the seismograms shown below them. McEvilly and
Johnson (1973) show that these records represent essentially the ground
displacement except at very long periods (tilts). It is clear that a
finite value of Rs is suggested by the time domain data as well.

The rather qualitative comparisons presented above are only
preliminary results in an effort to systematically compare model and
observations. We should make note of the fact that Tucker and Brune
(1973) observed flat spectra for many aftershocks of the San Fernando
earthquake, observed at close range. Thus their data suggest that RB
should be very large compared with the fault dimensions for those events.
Although any precise statement concerning the comparison of data and
model would require a more complete study, we can nevertheless state

that the results of this section are very encouraging.



-395-

GENERAL CONCLUSION

The present work is essentially open ended, both from the
theoretical point of view and from the point of view of its applicatioms.
As we mentioned at the very beginning, even more questions are raised
than are answéred. Because this is the case, it is not superfluous to
stress again the underlying philosophy. The failure model and the
elastodynamic treatment given here are very crude and quite sophisticated
at the same time. The crudeness comes from the geometry that we chose,
and from the many approximations and idealizations involved in the
mathematical treatment. The sophistication lies in the flexibility of
the model, obtained by allowing for a sufficient number bf parameters.
The most appealing aspect of the model is that it can be readily
generalized in many ways, and that these generalizations can be made on
a physical basis. This is an enormous advantage over kinematical models
which leave little place for the physics of the phenomenon.

However, it is essential to investigate all the properties of a
model in its simplest form, before even thinking of generalizing it.
Only through such a systematic procedure can one determine which effect
is due to which cause. It is a shortcoming of very realistic and thus
complex models that one cannot, in general, determine a single cause for
a particular effect. Thus, as a rule, generalizations should only be
implemented as they are required by the observations.

As we see it, the next step following this study will be to
systematically compare the model with existing data. The results shown

in the last chapter probably do not even cover all the possible features
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offered by this model, and, lengthy as the procedure may be, all the
details of the predicted radiation field should be investigated and
evaluated against a background of data. Only then shall we be in a
position to decide which model characteristic should be modified.
Eventually, the comparison will lead to conclusions as to the physical
conditions surrounding failure of earth materials and earthquakes. The
last results shown are most encouraging and enhance our belief that the

method will prove successful.
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APPENDIX 1

REYNOLDS' TRANSPORT THEOREM FOR THE CASE OF MOVING BOUNDARIES

i) Reynolds' Transport Theorem

Considering a region of a continuum undergoing a continuous flow,
we first seek a description of this flow in a fixed reference frame.
For this we consider the position X of a 'particle," or small volume

element of the continuum, and follow it as a function of time so that
x, (£) = ¢, (X,0) " (A-1-1)

Here X is the position of the particle at some reference time £,
Xi = ¢i()(,t°) . We shall say that X is the position, at time t, of
the particle X, and for convenience we assume to = 0 without loss of
generality.

Equation (A-1-1) can be viewed as a (Lagrangian) mapping, and the
flow is said to be continuous if this mapping is continuous. We shall
further assume that the ¢'s are sufficiently differentiable so that

there exists a continuous inverse mapping

X, (t) = &, (x,t) g (A-1-2)

We shall further assume that a small right-handed triad moving with the
flow stays right-handed as a function of time. If the flow 1s also

regular, thereby forbidding singular points for the mapping (A-1-1),

then the jacobian J = det (%%) will be strictly positive. The velocity

field V associated with that flow is then

3¢
V,(x,t) = (-—i) (A-1-3)
ot X
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The usual form of Reynolds' transport theorem (e.g. Malvern, 1969.
sec. 5-2) expresses the material time derivative of the volume integral
of an arbitrary continuous tensorial function of the flow F(X ,t). The
geometry is described on figure A-1-1. The surface S(t) is a material
surface--i.e., moving with the flow--and is to be considered instanta-
neously as a control surface traversed by the flow.
-8 JIf F(x,t) d3x oy where

dt U(t) dt
d3x is the volume element. The main difficulty that arises is that both

We wish to evaluate the quantity g

the integrand and the volume of integration are time dependent. We
therefore transform first the integral into an integral over a fixed
volume. For this we operate the change of variable of integration
(A-1-1). This change of variable is a logical one since it maps the
time dependent volume V(t) into its initial position V(0); we thué
circumvent the difficulty mentioned above. We write

df _d 3

vt [¢(x,t),t] 3 4% ; (A-1-4)

V(o)

Here we specifically assume that J > 0 . The volume of integration is

now time independent and we can write

df dF ar| .3 ‘ e
E?’/[dt J+th]dx (A-1-5)

V(o)

But, by the usual differentiation rule for a determinant, we have
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$(0)

Figure A-1-1. Mappings defining the flow of a continuum, as a function
of time. V(t) is a material volume, moving with the flow.
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dJ ~ d Bxi BVi
— =7, —|2)-, 2
dt I 4t X, 3] X,

Here J:Lj is the cofactor of the (4i,j) element in J. Noting that,

by simple expansion of the determinant J with respect to the jth

3
column, J "k = B. 3

15 3%~ S4x , we then write
h|
dJ ovV, o v
—=Ji' _._.:l_'_._x.lE.=J 5ik_._.i =Jv -V
dt J axk BXj Bxk =

Or, transforming the volume of integration back to V(t) , we get the

first form of the transport theorem.

d df
— f F(Xx,t) d3; = f[— + F vx .V] d3x
dt dt

vee) vie) (A-1-6)

Other forms are obtained by using the following relations

dF  oF
— =— 4 (V- V) F
at ot B



and

v

X
Then

d

dt V(t)

(FV)
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I

oF
F(x,t) d3x = f]:—-

T i

Or, by application of Gauss' theorem

dt

oF

d
—_ [F(x,t) d3x# —

V(t)

U(t) ot

The physical interpretation of (A-1-8),

proof, is obvious.

surface then we have (e.g., Malvern, 1969)

. -
Rate of increase of
the amount of F
possessed by the
material instanta-
neously inside S

— B

rate of iﬁcreaae of]
the total amount
of F inside S

5 .

(V. vx) P+P V¥ « ¥ "

+ vx . (FV)jl d3x

(A-1-7)

3y + /FV-ﬁda

S(t)

(A-1-8)

often used as a heuristic

net rate of outward
flux of F carried by
mass transport

through S

4 ]

If S(t) is instantaneously considered as a control

Because S(t) is a material surface, it englobes the same mass at any

time

t and conservation equations can be obtained directly from

(A-1-6), (A-1-7), or (A-1-8) if F is a conserved quantity (see

section iv below).

ii)

Generalization to the Case of Moving Boundaries

We now turn to the generalization of the transport theorem to the

case of a volume U(t) , bounded by a surface

longer a material surface.

r(t) , which is no

We shall give two derivations, the first

one being somewhat more heuristic, the second one more formal.
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A) First proof

Consider the flow described by (A-1-1), and a closed surface I(t),
surrounding a volume U(t) of the continuum. We assume that I(t)
deforms as a function of time sufficiently smoothly so that for &t
sufficiently small there exists a plecewise continuous mapping of the
points of I(t + 8t) into those of Z(t) . Obviously if such a
mapping exists, it can serve to define the velocity U of I(t) at
all points of Z(t) . The geometry is described on figure (A-1-2).

Consider the material surface S(t) , surrounding the volume

V(t), which coincides at time t with X(t) . Then

£(t) =f F(x ,t) d3x= fF(X,t) d3x K, (A—l—é)

uce) V(t)
After a small increment of time &t , we have

f(t + 8t) = f F(x,t) d3x 5 (A-1-10)
Ut + 8t)

But S(t + &t) does not coincide with I(t + &t) and we have

f(t + 6t) = de3x+5t f F(U-V).ﬁsda+0(6t2) "

V(t + 6t) S(t + §t)
(A-1-11)
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Figure A-1-2. Case of a surface Z(t) which is not a material surface.
V is the material velocity, U the velocity of I(t) . S(t) is a
material surface coinciding with Z(t) at time t . V(t) dis bounded
by S(t) while U(t) is bounded by I(t)
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where the correction term is added in order to account for the
difference between the volumes U(t + &t) 7 and UV(t + 6t)

Combining (A-1-9), (A-1-10) and (A-1-11) and defining

d 1.
— F d3x = 1lim — F d3x - F d3x
§t>0 st ?

dt
Uce) Uct + 8t) Uce) ' (A-1-12)
we get
d - 3 d 3
— Fdx=— Fdx+ /.F(U-V)-ﬂsda
dt dt
uce) V(t) S(t) (A-1-13)

The transport theorem in its conventional form now applies to the first

term on the right-hand side of (A-1-13); if we use (A-1-8), we obtain

immediately
d oF
—de3x= ---d3x+‘/-F U- % da 3
dt ot

uce) V(t) S(t)

Where the material velocity V 1s no longer present. However, if

we observe that at time t , the volume V(t) and the material surface

S(t) coincide respectively with U(t) and I(t) , we can then write

d 5 F
— F d'x = — d’x + F U- % da . (A-1-14)

dt ey uee) ot 7 (t)
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which is the desired theorem. Note that (A-1-14) reduces as expected

to the usual result (A-1-8) when U =V .

B) Second proof

In order to derive (A-1-14) on a more formal basis, we need to make
a number of more restrictive assumptions about the volume U(t). 1In
particular, we assume that the points rs € I(t) can be described as

a function of time by a mapping

re () =9, (R,t) (A-1-15)
z . §
i
Here Ri = wi (R,0) . However, such a mapping describing the evolu-
tion of Z(t) 4is non unique. We shall only consider here the class of
surfaces I(t) for which a mapping (A-1-15) can be found which is a
valid descriptibn of some continuous flow. This means that we assume

I(t) to evolve sufficiently smoothly in time so that wi can be found

and defined throughout the continuum, with continuity and differentia-

bility properties similar to those for ¢i . Then the value taken at

rE by the field

1)
o, (r,t) = (—-i—) (A-1-16)
ot /R

is defined as the velocity of I(t) at rZ . The existence of the

inverse mapping

R, (t) =¥, (r(1),t) ’ (A-1-17)
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is also assumed.

We now want to express -g—t f(t) = -S—E fF d3x , and it is logical
uce)

to use (A-1-1) to change the variable of integration. The mapping of
the particle X through (A-1-17) can be obtained by a careful considera-
tion of the superposition of the flows (A-1-1) and (A-1-15)--see figure
A-1-3. For simplicity we shall distinguish material points X, under-
going the flow (A-1-1) and "surface" points R , undergoing the flow
(A-1-15).

Consider the material point of location X (t) that coincides at
time t with the surface point located at r(t) . Then at that time
both these points are mapped at the same location X= @ (r,t) by
(A-1-17). At time ¢t + St the material point is located at x (t + &t)
= x(t) + V&6t , and is still mapped into X . But the surface point
is now located at r(t + 6t) = r(t) + USt . Thus at time t + 6t
the surface point rr(t + 6t) coincides with a new material point.

This last point was located at time t at x(t) + (U -V ) 6t (to
first order in dt). Then the surface point which was mapped at time t

into X 1is now mapped into X + W&t , where
W=(U-V)-vxd> (A-1-18)

By use of the mapping (A-1-1) we have therefore reduced the original
problem to the simpler equivalent problem where a surface Zo(t) moves
with velocity W through a fixed continuum (see figure (A-1-3).

This is expressed mathematically by
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Figure A-1-3. The surface X(t) , bounding the volume ((t) , is
not a material surface. Thus, if ¢ 1is the mapping representing the
flow of the medium, Z(t) is mapped into a time dependent surface
Eo(t) , which has a velocity W . U 4is the velocity of ZI(t), V

the velocity of the medium. Two points Xx (material point) and I
(surface point), which coincide at time t , do not coincide any
more at time ¢t + 8t
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‘—‘E=g—t fr[@(x,t),t] 7 a3r
U (t)

o
d 3 x
fE[FJ]dX+fFJ W- & da
u (t)

z ()

(A-1-19)

The surface integral on the right-hand side of (A-1-19) takes into
account the rate of increase of the volume Uo . Because we have

defined W everywhere we can apply Gauss' theorem and write

df _ a_ 3 3
. [l omd]

(A-1-20)
Uo(t)

5 awi 3 3@1
Bt = [FJ]_Z0 aod = szl ~ N ) =Y = (U-V)
Bxi x BXi Bxi k k Bxk X

Using the theorem (A-1-6) in (A-1-20) we obtain immediately

dt dt

daf _ I[Q+va-V+va- (U-V)]_J ax

uo(t)

or
u(e) (A-1-21)

It is then a trivial matter to transform (A-1-21) into
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df— —BE . A
dth‘f'c)t-*-fFU i da

e (a-1-22)

This last equation is identical to (A-1-14), but its proof required
rather stringent assumptions which were not needed for the former proof.

1ii) Medium with an interior surface of discontinuity

We now turn to the case where the surface I(t) , of velocity U
is a surface of discontinuity of the medium. Phase boundaries and shock
fronts constitute examples of such discontinuity. The velocity of the
material V, and the flow function F are then assumed to be discontin-
uous across L(t) . For convenience, we choose the normal ﬁz to be
such that U - ﬁ): >0 , i.e., I(t) 1is now an oriented surface
propagating in the direction of its positive normal. We seek to apply
the transport theorem to the material volume V(t) bounded by the
material surface S(t) . As shown in figure A-1-4, the volume V(t)
is separated by I(t) into two contiguous volumes Ul(t) and Vz(t) ;
and similarly S(t) 4is cut into two surfaces Sl(t) and Sz(t) . We
can furthermore consider I(t) to be composed of two surfaces El and
22 with outer normals -ﬁz and ﬁZ respectively. The transport

theorem may now be applied to the two volumes Ul(t) and Vz(t)

gseparately. We write

' x

n.ln-
&Im

3 d 3
“/FF dx + vy F dx
V. (t

) v, ()
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Figure A-1-4. Case of a propagating discontinuity. I(t) is the
surface of discontinuity, of velocity U . Sl(t) + Sz(t) is a

material surface, moving with the medium.
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or

d_ - T JF 3 &
dt/Fdx_ f atdx+ f FV nsda

V(t) Vl(t)+l/2(t) Sl(t)+82(t)
- f FU- ﬁz da + f F U- ﬁz; da (A-1-23)
El(t) Zz(t)

The surfaces Sl(t) and Sz(t) are not closed surfaces and there-
fore we cannot apply Gauss' theorem to the surface integral over them.

This can be circumvented by writing

f F V- fi da = f FVe4fda+ fFV-:’ida

S, (B)+S,(v) S, (£)+Z, (v) Sz(t)+22(t)
+/FV-ﬁzda—fFV°ﬁzda
Zl(t) Zz(t)
Here the outer normal 0 is defined as - ﬁz for Zl(t) and as ﬁz
for Zz(t)

We can now apply Gauss' theorem because the surfaces Sl(t) + El(t)

and Sz(t) + Zz(t) are closed, and we obtain

d 3 _ oF . 3 s o I
Hdex—f[ﬁd'-vx (FV)] dx+f[F(V U) n)‘.]] ).da
V(t) V(t) Z(t) *
(A-1-24)
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We have introduced the notation [[Q]]E to indicate the jump of the
quantity Q across Z(t) . This jump is defined as the difference of
the limiting values of Q when I 1is approached from its positive side
and its negative side successively. Equation (A-1-24) represents
Reynolds' transport theorem in the presence of an internal boundary
which is a surface of discontinuity. It is worth ndting that if V-U
is tangential to ZX(t) on both sides of I or if the jump vanishes,
then (A-1-24) reduces to (A-1-7) , i.e., the usual theorem. This
means that there is no flux of F across XL(t) by material transport.
This is true in particular if U =V , that is when X(t) is a
material surface.

iv) Conservation equations

A) Away from discontinuities

The transport theorem in the form (A-1-24) expresses the conserva-
tion of the quantity F . Let V(t) be bounded by a material surface,
but be otherwise arbitrary. Then if k(x,t) is the rate of production

of F at the particle X , we have

-g—-t- F(x,t) d3x = fk(X,t) d3x . (A-1-25)

V(t) V(t)
Because of the arbitrariness of V(t) the equality of two integrals

over V(t) dimplies the identity of the integrands and thus, using

(A-1-6) and (A-1-7) we get

d—"‘"d%—tl +FY_ V= kixt) (A-1-26)
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or

%%ﬂ+ Ve © FV) = k(x,t) (A-1-27)

which are to be satisfied at every point where the flow is regular. The
specific forms taken by these equations to express conservation of mass,
momentum, energy, ... etc., are given in Chapter I.

B) At discontinuities

Because of the preceeding discussion, and because (A-1-27) is
safisfied at every regular point of the medium, we see that the second
integral on the right-hand side of (A-1-24) must vanish identically
unless ZIZ(t) 1is a layer source for F . If ZI(t) possesses a

production rate density of F , kZ(x’ t) , then at every point on L

“:F(V-U) . ﬁz]] = ke (X,t) (A-1-28)
z

This equation will yield the usual Hugoniot equations of shock wave
theory. It will be particularly useful when applied to a phase boundary
with the latent heat of tramsformation appearing on the right-hand side.
If the source density k(X,t) is of the form V * k , then by
application of Gauss' theorem, and comparison with equations (A-1-23)

and (A-1-24) we see that

k() = [[.c : ﬁzllz . (A-1-29)

This last relation is used extensively in section I-1.
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APPENDIX 2

G FUNCTIONS: EVALUATION OF THE INTEGRAL

A
G(a,u,v;:z) =f e attuJ\J(t) dt
o

a) A particular case

In a first step we evaluate the integral in the case
F(%;2) = G(0,-2+%,0+%;2)
In Erdelyi (B.M.P. vol. 2, p. 22, #4) we find

1 1-9 v-3/2
-v+1/2 1/2 , _2 7y _ LR
f x J,(xy) Gey) T dx =TT y I,
o

therefore we write, with u=t/z , t=uz , dt = zdu

1
F(%;2) z-m-lf u_2J2+1/2(uz)(uz)l/2 du
o

thus, with v = 2 + 1/2

e 2 L2E1 g,

F(452) = 2 Ty ¢ Je-12?

or
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-2+1/2 Yoo 12D
2 2 “4-1
F452) = Faeiyzy - \/ T -1 (A-2-1)

From this result one deduces immediately

b Jo_q(ka) 3, - (kb)
@ Py ey Par = 2L - L (a-2-2)
a ka kb
and in an identical fashion
B s doy 5 hé_z_i(ka) hy_, (kb)
(r) h (kr) r dr = = - - (A-2-3)
j; L ka'q’ 1 kb'q' 1

Both of these results are used in Chapter IV in the computation of the

multipole coefficients for a spherical rupture.

b) General case

We now turn to the general case and evaluate
Z _at
G(a,u,v;z) =f e e+ Jv(t) dt (A-2-4)
o

in Abramowitz (p. 483), we find the following recursion relatilon
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Az NI (=)

2
+ ; =
(a 1) G(a,H,v;z) e F1

z

+(-v+1) ez M J,(2)

 wo8Z R
ae z Jv(z)

+ a(2p - 1) G(a,p-1,v;z)

+ v - D] GGau-2,v52)  (a-2-5)
We rewrite this relation, changing u to p+2

-az zu+2 3 t2)

[(u+1)2 - vzj G(a,H,V5Z) = e w1

+ (n+3-v) g ok zu+1 Jv(z)

- +
e 22 zu 2 Ju(z)

+ a(2u + 3) G(a,u+l,v;z)

- a2 + 1) G(a,u+2,v;2) (A-2-6)

We shall be concerned with negative values of Uy and the recursion
relation (A-2-6) permits to reduce |[p| at constant a and Vv

Defining

n+2 -az
e

P(a,u,v;z) =
1) - v?
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“WH+3 -~ 3) 2 _ azU+2 -az.

Q(a,p,\);z) = : e
1) - V2
V’(a,u,\)) = _3(21;1_"'_3)_
) ? - V2
2
W(a’u’v) = ___.%
(ptl)” - v
we can write
G(a,u,v;z) = P(a,u,v;z) Jv+1(z)

+ Q(a,u,v;z) Jv(Z)

+ V(a,u,v) G(a,pt+l,v;z)
+ W(a,u,v) G(a,u+2,v;2) (A-2-7)
By concatenation of this formula for n-1 successive values of u |,

we can express G(a,Hu,v;z) in terms of the same functions with two

successive values of U
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A X |G(essllaes) =P( 11, ) JV+1+ Q( sHs ) J\J +

V( ,u, ) G( ,ptl, ) + W( ,p, ) G( ,ut+2, )

a2 x 6 w2, ) = B( 02, ) I, +Q( wtne2, ) I+

V( :]J+n"2: ) G( sHin-1, ) + W( ,]J"'II—Z, ) G( yHin, )

By summing these equalitiés weighted by the coefficients Ao,...,A

I'lf 2 2
we get
n-2
G(a,u,v;z) = g;% Ai_[P(a,u+i,V;Z) Jv+l(z) + Q(a,pt+i,v;z) Jv(Z)]

+A__ G(a,win-1,v;2)
+A _, W(a,u+n-2,v) G(a,pu+n,v;z) (A-2-8)

where the coefficients Ai are entirely determined by the recursion

b
I

= V(a,u+i-1,v) Ai—l + W(a,pt+i-2,v) Ai—z

(A-2-9)

>
I

1; A = V(a,u,v)
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because of the presence of the denominator (p+1)2 - vz in the
coefficient W(a,u,v), this recursion breaks down for u + (n-2) + 1 =v
or mn = vil-p

But for the functions G we have to evaluate in Chapter IV, V
takes the constant value Vv = 2+1/2 and U varies from -2+1/2 to
2+3/2 . Because of the denominator appearing in the coefficients
P(a,u,v;z) , Q(a,u,v;2)., V(a,u,v) , W(a,u,v) the maximum p for
which we can apply the reduction formula (A-2-8) is u = 2-3/2
Thus we see that for -%+1/2 < p <£-3/2 we can apply the reduction

formula, and thus we need only evaluate

G(a,8-1/2,8+1/2;2)
G(a,4+1/2,841/2;2)

G(a,8+3/2,8+1/2;2)

that is, G(a,m-1/2,8+1/23z) for £ < m . It should be notéd that
this is perfectly feasible in closed form. For this purpose we need to
eyaluate the spherical Bessel functions in closed form. It should also
be noted that the case where a = 1 1s a particular one which should
be integrated separately.’

Recall that

zZ
G(a,m-1/2,8+1/2;z) = J—%f o Ak 4M jo () dt (A-2-10)
(o]

The spherical Bessel function jﬂ(t) is expressible in terms of a
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finite combination of sines and cosines: we write the Hankel functions

of the first and second kind as

W it
hy (E) = gﬂ_ E (24+1/2,k) (- 21c)
t k=0
(2) £+1 -1t 2
b~ (£) = Z (2+1/2,k) (Zit)
k=0
and therefore
3,0 =3 1P ) + 1P (0

~ E 2+1/2,k2 (ML gl [ + (cnyl e—it]
2t)*"

Using the following formula (Erdelyi, B.M.P. vol.l, p. 134, #5)

Z n -pt n! -pz R al B
Ee” mpmT @™ m! _n-mtl
2 P P

m=0

+k) ! .
and replacing a by dio , them, with (8+1/2,k) = i, ?(n—k+l) ’

we have the following results
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1) a# 1
a) 4+ <m
Z
[ 2,(t) di &= E M (= 1)2.+k=+m+1 im+2,+1( k1)1
o
Aoz PR B gl [ SR | gy L
@1 F (1)K = jt (@-1)" k3 ()"
(A-2-11)
b) m= %
- Z
/ cSlat L 4, (0) at _[ e-im: tgjﬂ. L(© a
- (8]
(o+l)z -it
i)t , e e
t A — dt  (a-2-12)
(c-1)z

We have therefore expressed the function G(a,u,v;z) for the case
= 4+1/2 , =-2+1/2 < 1 < %43/2 in terms of a finite combination of
elementary functions and an exponential integral, all of which can be
evaluated by standard numerical methods.
) g=1
The particular case o = 1 1is of interest since it corresponds in

Chapter IV to the case where the rupture velocity equals the seismic
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velocity. This may be used to model an instantaneous rupture or
equivalently a shock generated rupture. However W(a,u,v) vanishes in
that case and from the recursion (A-2-7) we see that the only integral

left after reduction is G(i,%+1/2,2+1/2;z) which is a standard integral

found in Abramovitz (p. 483, #11-3-9)

iz -(2-1/2)
Z

G(i,+1/2,841/2;2) = 3 (D) [J%+l/2(z) - iJ2+3/2(z)]

(A-2-13)

Although equations (A-2-11) and (A-2-12) provide closed forms for

the G functions, numerical experiments showed that their computation
by this method becomes rapidly unstable even for low values of u and
vV . It was found empirically that the most reliable method is to

evaluate them as finite Faurier transforms, using a numerical integra-

tion scheme.
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APPENDIX 3
COMPUTATION OF THE INTEGRAL Iél)
We defined in Chapter IV the integral
T -iwt
(1) fo o 3 -2
I = — -3-
2 s © ato R (to) d (to) dto (a-3-1)

We shall now obtain a closed form for it in the case where R(to) and

d(to) are polynomials of to . In that case, we may write
N
0 3 =2 _ n
e R (t) d e} =3 at . (a-3-2)
o n=0

where an (n=0,...,N) are coefficients which depend on the rupture

geometry under consideration. From Erdelyi (B.M.P., vol 1, p. 134. #5)

we have
t
f Bt n! -pz 'z" 1z .
o = B ==t ® m! n-m+l :
P m=0
Then by simple substitution we get
N iwt_ n (t )
! . ! , A-3-4
Ve =] af] 2-e °f BL__o (a-3-4)
= P = - n-m+1
n=0 (i) m=0 {2

which is the result we sought.
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APPENDIX 4

ASYMPTOTIC BEHAVIOR OF THE INTEGRALS Iél) éz),IéB),Jél),J\SZ),J\gB)

When evaluating the radiation fields generated by a growing and
propagating spherical rupture (Chapter IV), we expressed the dynamic
multipole coefficients in terms of integrals over the source time to

These were

T =
=-1wt
(1) _f° W a [3 9-2 ] e

IZ (w) = o © T R (to) d (to) dtO (a-4-1)

T &
o —iwt Jo_,(k Vot )
1’52) (@) = _[ e gt [R (t,) a2 )] Aol o R£°1 at_
e o (k Vo)
(A-4-2)
T P
o] —lwt
<) S f d ]
LYW= J e = [R (t,) a (to)
Teogle Vot d, e R
il o Rf = el 9 (a-4-3)
(kdvRto) (kaRs)
and,
T
(1) ./” o -1mto OR (to) _ (A dk]
3w o= J e T Ju(kad(to)) dt_
T
-iwt IR (t) 3 (k R(t ))
(2) f & 1
Fu (w) = e (k d(t )) dt
v o Bto ku.R(to)

(A-4-5)
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e

T A 3 ; §
J(3)(m) = ulﬁ e 2R () jl(kuR(to)) _ Jl(kaRs)
o

ot k R(t ) k R
o o o a s
« 3 (k,att)) at (2-4-6)
; {1y (&) . {3} : : 3
The integrals IZ 'Il ,Iﬂ appear in the approximate solution to the
problem, while Jél),Jéz),Jé3) appear in the exact solution. Here

R(to) is the radius of the spherical rupture, d(to) the amount of
translation along the =z axis, and we shall assume these functions to
be polynomials of to s ka = m/Va is the wave number, TO and RS i
the total rupture time and the relaxation radius, are constants of the
problem.

We shall now investigate the long period and high frequency

asymptotic behavior of these integrals.

A) Long period behavior, w << 1

In this case, we have wt < wt << 1 , kV_ t <kV T <<1,
o o) o R o o R o

and kuRs << 1 . Thus the following asymptotic behavior hold

~
e—lmto = 1 % Diw) .
J (k V.t ) - .
21" a R o i i 2
= A-4-7
Tl ~ b gen TYHEI Y ¢ )
(k V_t )
a'R 0
1y g (kRS . il + Dia s
(k R )1—1 1°3+5...+ (22-1)
a s
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: . 2 2 2.2 j
I K VRE) 3 3g_q (kR _ k (R, - Vot )/2 . 0(m4)
2-1 2-1 183%8,.0n® (2041)
(kaVRFo) (kaRs)
(A-4-7)
’ (Cont. )
v
jv(kud(to)) = [kad(to)] - i O(wv+2)
B T35 ua® (20F1)

Therefore we get immediately the following asymptotic behavior for

w << 1
Iél)(w) ~ R3(To) dghz(ro) (A-4-8)
Ié2)(w) - 1'3'5.2%'(22-1) 33(10) dg-z(To) =
1;3)(m) % 1.3.z;f?.(2£+1) _}CTO[%z = Viti] SE; [R3(t0)dg‘2(to)] dt_
(A-4-10)
3 @) » l'3°5%;-'(2vfl) .}ZT° a’ () i;zéf9l- at_ (A-4-11)
JiZ)(w) v 1-3-5%;f?(2v+1) u/;TO dv(to) f;;gtgl'dto L
J$3)(“) v 1-3‘§;T?{12v+1) ,}:Tq a’(t,) [Ri _.Rz(to)] f§;£iél'dto

(A-4-13)
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However, as shown in Chapter IV, the dominant terms at very long

period correspond to the values £ =2 and v = 0 respectively. For

these particular values we find for w << 1

(L@

D) v x)

J 1;2’ i) % R3(ro)/3 (A-4-14)

58]

T

k o
(3) 2 2.27.2 '
12 (w) v 10 '[o [Rs - VRto] R (to) R (to) dto

|a

and

J(l)(m) 4 R3(To)

< 3@ () R )3 (A-4-15)
(o] (o]
2 T
k r o
(3) _a -/P 2 _ 2 2 ’
37w v d [Rs R (to)]R (t) R (t) at_

To obtain the expressions given in (A-4-14) and (A-4-15) we

assumed that none of these terms vanish, that is Rs > R(To) >0 s
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B) High frequency behavior, w >> 1

The asymptotic behavior of these integrals is more difficult to
obtain in that case. We shall assume a simple case corresponding to
one of the models described in Chapter IV, and computed in Chapter VII:
we take R(to) and d(to) to be linear functions of to and, without

loss of generality take

R(to) = d(to) = VRto/‘Z

where VR is the rupture velocity. We know that the solutions of

Chapter IV hold only for VR < Cy @ where ca is the wave velocity.

When the rupture propagates at sonic or supersonic velocity, it must
then be assumed to have been created instantaneously.
Let us first note that, if Rs >> VRTO , that is for a relaxation

zone much larger than the rupture dimensions, the terms in RS

O g O

5 are negligible. The high frequency

appearing in I

behavior of these integrals is then independent of Rs and we have

1&3) @) ~ 1&2) ()

for w>1 (A-4-16)

2)

3P w ~ 3P w

Furthermore we know that, for w >> 1
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- -ino
T —iwTt it _ e
o o .n _ o -2
f e t,dt =——(——— + 0w ")
o
so that we get immediately
1P W =ow™  for w1 (A-4-17)

The remaining integrals may be rewritten after suitable changes of

variables
(2) (w) = (2%?1:1— f ‘'R0 g B Jg_q(0) dt (A-4-18)
1 @) - 535 f k“vRT° e 2 5 (e/2) (A-4-19)
o
3P wy = é J' 'Rl -ize 3, (e/2) 3(e/2) ac (A-4-20)

where ¢ = ca/VR is a number greater tﬁan one. The problem is now
reduced to the study of the integrals appearing on the right-hand sides
of (A-4-12) through (A-4-20) . These integrals do not have any
limit as w > , and thus one cannot properly define asymptotic forms

for them. Instead we separate the integral by writing



~442-

kV T X ,kVT
fanosf +J’aRo A2
o o X

and choose X to be a fixed number, large enough so that for t > X

we can use the approximation

This approximation may be used in the second integral on the right-
hand side of (A-4-21) , the first integral being now a fixed number.

Consider for example the case of (A-4-18) , we have

i(1-9k V_T i
kaR%o izt . . Y 241 e el ki i
e t ‘]R‘-l(t) dt = T— (-1) e
X
e-i(l+C)kuvRTo_e-i(1+g)x ]
® 1+
(A-4-22)

We see now why we must have [ # 1 , since this expression becomes
singular for 7 =1 . It is clear that this expression is of order
one as w > ® , so that, by combination of (A-4-21) and (A-4-22)

we get
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Iéz)(w) v 153)(u0 = 0(1/w?+1) for w >> 1 (A-4-23)

Similar results are obtained for (A-4-19) and (A-4-20) by the same

method. We get, after some algebra

Ned

o w

Jéz)(w) = O(m-3) for w>>1 (A-4-24)

353)(w)

I1f R(to) and d(to) are more complicated functions of tO the
analysis is still possible, but becomes more difficult. For ¢ =1
the rupture grows at sonic velocity and the solution to the source
problem must be obtained differently from the beginning (see e.g.,

Archambeau, 1972).
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APPENDIX 5
COMPUTATION OF THE VECTOR DISPLACEMENT FIELD

FROM THE DILATATION AND ROTATION POTENTIALS

In the frequency domain the vector displacement field is given

in terms of the dilatation and rotation potentials by

ir,w) = - % V B(r,w) + 2—2 v x 8 (r,w) (A-5-1)

k k
s

o

The first term represents the "P wave," the second one the "S wave"

radiation. Archambeau (1964, Appendix 4) showed how one obtains the

curvilinear components of the vector u from the dilatation © and the

cartesian (rectangular) components of the rotation Qi s 1.51,;2,3
We recall his result for the case of spherical coordinates
» 1 20 2 ( 3 2 \=
T, S e e sin¢sin8—+cos¢cose-—-)ﬂ
;- kZ or er sin 6 % 96 9 ) "1
P s
+ sind)cose-a——costbsinea— Q. - sine-a— Q
29 ; a0 ) 2 96/ 3
(A-5-2a)
‘a’e = _%.g_g_...._T_%__ {(sin 0 cos ¢-g$+r sin 0 sin ¢%;)ﬁl
k'r k;sr sin 6

P

+ (sin 0 sin ¢g—¢- r sin O cos ¢%;)ﬁz + (cos 0 g—d))'ﬁj:
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1 =__—i1——g%+—§— {(r cos O cos ¢%—sin6 cos ¢%§)§1
¢ kpr sin O ksr

+(r cosesinq)-g?-sinesin(p -33)?52

9 3 \«~
- (r sin 6 F= + cos 0 5-6) 93 } (A-5-2c)

Because we used multipolar expansions to evaluate the potentials in
Chapter 1V, these spherical components are the most convenient ones to
compute. Archambeau (1964) also gives the equivalent expressions for
cartesian and cylindrical coordinates. On the other hand, having the
spherical components of the vector Tl(r,w) , one can as easily obtain

its cartesian components through the orthogonal transformation

fo cos ¢ sin 6 cos ¢ cos B - sin cb-] Fﬁr“

‘t':'y = sin ¢ sin 6 sin ¢ cos © cos ¢ 'ﬁe (A-5-3)
q cos © - sin © 0 a

| 2] : 119

Similarly, the cylindrical components are given by

F'Lf | [ sin © cos 0 0 1 15 ]
P r
u¢ = 0 0 1 ue (A-5-4)
i1 cos 6 - sin 8 0 a
L z. - J L ¢.a
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In order to apply equation (A-4-2) , we must find expressions for

X X X

5r ° 36 * 8¢ ° where X 1is any one of the four potentials

ﬁi (i = 1:2,3) ? » and is given by a multipolar expansion such as

=]

L 7 i
X(r,w) = :E: :E: z,(kr)[A)  cos mp + By sin mp] Pz(cos 8)
2=0 m=0

(A-5-5)

Here Zz(kr) represents either a spherical Bessel function or a Hankel

function of order £ . From Stratton (p. 406) we have

3 -
or Zﬂ(kr) ;

k

2041 [Lzz_l(kr) - (2+1) Z

g1 (k1] (A-5-6)

Similarly from Stratton (1941, p. 402) we have

apg(cos 0)
36

=% [(2,—-nrf~l) (%4m) P‘;s'l(cos 8) - PTl(cos e)] (A-5-7)

o
BPo(cos B) B

This last formula is valid for m = 0 , and yields 26 =0

provided that we define

P, " (cos 0) = (-1)" %%g%g%—P?(cos 9)

(It should be noted in that respect that the similar [ormula given.by

Jahnke and Emde (1945, p. 114) must be in error since it conflicts with
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the recurrence formula given below it for m = Q ).

We thus obtain

14
M

%
:E: 20+ [Rzﬁ_l(kr) - (#+1) z£+1(kr)]

2=0 m=0
. [Alm cos m$ + BEm sin m¢] Pz(cos 0) (A-5-8)
o 3
—X E 2 Zz(kr) [AEm cos mp + B, sin m¢]
EéO m=0
--% [(£~m+1)(l+m) Py (cos 6) - Py (cos e)]
(A-5-9)
9 2 & m
Eéi = z Z: ZE(kr) m[—Aﬂ,m sin m¢ + BR,m cos m$] Pﬁ(cos 6)
2=0 m=0
(A-5-10)

This last expression may be rewritten by using the following relatioms

(Stratton, p. 401)

1 m cos O
ain § Tyl=es B) ==

[(2—m+l)(2.+m) ol (cos ) + P (cos 8)]

+ sin O Plz(cos‘ 0)
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or (Jahnke and Emde, p. 114)
cot O P?(cos 6) ='%E [(Rﬁm+1)(%+m) P (cos ) + P (cos B)]

Then specific terms appearing in (A-5-2) are

-u @ 2
cot —g- Z E z, (kr) [—Aﬂ,m sin m¢ + B,  cos m¢]
2=0 m=0

-;- [(R,-m-i-l) (tm) PG Y oon B) & 5 Bl cos e)]

(A-5-11)

2
Z Zﬂ(kr) [-Aﬁ.m sin m¢ + BEm cos m¢]

m=0

1]

e

=0 o
[an]
Qo
-

]
o
Nk

. {59—;—3 [(l-m-i-l)(ﬂrim) P lsos B + P L tovn e)]

+m sin B P‘;(cos 8) } (A-5-12)

These last expressions are somewhat better suited for numerical appli-
cations than (A-5-10) because of the complications occurring at

8 =0o0rmm
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APPENDIX 6

INTERACTION OF BODY WAVES WITH A FREE SURFACE

In section III-1, we encountered the problem of the interaction of
body waves with a free surface. The theory for the case of plane waves
can be found in textbooks on elementary wave propagation (e.g., Richter,
1958). The closed form solution for incident plane waves is given by
Cherry et al. (1972). We shall enumerate here their results without
proof.

Figure A-6-1 describes the geometry. If ¢ is the apparent
velocity of the incident plane wave along the free surface, then the
incidence angles for P- and S- waves are given by the equation .

v VS

B .
€T 5sin 0 sin 6 (3~6-1)
p 5 )

where VP and VS are the P and S wave velocities respectively.

a) Incidence of SH waves

In that case at all incidences one gets a pure reflection, of
reflection coefficient 1. The particle motion at the surface is in the

X direction and has amplitude twice that of the incident wave.

b) Incidence of P waves

In that case we have VS < Vp <c¢c . The reflection coefficient

(P -~ P) is
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Free surface

Figure A-6-1.

Incidence of rays upon a free surface.
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The conversion coefficient (P -+ SV) is
2 1/2 2
C = %[4 (°—2 - 1) (-‘:—2 = 2)] (A-6-3)
V' v
p 8

As for the particle motion at the free surface, the amplitude of the
radial motion (in the y direction) for an incident P wave of

amplitude 1 is
1 v /.2 2 1/2
Rad=3 4—22 '—“2‘-1 c—z"l (A-6-4)
VS v Vs

and the amplitude of vertical particle motion in that case is

1 cV c2 1/2 4 2
Vere = +| 2 —ZB (7 - 1) (5-2- 4 2)] (A-6-5)
v \v v _
s P s

In the equations (A-6-2) to (A-6-5) the quantity D dis given by
c2 c2 c2 2
D =4 = - — =11 + [ == 2 (A-6-6)
P s s

c) Incidence of SV waves

For SV waves two cases arise

o) If Vs =Y S e
. BT
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then the reflection coefficient (SV + SV) is
2 1/2 2 1/2 - 2 2
R=2|4(5-1 & -1 - (5-2 (A=6-7)
v Vv \'l
P s s
where D is now given by
c2 /2 5 2 12 c2 2
v A v
P s s
The conversion coefficient is then
c2 1/2 (CZ
4{=-1 e w2 (A-6-9)
(V2 V:

For an incident SV wave of amplitude 1 the radial and vertical

amplitudes of particle motion at the free surface are respectively

e [c2 1/2 2 ]
2 =l -1 - (A-6-10)
w(E) (5 )
s
o JP 1/2 o2 1/2
4 —[= -1 -1 (A-6-11)
P S

Vert

0
O~



~453-

B ¥ Y fe<?

In that case the incidence angle is greater than the critical angle. Ray
theory does not apply any longer and one must take into account the
generation of Rayleigh waves. Since for practical purposes this case
does not arise for the applications mentioned in section III-1, we shall
omit the theory for that case. The reader will find the necessary

information, for example, in Brekhovskikh (1960).
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APPENDIX 7

DERIVATION OF EULER ANGLES FROM FAULT ORIENTATION PARAMETERS

As described in Chapter IV, the most convenient coordinate system
to represent the radiation field from a propagating rupture is that one
with the z-axis along the direction of propagation. It is shown in
Chapter V how to transform the radiation field under a rotation of the
reference frame, if the Euler angles are known. We now derive these
Euler angles to transform the coordinate system to the local geographi-
cal system, described on figure (A-7-1). The z-axis is along the local
vertical, the x-axis in a northerly direction.

The fault geometry can be described by its strike, dip, and plunge,
denoted S, D, and P respectively. We choose the convention that the
strike be measured counterclockwise from the North so that -m < S <7 ,
or 0 <5 <2m . The dip can then be measured clockwise from the
horizontal by a vertical observer at the hypocenter so that 0 <D < T .
The same observer measures the plunge downward from the horizontal, thus
-m/2 <P <m/2 . The unit vectors ﬁG’ ?G, EG are then transformed

into the unit vectors iS’§S’Es’by the (orthogonal) rotation matrix

/
wghn ¥ ain T -sin S cos D cos P gin S cos D gin P
+ cos S sin P + cos S cos P
T = sii T cog 5 cos S cos D cos P -co8s S cos D sin P
+ sin S 8in P + sin S cos P
-cos D sin D cos P -gin D g8in P
P
~
(A-7-1)

A ~

The columns of T are the components of ig, Vs Zg in the ﬁG’§¢’£G’
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Figure A-7-1. Fault geometry relating the source coordinate system to
the geographical coordinate system. S , D , P , are the strike,
dip, and plunge angles respectively.
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system. T can then be written equivalently in terms of the Euler

angles ®., ©, &  described in Chapter V (figure V-2-1 ) - (Gelf'and,

4.2 2
1963). Calling the new matrix R , we have

e
" h
cos @l cos <I>2 ; cos @1 sin @2 gin © sin fI)l
-cos O sin @1 sin @2 -cos O sin (I>l cos @2
R-= sin <I>1 cos <I>2 -sin @1 sin @2 -gin O cos (Dl
+cos O cos @1 sin @2 +cos O cos @l cos 452
gin &, sin O sin © cos @ cos O
~ 2 2 P
' (A-7-2)

Here 03@152w,0595n,05¢252ﬂ .

We obtain the relation between the fault orientation parameters

and the Euler angles by simple identification of T and R

1) T33=i1.

In that case the transformation is a simple rotation of angle <IJ1

around the z-axis, thus

-1 0
@1 = cos (Tll) : O {17 - @2 0 if ']321 >0 -
0 - -
o =2m - cos (1) 3 0={ ;¢ =0 BT, 2D
D T,d 2l -

Then because 0 < Q@ < T

& = cos'l(T33) (A-7-4)



sin @ = (1-T

Therefore

and

1/2

sin &

sin &

cos

cos
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is a positive quantity. Furthermore we have

= T13 cos &, = - T23
gin @ °? 1 sin O >
T T
gy T3
“ain 0 °* ©98 QZ - gin 0O
-7
= 23
0L 1,300 ke T Rl
33 o
C - s
2T - cos - T2 )1/2 1f T13 <0
33
T
-1 32
@ - 1t 3 AL Ty ¥ 0
33 _
& Y] i
2T - cos 1 - T2 )112 if T31 <0
33

The Euler angles thus obtained transform the geographical coordinates

into the source coordinates. The inverse rotation may be obtaine

replacing the matrix T,,£ by its transposed T, in the results

ij

ji

above; the Euler angles for the inverse rotation are ﬂ-¢2 5 B

ﬂ-@l

d by

bl
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APPENDIX 8

ULTRASPHERICAL FUNCTIONS AND JACOBI POLYNOMIALS

The formulae describing the transformation of multipolar expansions
under rotations of the coordinate system are given in Chapter V. They
involve ultraspherical functions for which we now derive a simple closed
form for the cases of interest to us.

Gel'fand (1963) gives the following analytical expressions for the

ultraspherical functions.

_kem o _dm
P™ ) = F(1-n) am) 2 e @™ ™™ ]
. dy (A-8-1)
where
p o DT 3T Jnem)t (ne)
2" (n-m) ! (n+m) ! (n-k)!

These functions possess the following symmetry properties (Gel'fand,

1963)
PI ) = P
(A-8-2)
-m-K _ plK
P, W= P
and therefore depend only on the values of |m+K[ and |m—K] . One is

thus led to define
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|mtc| S_=n-%(u+8) ; B =n+%(a+8) :

R
I
El
I
A
™
I

1 caad
i E‘(G-B) ] t+ = n * 2(‘1-8) ]

t
Il

where all of these quantities are integers.

By identification we can rewrite (A-8-1) as

/2

(u) (A-8-3)

(l+u)3/2 P:B

mK Q.
P = K(am,s,s_,t ,t) * (1-0)

where K 1is a constant and PzB(u) are the Jacobi polynomials in

Erdelyi's notation

8 e . _8 ds_ s_+a s_+B
B2 () = A2l )P ™" S [(l—u) (141) (A-8-4)
- 2 es_! dp

Since the indices are integers, (A-8-4) can be rewritten in closed

form

S g
-S = 5 4o s +8 - | .
GB - - == —= . - ] .
P () =2 E (u-1) (p+1) (A-8-5)

We evaluate K by simple identification

(A-8-6)




~460-

Equations (A-8-3) , (A-8-5) and (A-8-6) are then combined to yield
: s s =j
g1 sl - [s +o s +B - :
mK i pogad o0 o s - = . i
P ") = (-i)" 2 E:??:T E (u-1) (u+1)

=0\ 3 s_-J

5 /2 (A-8-7)
s {ay™? gy ®

Equation (A-8-7) provides a closed form for the ultraspherical
function which is particularly suitable for computation on digital
machines.

Formula (A-8-7) is a polynomial involving few terms, especially
for low degree n . It is thus particularly convenient for numerical
computations in those cases. For seismological problems one is rarely
interested in considering more than a few multipoles and (A-8-7) is
adequate. For larger degrees and orders useful recurrence relations

are given by Edmonds (1957).
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APPENDIX 9

AN ADDITION THEOREM FOR SPHERICAL WAVE FUNCTIONS

The following addition theorem for spherical waves functions is
used in Chapter IV to compute the radiation fields from a propagating
rupture. It is used also in Chapter V to determine the transformation
of multipolar expansions under translation of the coordinate system.

The proof presented here is parallel to that of Friedman and
Russek (1954), but uses also some remarks given by Miller (1964). The
results of Friedman and Russek are erroneous at least in one case, and
so are Ben-Menahem's (1962) who recast the solution in operational form.

We define a spherical wave function by

(2n+1) (n- m )!
4m (nt m )!

m
z_(kx) Y (6,) = (-1)
e z_(k) PP(cos ) oM™ (A-9-1)

Here r , © , ¢ are the usual spherical coordinates in the
original coordinate system. € , ¢ are the polar angles of the
position vector r . Zn(kr) is either the spherical Bessel function

jn(kr) or a spherical Hankel function of the first or second kind,

hil)(kr) or héz)(kr) . Thus (A-9-1) may represent a standing wave,

or an outgoing or incoming travelling wave.

Let o , B be the polar angles of the wave vector k , then we
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can write (Morse and Feshbach, 1953, p. 1466)

w g
eik:r =4m 2 2 + g (kr) Y2(9,¢) 7}?(a,8) (A-9-2)
=0 n=-%

Here ?i? is the complex conjugate of Y? , and we have

=

i (A-9-3)

Y, = (D" ¥
We shall use the following integral representation for spherical waves

(Friedman and Russek, 1954)

4mi® e e [ [ h ™ -
mi Zn(kr) CH D e n(a,B) sin o dodB (A-9-4)
o €

where the integration contour C is shown on figure A-9-1 for the
various cases involving Zn(kr) (Morse and Feshbach, 1953, p. 1467;
Friedman and Russek, 1954, p. 17). Multiplying both sides of (A-9-2)
by Yt(a,B) and integrating over o and B according to (A-9-4) we

get the following expansion



Al

IIm(a)

Y

v

|

:_p,an //
Y ///%
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21 i
f [Y]\J)(a,s) KT in o dodB =
o “C

2m
zmz z § Jﬂ’(kr)Ym(Bq))[ /Y (aB)Y(aB)sinadOLdB

=0 m=-L
(A-9-5)
If now the vector Ir is written as rl + rz , then
iker. iker
r
SEE o Lg R (A-9-6)

Equation (A-9-6) can be substituted into the integrand on the right-
hand side of (A-9-4) . Friedman and Russek (1954) prove that if

|r1| < |r | , then exp(ik- Tl) may then be replaced by use of

(A-9-2) and that the infinite summation can be interchanged with the

integral . Indeed they do so, but claim that in the case |r2] < ]rl|

one only has to interchange the scalars rl and T, in the final
result. This is clearly not the case; as we can see at this point, one

has to interchange the vectors Ii and r2

Let us assume that |rl| < |r2| . Then by substituting (A-9-6)

into (A-9-4) , using (A-9-2) to expand exp(il('rl) , and inter-

changing the order of summation and integration, we obtain
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@ oy
.0 5 .V u
4mi” z_(kr) Yﬁ_(e,cp) = 4 vgo u_;_:v ASNCRR HE

21 £ ik-r2 _
/ f e Yj:(a,s) Yvu(a,B) sin o dodp
_ o C )

(A-9-7)

1097

We can now make use of (A-9-3) and of the expansion for a product of

spherical functions (Edmonds, 1957)

1/2
— -m =i _ (20+1) (2v+1) (28+1)
Y, (@B) Y, (a,f) = R,z:p( 4m )

(A-9-8)

Here the symbols appearing on the right-hand side are the usual 3-j
symbols of Wigner, introduced in the theory of coupling of angular
momentum vectors in quantum mechanics.

Equation (A-9-8) can be substituted into (A-9-7) and the order
of summation and integratioﬁ can be interchanged since the sum 1n

(A-9-8) 1is a finite one. Then, using (A-9-4) whenever possible, we
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get

z_(kr) Y (6,9) = 2 ): Z A(n,m|v,u|L,p)

V=0 U=-v £,p

u
J (kr ) Y (61,¢1) Z (kr ) b 4 (92,¢2)

(A-9-9)

which is the addition theorem for spherical wave functions that we

sought. The coefficient A is given by

v+2 -n 1/2

A(a,m|v,u|8,p) = (-1)"[4T(20+1) (20+1) (28+1) ]

(A-9-10)

For the second 3-j coefficient not to vanish we need n+W2 to be
even (see Edmonds, 1957). In that case, we must have p = u-m , but
since |p| < % , this means |u~m[ < % . Further, from the
triangular inequality we must have (Edmonds, 1957 ; Gottfried, 1966)
|n-v| < & < oty

We can permute the first and third column in both 3-j coefficiénts
without changing their_value since ntft+v 1s even. Then using the

relation between 3-j coefficients and the Clebsch—Gordan coefficients
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(Edmonds, p. 46; Gottfried, P. 220)

J; 3, 5 §. =4 _=m
k=2 5 3gs. -1/2
(-1) {(21. + 1) (j, j,m, m_|j, —-m,)
( ml m2 m3 ) 3 1 I TR 2I 3 3
(A-9-11)
we eventually get
© oty
z () Y (0,6) = L X C(v,1,4|n,m)
V=0 p=-v £=|n-v|
- M m—{1
(A-9-12)
where
4 \ 1/2
C(V,u,L|n,m) = V- (4"(2"2)&&"11)
c AVvmpyu |[nm@EVvOO | no) (A-9-13)

The coefficient C 1is non-zero only if f#£+vin 1is even. The Clebsch-
Gordan coefficients appearing in (A-9-13) can be evaluated by standard

recursion relations. See, for example, Edmonds (1957).
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The result given by (A-9-12) and (A-9-13) is identical with
that obtained by Miller (1964) in the case of standing waves.

This result is valid for rl< T, - If the converse is true, then
rl and r2 are to be interchanged, and not only rl and r, as
stated by Friedman and Russek (1954). Their equations (19) and (21)
can hardly be correct since they do not reduce to the identity in the
case of zero translation; in fact, their right-hand sides are not
spherical wave expansions in all cases. Ben-Menahem (1962) used their
results and his theorem suffers, therefore, from the same shortcoming.
One can easily verify that (A-9-12) reduces to the identity in the
case T, = 0

One particularly interesting case is that when the translation
1'1 is along the z-axis of the initial coordinate system. Then 61

is 0 or T , and only the terms for u = 0 remain; ¢1 can be

taken to be zero. We have

o _ . [2vil v s
YU(BI,O) = 4—4,” € (A-9-14)

where € = cos 0 is 11 . Noting that ¢2 = ¢ d1n that case, we

obtain

i nrv
z_(kr) Y (8,0) = 2 ¢, (v,4|n,m)

V=0 {=|n-v |

+ 3, (kr)) Zy(k,) Y(8,,0) (A-9-15)
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where
_ NV vH-n 2941
C,(vi&[n,m) = e” 1 (2vH) § 57
« (L vm Ol nm)(& vO0O | n 0) (A-9-16)
Note that if r., = 0 , there is no tramslation, them Vv = 0 is the

1

0ni§ term present and we have £ =n , thus

z_(kr) Y.(8,¢) = €;(0,n|n,m) Z (kr) Y (8,¢) (A-9-17)

But

Cl(O,n|n,m) =(n0moO I nm) (n 000 | n0) =1

and (A-9-17) dis a proper equality. We make use of (A-9-15) in
Chapter IV and in Chapter V. This result is equivalent to the one
obtained by Sato (1950), who used a different approach, since the

terms in the sum over £ in (A-9-15) wvanish if 2 < m
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APPENDIX 10

3-j SYMBOLS USED IN CHAPTER IV

Vector coupling coefficients, or 3-j symbols are used in
Appendix 9 in the addition theorem for spherical wave functions. This
theorem is used in Chapter IV to solve the problem of a propagating
spherical rupture. The table given below provides closed forms for all
the 3~j symbols to be used in Chapter IV. This table is derived from
the closed forms tabulated by Edmonds (1957).

a) v=48-2

22—22)(\&2\)2)
0 0 o0 0 0 0

6(2v)!
(2v+5) !

(-1)V(v+2) (V1)

2(-1) VP (vinr2) (v#3)

(2v) !
(2v+5) !

A
= e
o ¥
[X]
]
=N
~——
Ul
ﬁ\
w ¥
[\
o <
|
S
—
[}

-1)Y A (vHD) (v2) (v+3) (v+4)

e
N =
o T
N
1
NN
N —
il
o~
o ¥
N
(=T
|
NN
S—
1}

) (2v)!
(2v+5) !
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v 2
0 o0
v 2
0 =l
v o2
0 -2

I

S
]

S
I

2¢-1)"" y(v+1)

(-1)” 4fv(v+1)

-1V \ (D V(D) (v2)

N
I

(2v=-2)!

(2v+3) !

‘6(2v—2!!

(2vi3)!

6(2v-2)!
(2vt3)!

g

v 6(2v-4)!
1Y vv-1) ‘/(42—,5%

2-1)V v

(v-1) (v-2)

(2v-4)!
(2vtl)!

= 1" VO3 (V2 (VD

. ‘/(2v-42:
(2vF1) !
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APPENDIX 11

BOUNDARY CONDITIONS FOR AN ELASTIC ELLIPSOIDAL INCLUSION

The boundary conditions prevailing on the boundary of an elastic
ellipsoidal inclusion embedded in an infinite elastic matrix are
described in Chapter VI. The system (VI-1-31) expresses the continuity
of thertractions and displacements at the boundary of the inclusion.

We shall give in this Appendix the completely developed forms
of these equations in ellipsoidal coordinates. The notation used
here is the same as in Chapter VI. However, for simplicity, the
definition of some coefficients has been changed slightly. For
consistency with the results of Chapter VI, the following operations
must be performed on the coefficients used below :

2

B, must be mutiplied by 1 / km

Ay, A; . A ,B,, By, B,

2
A 5 & A, , Bg , B, 5 B, must be multiplied by -k' / km

6’ 7 5

2
A, A B B , B must be multiplied by kk' / im

A
8 G 52736 Y Y8 10 .
Other coefficients must be multiplied by 1 / m
The constants VvV and | are the Poisson ratio and the

rigidity of the matrix respectively, and the constants v' and '

are those of the inclusion.
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The equation expressing the continuity of the stress component

across the boundary o = ao may be developed as :

2 2 2
vt Ly [- 2" My 2Emy
-8, X |46+ [4, s ity B
2 v My 22Ny | z[ 2¢Oy
wby [ Goi - by S0y ¢ B [y 52
bzo ? 2 P,( )"P
- 8“’ de ] CF dF ‘J' d}' & J [ﬂls )‘1 - 8’5 bi."]
« Yaudry



~474~

+>‘? bﬁ.zﬂ [g )R,f_ﬂ,_zg ]/'ﬁ 2D

-3, Wd],f d. 4 Ll ot [;? Iy, - 2h2e, ‘(][ u
-5 3]y LA Zi" - ﬁf‘“dd][""a =

. B, 3‘*],1’:{, [%, ﬁxr_ r2R d][ﬁs 2
-6 2dd cd,c,,atﬁ[e bf o, v2R 4, ][A, 23

. %&
8 2ol e c*+[d_§5¢‘(+zz d][,,? By

_6. 3¢ f';C*‘z'f-[R‘;Tf‘(d s LR? J‘“{][ﬂ' 2Dy

7 3 32
-6, Mo [dedty [R e d 2R R e ][4, 2
-8y 2], ad v [K, 2Rnd 2R 0 e ][ 4, 2Cx

B, 2] ed o dy v £, %?[A” :ﬁ-e RN

[0, %0 b+

¥ N, n )f 20
'l_’lg U—jgbd]hﬁdf ‘[ﬂ"’.ﬁ_‘f

?o "Df.{
-84 4 Fq’ﬂ r Ay + [ﬂ” 4 j‘ﬂcﬂ{rca'



~475-

2
+€zf_&3£“_‘4 Bal],dc _ A 2Ry
K Re OF
2 Py o8
S ORT PR T *‘»z[ G
2 2 g ok, 7 _
B, e [atd, apdy + B = ¢ [45s 2,854, ]
rd
24, _ Ka e o [as.8.4,]cd
‘Apcpca- y = e .([4.( 6§ g% rcs
Re DOP
f; )E"‘C[ﬂ ]Ad c +£_&b£
0 s e o 3
R, 0p < Of
R »F _
4[4 Dz'ea“[d]”ﬂ‘a‘[p 4 - Ef' ;f dx[”?‘fz 6,4/

2
. < d y c{k +_L Dﬁi [ﬁw -8, c‘(].&ﬂd’ ‘r‘{r
d

Ry 2F
Ry Dh [a,L, - 8,, f.] ek € . Lo 2

-ﬁ-: ( p &~ Ay 2 ¢
[ l 2 2 f: a{d
Lﬂ;z My =9y, ’"d][‘(g"lp + & o ‘p]"t"{r s Lk:' —b-,-a-
z
2R
A N O Ry aa‘ [ﬂ’*o ]

2

.[/&3 cl;+£z,sp cﬁz]r.&dr _%s 2Ahu [ﬂ,b_ ™ 315 p.(]
Ry P8
'[c:dﬁ _4:4‘5]4

&
+€z.§_*_ —D—f;f".c[”zpd ]Ad«s
&



~476~

¢ d 4. ¢°

-84, ] <

= 2
8, 4.,] 4,

, EY R £e
£y

4
__,af

4," iy

A*Ckﬂ’a’ +

Ry
aA’d ¢ [2 D
%o C [a0,

p ¥k

bfx c

2
cac ctd, 4 R
R A Ny

A

R«
i |4, S, -
-Bw%]

s d _é'_”ﬁd
SR ﬁ.cab'

X

F a7 e

- K54 Cr]

Jey bﬁd [A
-ﬁi 14
£ e
o D&

+2£

x84 °~4}['4
[ #s

e

P

v
b’"‘l

[.
+ < ﬁz [ __P’gj

- B 4‘}4(.{ c 0[}_4._____

Cd.rd"'_zf.rbﬁ't
2

[#, M, -

Df,d [ﬂls /V

r
P,( -BIS P‘] ﬁ* d

* o [#, 5 - 64, ]
vf[ﬁ'zc

2 £3° »F "
A2 ALY dd[ﬂgﬁd+39dd]dp 4y cyd

6, C"]Cﬁ 159

fa- Dfd

Y = e

R, >7

pLY d
57 Ll

Z.ﬂn L.{ - Bu {;(]
md] Ay g [‘rd;
~,, nd]nﬂ Apcpd,

]ca(

Ry
ﬂd

+£"'



+ 2FP%

£ dd[”ﬁq

, i}
_ZA’_, .Jddd[vﬁs

2
'Z-EJ ’f.t ‘{.( [P ﬁé

) |
2R a,d, [vh,

_2R* :€

C‘Ll)ﬂ

¢ p? r
2k fd”g‘xl_”qv

2.pd
-22 ﬁd d‘zc‘([y_ﬂm

Ea—f"f " ;:.{ Ay Sy Sy ¥
%%.‘f-k"ﬁs z_%‘ C’dpc'.vd&’
%éi -»'8 %ﬁ 46 rir
D.S_S_‘L‘..V"B_’ %ELL czc.r?'
2;%5. - P8, M‘«] dtd,*
%_é-_f_ -»'8, 2:* 4,d, 4 y 4y
b)i« -v'8, 2% cd 6 d,

+ 283 ° 4
8 .x[”ﬂl D, "Plez dx]'dpcﬂzdﬁ Ardl’

2 R7
s Au /.uﬂj Id -

-

. _
+pr A, [Pﬂ,‘ ¢ -»'8, ‘x]"p

L
_Zng‘g ‘x[Pﬁs D,

'8, 4, ]

-»" b ‘{x]

224" 2
pdﬁ"*

A

‘5 %% Ay

2
+2 R c [ v, S, -p
. -p B, 4 .
d 6 é d] dgCpdy 4y <y
Y A .
e [v b ¢ -»6, c] ,;’za(’ac_;'



-478—

SRR, [ v, b -v'B d, | a2 d)]
+Zfzfpzdd [p Ay Sy - »' 8y A“] A, c:dﬁ A, o,
_Zgzg; 4, [Vﬁm & -vt8, ‘a:] /"/91 L
t 8k s, [ v A D v 6 d )4 d s, c7d,
Sk ’erz”d [»8, 5, - P'B_a.”ac] gt <y o)’

+2 ﬁ;/j‘ [yﬁ,‘; ¢, -»'6, ¢M] 4y Cq Ay Ca—da—z
- 2R* RS [va D, -8 d ] d, 4t d,
+ Zfrz ¢e 'l v A3, =B 4y) R Aa,c*d;
_zf‘f e, [v H7 C“ —p'6’7 ‘x} CpZA&zer
_qu?erza(dfyﬁ,Dd - y'6y d.z] dﬂz/s;' c;'

2pt o y
+ 2R°R dy [vARS, -8y 4, dyd, 4y cfdy

2 5% 4
~ S8 fydd[-vﬂ:a Cx-y B‘OC.{J CP dp 4; ‘rda'



= - Tx(:t) £'miR, crd)’ 4y
- y(;) ?f’i Rl €
+ a(:) %Z ‘: A4 C‘L dﬁa ‘{rl
& &'I.’z ‘{{:’ ﬁ:«.{jcxa" % dﬁ e, ol
¥ Ta(f : ZZ,ML ‘f: 4,004, “a % 4pdy

(A-11-1)

Equation (A-11-1) must be satisfied identically in B and Y

on the surface of the ellipsoid a = ao . We must therefore find

all the independent functions of these variables appearing in this

equation. This is done in Appendix 12.

Similarly the continuity of the component of traction TaB

on the surface of the inclusion is expressed by the following

equation :
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The remarks made earlier abouf equation (A-11-1) apply here as
well. Note that equation (A-11-2) was divided through by the factor
Rdgp/%;‘ The equation expressing the continuity of TaY is simply
obtained from (A-11-2) by interchanging 8 énd Y everywhere.

HE turn now to the eéuation expressing the cohtinuity of the
normal component of displacement . s We shall denote by A the
trace of the prestress, that is

(2) (o)

(e .
A = Z'xx + r" ofi Tia)- - (A-11-3)
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The developed equation reads :
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This equation was divided through by ha Finally we express

the continuity of the component uB of the displacement field by

the equation :
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This equation was divided through by the factor —hOl [/ 2u
The corresponding equation for the component u, o the displacement
field is simply ébtained by interchanging B and y in (A-11-5).
The reduction of the equations given in this Appendix is done by
applying the formulae of Appendix 12, and by following the algorithm

given at the end of it.
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APPENDIX 12

SOLUTION FOR THE STATIC ELLIPSOIDAL INCLUSION

The boundary conditions expressed in Appendix 11 are to be
satisfied identically in B and Y on the inclusion boundary o = o, -
This appendix contains the necessary formulae to reduce these equations.
General formulae are given which include 1) identities between the
Jacobi elliptic functions; 2) first and secogd derivatives of the Lamé
functions of the first and second kind, of the metric coefficients, and
of the Lamé products; 3) useful identities to reduce some of the
expressions encountered in reducing the equations; 4) a list of the

independent functions of B and Yy found in each one of the four

equations of Appendix 11; and 5) a flow chart of the reduction algorithm.

i) General identities between Jacobi elliptic functions

These identities can be found in the literature (e.g., Whittaker

and Watson, 1927), Arscott (1964), Erdelyi (1953).
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b) Lamé functions of the second kind

The first derivatives are obtained in terms of the wronskian
between Lamé functions of the first and second kind. The second
derivatives are obtained directly by writing Lamé's equationm.

We define the wronskian by
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¢) Functions of the metric coefficients

We have the following definitioms.
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Then we have to compute the following expressions
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These equations are purposely left unsimplified because these are the

most convenient forms when reducing the boundary condition equatiomns.

d) Lamé products, and ellipsoidal surface harmonics.

We define the following ellipsoidél surface harmonics and their

derivatives
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Clearly, some of the expressions given above could be simplified
and rewritten in a more elegant form. One must remember, however,
that there is little point in doing this until one knows which inde-
pendent functions of B and Y one wishes to appear. The equations
listed above are particularly useful to determine the various symmetries

of the displacements and stresses of the problem (see Chapter VI).

iii) Identities used in reducing the equations.

The identities given below were proven as they were needed in the
process of reducing the boundary condition equations of Appendix 11.
Their specific purpose is the following : the left-hand side is in all
cases a particular quantity encountered during the reduction process,

and the right-hand side is written in such a way so as to make specific
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functions of B and Yy appear explicitly. These functions must be
some of the independent functions of B and Yy described later in the

Appendix.

4 2
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y [qyafdy - ¢/ ard,| #(p)
[ 909 9v (4 R%2) + A, (ay-90)] £1.%)

We shall drop the arbitrary function £(B,Y) for the remaining identities.
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iv) Reduction of the boundary condition equations.

We now turn to the problem of solving the equations of Appendix 11.
These equations must be satisfied identically in B and Yy for
a = ao . We list below all the terms appearing in these equatioms,
and give their expressions in terms of independent functions of §
and Y . Each one of these independent functions gives rise to a
separate equation since its coefficient must be equal to the coefficient
of the same function on the right-hand side of the boundary condition
equation. The circled numbers indicate the number of the equation

generated by each particular term.
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a) Continuity of Tau.

There are 1L independent functions of B and 7y in (A-11-1) ,
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All the other terms in (A-11-1) can be expressed as linear combinations

involving these 12 independent functional forms. We have

® ®
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We shall not indicate the equation numbers any longer.
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- Since the same functions of B and 7Yy appear on the right-hand side of

(A-11-1), this equation is thus equivalent to a system of 12 equations

in which § and Yy do not appear any more, and where o = ao
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b) Continuity of TGB and TGY'
There are 11 independent functions of B and vy which appear in

(A-11-2), and they are
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3
25
AP cp dp O

The decomposition of any term figuring in (A-11-2) in terms of
these 11 functions 1s elementary in that case énd can be omitted.
Recall that the equation expressing the continuity of TGY is simply
obtained from (A-11-2) by interchanging B and 7Y . The independent
functions of B and 7y figuring in that equation are thus obtained
by interchanging B and 7Y in the above expressions. However, since
the o dependence of the equations is the same in both cases, and since
B and 7Yy .are not present in the final system, one can verify that
the systems for T and TGY are identical, and therefore redundant.

oB

€) Continuity of u

There are & independent functions of B and Y in (A-11-4),

which are given below.

45 "{,;-, Ay o, @

AP cp Aa,Cr @
d,
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e’ &2
1 @)
did’ is expreised i‘n Terms of 29-30-3)

Since no other term appears in (A-11-4), no further discussion is

necessary.

d) Continuity of uB and uY .

These two components of displacement yield identical systems,

just as the corresponding ;ractions do. There are 8 independent

functions of B and vy in (A-11-5), which are found to be

J;c‘e A, d, 3d
A d; 4, d& €D)
A‘: ‘{a Ay ¢ @
c;a{‘, Ay ey (9
4 <y di
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In that case again, no further discussion is required.

v) Reduction of the system (1) through (39)

We are now in the presence of a system of 39 linear equations in

the 29 unknowns A (B, does not appear in the

1""’A15'32""’315 1
equations of Appendix 11.) We shall now describe the algorithm which
leads to a reduction of this system.

First of all, the system of equations naturally separates itself

into four systems which are

System A: Equations 1,7,13,14,21,26,32,33
Unknowns Az,Ag,Alz,Bz,Bg,Bl2
Data T(o)
xz
System B: Equations 2,9,15,16,22,27,34,35
Unknowns A&’A6’A15’BA’B6’B15 i

(@)
Xy

Data
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System C: Equations 3,10,17,18,23,28,36,37
Unknowns AS,AlO’Alq,BS,BIO’Bl‘Q L
Data T(o)
Yz
System D: Equations 4,5,6,8,11,12,19,20,24,25,29,30,31,38,39 .
R A1r83s8704g58115415:85:87.84:81158 5
Data T(c-) (@ (o)
xx ' yy °?zz

For e#ample, the first subsystem—-System A--is reduced by the following

operations:

a) By addition and subtraction of (32) and (33), we get (32-1) and
(33-1) which are simpler

b) (26) may be simplified by substituting (7) into it. This yields
(26-1)

c) Subtract (14) from (13) to get (13-1)

d) Subtract (1) from (14) to get (14-1)

e) Subtract (14) from (21) to get (21-1)

At this point it should be easy to see that

f) (7) and (14-1) can be combined to yield (13-1)

g) (7) and (21-1) can be combined to yield (13-1)

h) (33-1) and (26—15 can be combined to yield (32-1)

Three of the eight equations are thus redundant. We are left with five

equations for six unknowns. However, with a little effort it can be

seen that the elementary internal displacement solution with coefficient

B12 can be expressed as a linear combination of those with coefficients
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B2 and B9 . We can thus choose B12 =0 . The 5 X 5 system
obtained in this fashion can then be rewritten in a more elegant fashion
and is given in Chapter VI. Systems B and C are reduced in exactly
the same fashion. The algebra is more difficult for System D,_but
proceeds from the same principles.

The final results are given in Chapter VI; they are in the form of

three 5 X 5 systems and one 9 X 9 system.
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APPENDIX 13

CALCULATION OF WRONSKIANS OF LAME FUNCTIONS

Let A(z) be a Lamé function of the first kind. Then as pointed
out in Chapter VI, one can associate to A(z) a Lamé function of the

second kind by the integral relation

z
Az = € A(2) j 2‘1“ (A-13-1)
e Mo

The normalization factor C may be chosen so that A(z) = A(z) for a

particular value z =« . Then we have

o d -1
' 2—“ (A-13-2)
ik! A (Z)

and also

c = Wi(a) = A"(a) A(a) - Afa) A'(a) (A-13-3)

The wronskians appearing in equations (VI-1-32) through (VI-1-35)

can be computed by (A-13-2) , in which we set o = o

We denote the incomplete elliptic integral of the second kind by

z 2 )
Elz) = f dn” . i (A-13-4)

o
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We define

= - Vo=
a =oa ik Rean)

Here o 1is the first of the ellipsoidal coordinates defined in section
VI-1.

The calculation of the wronskians does not present any major
difficulty. We shall use integrals given by Gradshteyn and Ryshik
(1965, p. 630), and by Whittaker and Watson (1927, p. 516). Then,

adopting the notation of section VI-I,

1 _ : -13~
L_a (A-13-5)
(o7
L a4 -E@) (A-13-6)
W o o
s :
dn O
é_ &g - % E(a) +— 2 (A-13-7)
c °© ke ° k'" sn o, en o

cn O

%_ = Lz Bta y = 5 g (A-13-8)
d k' = k'" sn o dn a
o o
1 k? 1
Wﬁ d s
1 1 K2
ks 5 " (A-13-10)
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wk o1
~+d | (A-13-11)

1
W
P s c

1 | -1

WR, 2 sno_cno dnu.(snza-P)
o o o o1

2
(32,-1) AT " 5 % k4(3pl-1) "
2, k' A 1% e k! i

1

where P, =
1 2 1kl

Wn can be obtained by changing P1 in (A-13-12) to

iy e )
1+k~ +Y1-k'k'
Equations (A-13-5) through (A-13-8) yield results which are identical
with those of Sadowsky and Sternberg (1949). However, (A-13-12)
cannot be reconciled with the Lame function of the second kind given by
these authors. Although (A-13-12) may be rewritten in a form similar

to that given by Sadowsky and Sternberg, we have been unable to achieve

complete agreement, in spite of repeated efforts to do so.



