31 research outputs found

    Preface

    Get PDF

    Correspondence between electronic structure calculations and simulations: nonadiabatic dynamics in CS2

    Get PDF
    The choice of ab initio electronic structure method is an important factor in determining the fidelity of nonadiabatic dynamics simulations. We present an in-depth comparison of two simulations of photodissociation in the CS2 molecule following excitation to the 1 1^B_2 state. The simulations account for nonadiabatic and spin-orbit coupling, and are performed using the SHARC surface-hopping approach combined with state-averaged SA8-CASSCF(8,6)/SVP and SA8-CASSCF(10,8)/SVP {\it{ab initio}} calculations, with additional reference calculations at the MRCI(14,10)/aug-cc-pvTZ level. The relative performance and veracity of the simulations can be assessed by inspection of the potential energy curves along specific coordinates. The simulations demonstrate direct competition between internal conversion and intersystem crossing, with strong correlation between molecular geometry, electronic state density, and dynamics

    Probing the structure and dynamics of molecular clusters using rotational wavepackets

    Full text link
    The chemical and physical properties of molecular clusters can heavily depend on their size, which makes them very attractive for the design of new materials with tailored properties. Deriving the structure and dynamics of clusters is therefore of major interest in science. Weakly bound clusters can be studied using conventional spectroscopic techniques, but the number of lines observed is often too small for a comprehensive structural analysis. Impulsive alignment generates rotational wavepackets, which provides simultaneous information on structure and dynamics, as has been demonstrated successfully for isolated molecules. Here, we apply this technique for the firsttime to clusters comprising of a molecule and a single helium atom. By forcing the population of high rotational levels in intense laser fields we demonstrate the generation of rich rotational line spectra for this system, establishing the highly delocalised structure and the coherence of rotational wavepacket propagation. Our findings enable studies of clusters of different sizes and complexity as well as incipient superfluidity effects using wavepacket methods.Comment: 5 pages, 6 figure

    Mapping the Complete Reaction Path of a Complex Photochemical Reaction

    Get PDF
    We probe the dynamics of dissociating CS2 molecules across the entire reaction pathway upon excitation. Photoelectron spectroscopy measurements using laboratory-generated femtosecond extreme ultraviolet pulses monitor the competing dissociation, internal conversion, and intersystem crossing dynamics. Dissociation occurs either in the initially excited singlet manifold or, via intersystem crossing, in the triplet manifold. Both product channels are monitored and show that despite being more rapid, the singlet dissociation is the minor product and that triplet state products dominate the final yield. We explain this by consideration of accurate potential energy curves for both the singlet and triplet states. We propose that rapid internal conversion stabilises the singlet population dynamically, allowing for singlet-triplet relaxation via intersystem crossing and efficient formation of spin-forbidden dissociation products on longer timescales. The study demonstrates the importance of measuring the full reaction pathway for defining accurate reaction mechanisms

    The role of the intermediate state in angle-resolved photoelectron studies using (2 + 1) resonance-enhanced multiphoton ionization of the chiral terpenes, α-pinene and 3-carene

    Get PDF
    Photoelectron angular distributions (PADs), ranging up to the maximum 6th order Legendre polynomial term set by the Yang theorem, have been recorded for the (2 + 1) resonance enhanced multiphoton ionization (REMPI) of two terpene isomers, 3-carene and α-pinene, employing femtosecond lasers and electron velocity map imaging detection. PAD measurements made with coincident photoion detection allow ion fragmentation effects to be assessed. Using circular polarization and enantiomerically pure samples the PAD measurements are extended to include chiral (odd) Legendre polynomial terms, and these are analysed and discussed as multiphoton photoelectron circular dichroism (MP-PECD). Comparisons are also made with single photon (synchrotron radiation) PECD of these compounds. Although for a given compound a common final cation state is reached, pronounced differences are observed between PECD and MP-PECD, and between the alternative identified REMPI intermediate states in the case of MP-PECD

    Effect of probe energy and competing pathways on time-resolved photoelectron spectroscopy signals: ring-opening reaction of 1,3-cyclohexadiene

    Get PDF
    The ring-opening dynamics of 1,3-cyclohexadiene (CHD) following UV excitation is studied using a model based on quantum molecular dynamics simulations with the ab-initio multiconfigurational Ehrenfest (AI-MCE) method coupled to the Dyson orbital approach for photoionisation cross sections. Time-dependent photoelectron spectra are calculated for probe photon energies in the range 2-15 eV. The calculations demonstrate the value of universal high-energy probes, capableof tracking the full photochemical dynamics of the molecule, as well as the benefit of more selective, lower-energy probes. The predicted signal, especially with the universal probes, becomes highly convoluted due to the contributions from multiple reaction paths, rendering interpretationdifficult unless complementary measurements and theoretical comparisons are available

    Direct momentum imaging of charge transfer following site-selective ionization

    Get PDF
    We study ultrafast charge rearrangement in dissociating 2-iodopropane (2−C3H7I) using site-selective core ionization at the iodine atom. Clear signatures of electron transfer between the neutral propyl fragment and multiply charged iodine ions are observed in the recorded delay-dependent ion momentum distributions. The detected charge-transfer pathway is only favorable within a small (few angstroms), charge-state-dependent spatial window located at C-I distances longer than that of the neutral ground-state molecule. These results offer insights into the physics underpinning charge transfer in isolated molecules and pave the way for a different class of time-resolved studies

    Ab-Initio Surface Hopping and Multiphoton Ionisation Study of the Photodissociation Dynamics of CS2

    Get PDF
    New ab initio surface hopping simulations of the excited state dynamics of CS2 including spin-orbit coupling are compared to new experimental measurements using a multiphoton ionisation probe in a photoelectron spectroscopy experiment. The calculations highlight the importance of the triplet states even in the very early time dynamics of the dissociation process and allow us to unravel the signatures in the experimental spectrum, linking the observed changes to both electronic and nuclear degrees of freedom within the molecule
    corecore