16 research outputs found

    Prediction of nitrogen excretion from data on dairy cows fed a wide range of diets compiled in an intercontinental database: A meta-analysis

    Get PDF
    Manure nitrogen (N) from cattle contributes to nitrous oxide and ammonia emissions and nitrate leaching. Measurement of manure N outputs on dairy farms is laborious, expensive, and impractical at large scales; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were (1) to collate an international database of N excretion in feces and urine based on individual lactating dairy cow data from different continents; (2) to determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and (3) to develop robust and reliable N excretion prediction models based on individual data from lactating dairy cows consuming various diets. A raw data set was created based on 5,483 individual cow observations, with 5,420 fecal N excretion and 3,621 urine N excretion measurements collected from 162 in vivo experiments conducted by 22 research institutes mostly located in Europe (n = 14) and North America (n = 5). A sequential approach was taken in developing models with increasing complexity by incrementally adding variables that had a significant individual effect on fecal, urinary, or total 2manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models including experiment as a random effect. Simple models requiring dry matter intake (DMI) or N intake performed better for predicting fecal N excretion than simple models using diet nutrient composition or milk performance parameters. Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI, but simple models using milk urea N (MUN) and N intake performed even better for urinary N excretion. The full model predicting fecal N excretion had similar performance to simple models based on DMI but included several independent variables (DMI, diet crude protein content, diet neutral detergent fiber content, milk protein), depending on the location, and had root mean square prediction errors as a fraction of the observed mean values of 19.1% for intercontinental, 19.8% for European, and 17.7% for North American data sets. Complex total manure N excretion models based on N intake and MUN led to prediction errors of about 13.0% to 14.0%, which were comparable to models based on N intake alone. Intercepts and slopes of variables in optimal prediction equations developed on intercontinental, European, and North American bases differed from each other, and therefore region-specific models are preferred to predict N excretion. In conclusion, region-specific models that include information on DMI or N intake and MUN are required for good prediction of fecal, urinary, and total manure N excretion. In absence of intake data, region-specific complex equations using easily and routinely measured variables to predict fecal, urinary, or total manure N excretion may be used, but these equations have lower performance than equations based on intake

    NOTUM from Apc-mutant cells biases clonal competition to initiate cancer

    Get PDF
    The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer

    Editor's Choice - Nationwide Analysis of Patients Undergoing Iliac Artery Aneurysm Repair in the Netherlands

    No full text
    OBJECTIVE: The new 2019 guideline of the European Society for Vascular Surgery (ESVS) recommends consideration for elective iliac artery aneurysm (eIAA) repair when the iliac diameter exceeds 3.5 cm, as opposed to 3.0 cm previously. The current study assessed diameters at time of eIAA repair and ruptured IAA (rIAA) repair and compared clinical outcomes after open surgical repair (OSR) and endovascular aneurysm repair (EVAR). METHODS: This retrospective observational study used the nationwide Dutch Surgical Aneurysm Audit (DSAA) registry that includes all patients who undergo aorto-iliac aneurysm repair in the Netherlands. All patients who underwent primary IAA repair between 1 January 2014 and 1 January 2018 were included. Diameters at time of eIAA and rIAA repair were compared in a descriptive fashion. The anatomical location of the IAA was not registered in the registry. Patient characteristics and outcomes of OSR and EVAR were compared with appropriate statistical tests. RESULTS: The DSAA registry comprised 974 patients who underwent IAA repair. A total of 851 patients were included after exclusion of patients undergoing revision surgery and patients with missing essential variables. eIAA repair was carried out in 713 patients, rIAA repair in 102, and symptomatic IAA repair in 36. OSR was performed in 205, EVAR in 618, and hybrid repairs and conversions in 28. The median maximum IAA diameter at the time of eIAA and rIAA repair was 43 (IQR 38-50) mm and 68 (IQR 58-85) mm, respectively. Mortality was 1.3% (95% CI 0.7-2.4) after eIAA repair and 25.5% (95% CI 18.0-34.7) after rIAA repair. Mortality was not significantly different between the OSR and EVAR subgroups. Elective OSR was associated with significantly more complications than EVAR (intra-operative: 9.8% vs. 3.6%, post-operative: 34.0% vs. 13.8%, respectively). CONCLUSION: In the Netherlands, most eIAA repairs are performed at diameters larger than recommended by the ESVS guideline. These findings appear to support the recent increase in the threshold diameter for eIAA repair

    Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range

    Get PDF
    Ruminant livestock are important sources of human food and global greenhouse gas emissions. Feed degradation and methane formation by ruminants rely on metabolic interactions between rumen microbes and affect ruminant productivity. Rumen and camelid foregut microbial community composition was determined in 742 samples from 32 animal species and 35 countries, to estimate if this was influenced by diet, host species, or geography. Similar bacteria and archaea dominated in nearly all samples, while protozoal communities were more variable. The dominant bacteria are poorly characterised, but the methanogenic archaea are better known and highly conserved across the world. This universality and limited diversity could make it possible to mitigate methane emissions by developing strategies that target the few dominant methanogens. Differences in microbial community compositions were predominantly attributable to diet, with the host being less influential. There were few strong co-occurrence patterns between microbes, suggesting that major metabolic interactions are non-selective rather than specific.ISSN:2045-232
    corecore