101 research outputs found

    Urban Anomaly Analytics: Description, Detection, and Prediction

    Get PDF
    Urban anomalies may result in loss of life or property if not handled properly. Automatically alerting anomalies in their early stage or even predicting anomalies before happening is of great value for populations. Recently, data-driven urban anomaly analysis frameworks have been forming, which utilize urban big data and machine learning algorithms to detect and predict urban anomalies automatically. In this survey, we make a comprehensive review of the state-of-the-art research on urban anomaly analytics. We first give an overview of four main types of urban anomalies, traffic anomaly, unexpected crowds, environment anomaly, and individual anomaly. Next, we summarize various types of urban datasets obtained from diverse devices, i.e., trajectory, trip records, CDRs, urban sensors, event records, environment data, social media and surveillance cameras. Subsequently, a comprehensive survey of issues on detecting and predicting techniques for urban anomalies is presented. Finally, research challenges and open problems as discussed.Peer reviewe

    Effects of fractional mass transfer and chemical reaction on MHD flow in a heterogeneous porous medium

    Get PDF
    This paper presents a study on space fractional anomalous convective-diffusion and chemical reaction in the magneto-hydrodynamic fluid over an unsteady stretching sheet. The fractional diffusion model is derived from decoupled continuous time random walks in a heterogeneous porous medium. A novel transformation which features time finite difference is introduced to reduce the governing equations into ordinary differential ones in each time level. Numerical solutions are established by an implicit finite difference scheme. The stability and convergence of the method are analyzed. Results show that increasing fractional derivative parameter enhances concentration near the surface while an opposite phenomenon occurs far away from the wall. There is a reduction of mass transfer rate on the sheet with an increase in the fractional derivative parameter. Moreover, the numerical solutions are compared with exact solutions and good agreement has been observed.</p

    Numerical Investigation of a Two-Phase Nanofluid Model for Boundary Layer Flow Past a Variable Thickness Sheet

    Get PDF
    Abstract This paper investigates heat and mass transfer of nanofluid over a stretching sheet with variable thickness. The techniques of similarity transformation and homotopy analysis method are used to find solutions. Velocity, temperature, and concentration fields are examined with the variations of governing parameters. Local Nusselt number and Sherwood number are compared for different values of variable thickness parameter. The results show that there exists a critical value of thickness parameter β c (β c ≈0.7) where the Sherwood number achieves its maximum at the critical value β c . For β&gt;β c , the distribution of nanoparticle volume fraction decreases near the surface but exhibits an opposite trend far from the surface.</jats:p

    Adaptive Spatio-Temporal Convolutional Network for Traffic Prediction

    Get PDF
    Traffic prediction is a crucial task in many real-world applications. The task is challenging due to the implicit and dynamic spatio-temporal dependencies among traffic data. On the one hand, the spatial dependencies among traffic flows are latent and fluctuate with environmental conditions. On the other hand, the temporal dependencies among traffic flows also vary significantly over time and locations. In this paper, we propose Adaptive Spatio-Temporal Convolutional Network (ASTCN) to tackle these challenges. First, we propose a spatial graph learning module that learns the dynamic spatial relations among traffic data based on multiple influential factors. Furthermore, we design an adaptive temporal convolution module that captures complex temporal traffic dependencies with environment-aware dynamic filters. We conduct extensive experiments on three real-world traffic datasets. The results demonstrate that the proposed ASTCN consistently outperforms state-of-the-arts.Peer reviewe

    Anomalous diffusion in rotating Casson fluid through a porous medium

    Get PDF
    This paper investigates the space-fractional anomalous diffusion in unsteady Casson fluid through a porous medium, based on an uncoupled continuous time random walk. The influences of binary chemical reaction and activation energy between two horizontal rotating parallel plates are taken into account. The governing equations of motion are reduced to a set of nonlinear differential equations by time derivatives discretization and generalized transformation, which are solved by bvp4c and implicit finite difference method (IFDM). Stability and convergence of IFDM are proved and some numerical comparisons to the previous study are presented with excellent agreement. The effects of involved physical parameters such as fractional derivative parameter, rotation parameter and time parameter are presented and analyzed through graphs. Results indicate that the increase of fractional derivative parameter triggers concentration increase near the lower plate, while it causes a reduction near the upper plate. It is worth mentioning that the decrease of heat transfer rate on the plate is observed with the higher time parameter.</p

    The Impact of Covid-19 on Smartphone Usage

    Get PDF
    The outbreak of Covid-19 changed the world as well as human behavior. In this article, we study the impact of Covid-19 on smartphone usage. We gather smartphone usage records from a global data collection platform called Carat, including the usage of mobile users in North America from November 2019 to April 2020. We then conduct the first study on the differences in smartphone usage across the outbreak of Covid-19. We discover that Covid-19 leads to a decrease in users' smartphone engagement and network switches, but an increase in WiFi usage. Also, its outbreak causes new typical diurnal patterns of both memory usage and WiFi usage. Additionally, we investigate the correlations between smartphone usage and daily confirmed cases of Covid-19. The results reveal that memory usage, WiFi usage, and network switches of smartphones have significant correlations, whose absolute values of Pearson coefficients are greater than 0.8. Moreover, smartphone usage behavior has the strongest correlation with the Covid-19 cases occurring after it, which exhibits the potential of inferring outbreak status. By conducting extensive experiments, we demonstrate that for the inference of outbreak stages, both Macro-F1 and Micro-F1 can achieve over 0.8. Our findings explore the values of smartphone usage data for fighting against the epidemic.Peer reviewe

    Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations

    Get PDF
    Buses and metros are two main public transit modes, and these modes are crucial components of sustainable transportation systems. Promoting reciprocal integration between bus and metro systems requires a deep understanding of the effects of multiple factors on transfers among integrated public transportation transfer modes, i.e., metro-to-bus and bus-to-metro. This study aims to reveal the determinants of the transfer ratio between bus and metro systems and quantify the associated impacts. The transfer ratio between buses and metros is identified based on large-scale transaction data from automated fare collection systems. Meanwhile, various influencing factors, including weather, socioeconomic, the intensity of business activities, and built environment factors, are obtained from multivariate sources. A multivariate regression model is used to investigate the associations between the transfer ratio and multiple factors. The results show that the transfer ratio of the two modes significantly increases under high temperature, strong wind, rainfall, and low visibility. The morning peak hours attract a transfer ratio of up to 57.95%, and the average hourly transfer volume is 0.94 to 1.38 times higher at this time than in other periods. The intensity of business activities has the most significant impact on the transfer ratio, which is approximately 1.5 to 15 times that of the other independent variables. Moreover, an adaptative geographically weighted regression is utilized to investigate the spatial divergences of the influences of critical factors on the transfer ratio. The results indicate that the impact of a factor presents spatial heterogeneity and even shows opposite effects (in terms of positive and negative) on the transfer ratio in different urban contexts. For example, among the related socioeconomic variables, the impact of the housing price on the downtown transfer ratio is larger than that in the suburbs. Crowd density positively influences the transfer ratio at most stations in the northern region, whereas it shows negative results in the southern region. These findings provide valuable insights for public transportation management and promote the effective integration of bus and metro systems to provide enhanced transfer services
    • …
    corecore