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Abstract

This paper investigates heat and mass transfer of nanofluid over a stretching

sheet with variable thickness. The techniques of similarity transformation and

homotopy analysis method (HAM) are used to find solutions. Velocity, tem-

perature and concentration fields are examined with the variations of governing

parameters. Local Nusselt number and Sherwood number are compared for d-

ifferent values of variable thickness parameter. Results show that there exists a

critical value of thickness parameter βc (βc ≈ 0.7) where the Sherwood number

achieves its maximum at the critical value βc. For β > βc, the distribution of

nanoparticle volume fraction decreases near the surface but exhibits an opposite

trend far from the surface.
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1. Introduction

Nanofluid has been the topic of extensive research owing to its excellent

physical properties especially high thermal conductivity [1–3]. Boungiorno [4]

demonstrated that the Brownian diffusion and thermophoresis are the two most

important mechanisms to account for the abnormal convective heat transfer en-5

hancement in nanofluid. On the basis of these analyses, a new two-component

four-equation model of the conservation of mass, momentum, and heat trans-

port in nanofluid was proposed. From then on, a lot of scholars have studied

this model to perform the effects of Brownian diffusion and thermophoresis in

different systems [5–9]. Kuznetsov and Nield [10] considered natural convective10

boundary-layer flow of nanofluid past a vertical plate. Sheikholeslami et al. [11]

investigated the natural convection heat transfer of nanofluid in an enclosure

under magnetic field numerically. Eid and Mahny [12] focused on heat and mass

transfer of a non-Newtonian nanofluid flow described by a two-phase model, see

also [13–17] for related works.15

The boundary layer flow past a stretching sheet has attracted considerable

attention in many fields of industry and engineering processes. Its applications

appear in melt-spinning, manufacture of plastic and rubber sheets, etc. Rollins

and Vajravelu [18] studied heat transfer characteristics of a second-order flu-

id over a stretching sheet with linearly varying velocity. Khan and Pop [19]20

investigated heat and mass transfer of nanofluid driven by a linear stretching

sheet and the effects of Brownian motion and thermophoresis were considered.

The investigations of laminar flow of a nanofluid over a stretching sheet with

a convective boundary condition [20]. However, the motion of the sheet may

not necessarily be linear. Ali [21] analyzed the flow and heat transfer which is25

driven by a power-law stretched surface subject to suction or injection. Further,

the study of boundary layer flow and heat transfer was extended to an expo-

nentially stretching sheet by Magyari and Keller [22]. Moreover, the stretching

sheet with variable thickness was proposed by Fang et al. due to its practi-

cal importance [23]. In that investigation, they had shown that the non-flat30
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stretching sheet influences the boundary layer development along the wall and

the shear stress distribution in the fluid. Subsequently, a number of researches

have been conducted to examine the thickness-varying stretching sheet in Refs.

[24–27]. To the best of our knowledge, investigation of exponential stretching

sheet considering variable thickness in current literatures is still lacking. There-35

fore, the objective of this paper is to study the boundary layer flow, heat and

mass transfer of Maxwell nanofluid over an exponential stretching sheet with

variable thickness.

In view of fluid diversity in nature, the generalized Maxwell constitutive

equation with upper-convected derivative has been widely studied to describe40

viscoelastic properties of non-Newtonian fluid. This type of constitutive relation

includes the relaxation time effects. Sadeghy et al. [28] investigated laminar flow

of the upper-convected Maxwell (UCM) model over a moving rigid plate. They

found that the skin friction decreases with increasing the Deborah number. The

unsteady flow of Maxwell fluid between two side walls induced by a suddenly45

moving wall was studied by Hayat et al. [29]. Singh and Agarwal [30] reported

the effects of variable viscosity and variable thermal conductivity on the steady

flow and heat transfer of Maxwell fluid. The results indicated that the skin fric-

tion and heat transfer coefficient are lower for the Maxwell fluid than constant

viscosity and thermal conductivity coefficient. Recently, Hsiao [31] investigated50

the applications of Maxwell fluid in extrusion manufacturing processing. By

improved parameters control method, he found that the larger Schmidt num-

ber will produce the higher mass transfer effects. Finally, we mention a few

interesting problems studied by different scholars in this field [32–34].

The homotopy analysis method (HAM) is an analytic approximation method55

for solving nonlinear equations introduced by Liao in 1992 [35] and the effective-

ness of the HAM has been validated by himself [36] and other scholars [37, 38].

This method has got extensive successful results by solving many types of non-

linear equations in science and engineering [39, 40]. In this paper, HAM is

applied to solve the reduced governing equations resulting from the similarity60

transformation. The paper is organized as follows: in Section 2, the mathe-
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matical model is formulated. The detailed similarity reduction procedures for

the governing equations are presented in Section 3. The analyses of results and

discussions are given in Section 4, followed by conclusions in Section 5.

2. Mathematical formulation of the physical model65

Consider a two-dimensional steady laminar flow of viscoelastic incompress-

ible Maxwell nanofluid over an exponential stretching sheet with variable thick-

ness in the form of y = ae−nx/2l, (a > 0, n > 0). Note that for n = 0 the

stretching surface is of same thickness. It is assumed that the motion of the

extendable sheet satisfies the velocity distribution Uw(x) = u0V (x) [41], where70

V (x) = enx/l. The ambient temperature and nanoparticle volume fraction are

T∞ and C∞. The temperature T and nanoparticle volume fraction C on the

wall are denoted as Tw(x) = T∞ + T0V (x/2) and Cw(x) = C∞ + C0V (x/2),

respectively. It is assumed that the horizontal velocity is slow, with negligible

effect on the distribution of temperature and nanoparticle volume fraction. The75

physical model and coordinate system are shown in Fig. 1. The boundary layer

equations governing the conservations of fluid mass, momentum, energy and

nanoparticle mass can be expressed as follows

Fig. 1: The physical model of a stretching sheet with variable thickness.
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The boundary conditions are:

y = ae−
nx
2l :u = Uw(x), v = 0, T = Tw(x), C = Cw(x)

y →∞ :u→ 0, v → 0, T → T∞, C → C∞,
(5)

where u and v are velocity components in the directions of x and y, λ1 is

the relaxation time parameter, ν is the coefficient of kinematic viscosity. α is80

the coefficient of thermal diffusivity of the fluid, DB is the Brownian diffusion

coefficient, DT is the thermophoretic diffusion coefficient and τ = (ρcp)p/(ρcp)f

is the ratio between the effective heat capacity of the nanoparticle and heat

capacity of the fluid. a is a positive variable thickness parameter, n is the

exponential shape parameter and l is the reference length. The u0 is a reference85

velocity. T0 and C0 are reference temperature and reference nanoparticle volume

fraction in the stretching sheet.

3. Nonlinear boundary value problems

Let ψ be the stream function satisfying u = ∂ψ/∂y, v = −∂ψ/∂x. Introduce

the following dimensionless functions F , θ, φ and the similarity variable η as

[7, 42]

η =

√
u0
2νl

V (
x

2
)y, ψ =

√
2νlu0F (η)V (

x

2
), v = −n

√
νu0
2l

V (
x

2
)(F (η) + ηF ′(η)),

u = u0V (x)F ′(η), T = T∞ + T0V (
x

2
)θ, C = C∞ + C0V (

x

2
)φ,

(6)
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substituting Eq. (6) into Eqs. (1)-(4), then the following nonlinear ordinary

differential equations are obtained

F ′′′ − 2nF ′2 + nFF ′′ + λn2(3FF ′F ′′ +
1

2
ηF ′2F ′′ − 1

2
F 2F ′′′ − 2F ′3) = 0, (7)

1

Pr
θ′′ + nFθ′ +Nbθ′φ′ +Ntθ′2 = 0, (8)

φ′′ + nScFφ′ +
Nt

Nb
θ′′ = 0, (9)

and the boundary conditions (5) are converted into

F (β) = −β, F ′(β) = 1, θ(β) = 1, φ(β) = 1, (10)

F ′(∞) = 0, θ(∞) = 0, φ(∞) = 0, (11)

with the associated parameters, here primes denote differentiation with respect

to η. β = η = a
√
u0/2νl is the surface thickness parameter. To facilitate the

computation, the coordinate transform ξ = η−β is exploited. The Eqs. (7)-(9)

and the associated boundary conditions (10)-(11) become

f ′′′ − 2nf ′2 + nff ′′ + λn2(3ff ′f ′′ +
1

2
(ξ + β)f ′2f ′′ − 1

2
f2f ′′′ − 2f ′3) = 0, (12)

1

Pr
θ′′ + nfθ′ +Nbθ′φ′ +Ntθ′2 = 0, (13)

φ′′ + nScfφ′ +
Nt

Nb
θ′′ = 0, (14)

f(0) = −β, f ′(0) = 1, θ(0) = 1, φ(0) = 1, (15)

f ′(∞) = 0, θ(∞) = 0, φ(∞) = 0, (16)

where λ > 0 is the local Deborah number, Pr is the Prandtl number, Sc is

the Schmidt number, β is the thickness parameter, Nb is the Brownian motion
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parameter and Nt is the thermophoresis parameter. The following expressions

are obtained:

λ =
Rexλ1ν

2l2
, P r =

ν

α
, Sc =

ν

DB
, Nb =

τDB

ν
C0V (

x

2
), Nt =

τDT

νT∞
T0V (

x

2
),

(17)

where the primes denote the differentiation with respect to the similarity vari-

able ξ. The quantities of practical interest are the local Nusselt number Nux

and the local Sherwood number Shx, which are defined as

Nux =
xqw

k(Tw − T∞)
, Shx =

xqm
DB(Cw − C∞)

, (18)

qw is the heat flux and qm is the mass flux, which are given by

qw = −k
(
∂T

∂y

)∣∣∣∣
y=ae−

nx
2l

, qm = −DB

(
∂C

∂y

)∣∣∣∣
y=ae−

nx
2l

. (19)

The local Nusselt number Nux and the local Sherwood number Shx are obtained

as

Nux = −Re1/2x

x

2l
θ′(0), Shx = −Re1/2x

x

2l
φ′(0), (20)

where Rex = 2lu0e
nx/l/ν is the local Reynolds number.90

4. Results and Discussions

In this paper, the steady flow of Maxwell nanofluid over an exponential

stretching sheet with variable thickness is studied analytically. The ordinary

differential Eqs. (12)-(14), subject to the boundary conditions (16) are solved

using HAM. The effects of various physical parameters, such as shape parameter95

n, thickness parameter β, Brownian motion parameter Nb and thermophoresis

parameter Nt are interpreted graphically on velocity, thermal and nanoparticles

concentration fields. Then the variations of local Nusselt number Nux and local

Sherwood number Shx are examined with respect to shape parameter n and

thickness parameter β.100
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4.1. Convergence of the series solutions for HAM

The governing non-linear similarity equations and their boundary conditions

(12)-(16) are solved by HAM analytically. It is straightforward to use the set of

base functions:

{exp(−iξ)|i ≥ 0}. (21)

Base on the rule of solution expressions (21) and the boundary conditions (15)-

(16), the following initial guesses for functions f , θ and φ are chosen as follows

f0(ξ) = −β + 1− e−ξ, θ0(ξ) = e−ξ, φ0(ξ) = e−ξ. (22)

h̄ curves (10th order HAM solutions for velocity, temperature and nanoparticle

volume fraction profiles, respectively) are shown in Fig. 2 at λ = 1, n = 1, β =

1, P r = 1, Nb = 0.1, Nt = 0.1 and Sc = 2. It is clearly noted from Fig. 2

that the admissible values of h̄f is −1.75 < h̄f < −0.1, the admissible values105

of h̄θ is −1.6 < h̄θ < −0.8 and the admissible values of h̄φ is −1.45 < h̄φ <

−0.2. Accordingly, the better convergent values can be taken within the close

range of −1.45 < h̄ < −0.8 in conventional HAM. Futhermore, Table 1 shows

local Nusselt number and local Sherwood number for different Pr by HAM in

comparison to the numerical solution by BVP4C function in Matlab. From110

Table 1, one can see a very good agreement between the analytic results of

HAM and numerical results.

-2.0 -1.5 -1.0 -0.5 0.0
-1.5

-1.0

-0.5

0.0

Ñ

Φ¢H0L
Θ¢H0L
f ¢¢H0L Λ = 1; n = 1; Β = 1; Pr = 1;

Nb = 0.1; Nt = 0.1; Sc = 2

Fig. 2: The h̄ curves of f ′′(0), θ′(0), φ′(0) for the 10th-order approximation solutions.
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Table 1: Comparison between the HAM and the BVP4C for local Nusselt number Nux and

local Sherwood number Shx at h̄ = −1.4.

local Nux local Shx

Pr HAM BVP4C HAM BVP4C

1.0 0.153557 0.1535547 0.148857 0.148815

1.5 0.118046 0.1180443 0.167778 0.167778

2.0 0.087897 0.0878968 0.187639 0.185647

2.5 0.062327 0.0623247 0.203694 0.203739

3.0 0.040292 0.0403114 0.217337 0.217264

4.2. Analysis of the thickness parameter and the shape parameter

Figs. 3–5 depict the effects of thickness parameter β and shape parameter n

on the distribution of velocity f ′(ξ) and temperature θ(ξ) for Maxwell nanoflu-115

id. As shown in Fig. 3, the velocity distribution and boundary layer thick-

ness increase with higher thickness parameter. Since wall thickness parameter

is increased, the stretching velocity enhances which leads to flow velocity en-

hancement. The effects of the thickness parameter β on the temperature profile

are illustrated in Fig. 4. The temperature increases and the thickness of ther-120

mal boundary layer becomes thicker as the thickness parameter is lengthened.

That’s because the temperature on the wall becomes larger with the increase

of thickness parameter, in other words, that the wider range of temperature

increases between the surface of sheet and ambient fluid, which causes a en-

hancement in temperature. The influence of shape parameter n on velocity is125

depicted in Fig. 5. It is presented that the velocity decreases in the boundary

layer for each of the shape parameter, which results in a thinner boundary layer.

Table 2 shows the results of local Nusselt number, local Sherwood number and

velocity gradient at the sheet surface corresponding to different values of β and

n with the set of parameters λ = 1, Nb = 0.1, Nt = 0.1, P r = 1, Sc = 2. It130

can be observed from Table 2 that the local Nusselt number and the Sherwood

number decay by increase of the shape parameter n, while the opposite trend is

9



observed for the values of velocity gradient at the sheet surface.

Λ = 1; n = 1; Pr = 1; Nb = 0.1; Nt = 0.1; Sc = 2

Β = 0.0, 0.5, 1.0, 1.5

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Ξ

f¢
HΞ
L

Fig. 3: Change of velocity profile f ′(ξ) for different values of β.

Λ = 1; n = 1; Pr = 1; Nb = 0.1; Nt = 0.1; Sc = 2

Β = 0.0, 0.5, 1.0, 1.5

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Ξ

Θ
HΞ
L

Fig. 4: Change of temperature profile θ(ξ) for different values of β.
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Λ = 1; Β = 1; Pr = 1; Nb = 0.1; Nt = 0.1; Sc = 2

n = 0.25, 0.50, 0.75, 1.00

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Ξ

f¢
HΞ
L

Fig. 5: Change of velocity profile f ′(ξ) for different values of n.

Table 2: −θ′(0), −φ′(0) and −f ′′(0) distributions for different values of β and n when λ =

1, Nb = 0.1, Nt = 0.1, P r = 1, Sc = 2.

β n −θ′(0) −φ′(0) −f ′′(0)

0.5 0.5 0.308866 0.298822 0.912006

0.75 0.301025 0.297178 1.11429

1.0 0.287039 0.282183 1.13996

1.0 0.5 0.223845 0.206142 0.768012

0.75 0.186553 0.175544 0.891715

1.0 0.153557 0.148857 0.979111

4.3. Analysis of the Brownian motion parameter and the thermophoresis param-

eter135

Fig. 6 displays the effects of Brownian motion parameter on temperature

distribution of nanofluid. The results show the temperature profiles of nanofluid

is increased by Brownian motion parameter. This is because the influence of

heat conduction penetrate farther into the fluid with enhanced random motion

of nanoparticles. Consequently the thermal boundary layer becomes thicker,140

which implies a lower efficiency of convection thermal transport.
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Fig. 7 (a)-(b) illustrate the influence of therophoresis parameter Nt on the

distribution of nanoparticle volume fraction. When β = 0, i.e. reduced to the

flat sheet case, as presented in Fig. 7 (a), one can observe that the volume

fraction distribution of nanoparticles increases uniformly in the whole concen-145

tration boundary layer for higher therophoresis parameter Nt. Physically there

would be an increase of mass boundary layer thickness with the accretion of

thermophoretic force, which leads to transfer nanoparticles towards cold region-

s and thus boosts the magnitude of nanoparticle volume fraction profile. Fig.

7 (b) presents the nanoparticle volume fraction profile for the thickness param-150

eter β = 1. The nanoparticle volume fraction distribution decreases with the

increasing therophoresis parameter near the surface, but the opposite trend oc-

curs far away from the surface. This due to the fact that the variable thickness

sheet facilitates the convection transfer of nanoparticles. Another point worthy

of comment is that the thickness of nanoparticle volume fraction boundary layer155

rises with increasing Nt and the distribution of nanoparticle volume fraction is

similar to the case with the flat sheet as shown in Fig. 7 (a) for the zone of far

away from the surface.

By further calculation, a pretty interesting result is observed: there exist-

s a critical value of the thickness parameter βc (βc ≈ 0.7) for the occurrence160

of intersection point in the profile of nanoparticle volume fraction under the

change of therophoresis parameter Nt. As presented in Fig. 7, the nanoparticle

volume fraction in the boundary layer has different variable trend on different

side of the critical value βc. That is to say, the nanoparticle volume fraction

profile φ enhances with the increase of Nt in the whole layer when the thickness165

parameter is less than the critical point (β < βc). For β > βc, there appears an

intersection point as seen in Fig. 7 (b). What’s more, the position of the inter-

section point is gradually far away from the stretching sheet with increasing β.

As is well known, the Sherwood number Shx is a measurement of mass trans-

fer. Fig. 8 illustrates results of local Sherwood number for different thickness170

number β. The local Sherwood number enlarges with increasing the thickness

parameter when the therophoresis diffusion has dominant effects in mass trans-

12



fer (the thickness parameter below the critical value β < βc). This due to the

fact that thermophoretic diffusion enhances the mass transfer of nanoparticles

in Maxwell fluid, thus the local Sherwood number is higher. However, There is175

a reduction in the local Sherwood number with thickness parameter accretion

as the thickness parameter has dominant effects (the thickness parameter upon

the critical value β > βc). Moreover, at the critical value βc ≈ 0.7 the ability of

mass transfer achieves the highest value.

Nb = 0.1, 0.5, 0.9, 1.5

Λ = 1; n = 1; Β = 1; Pr = 1; Nt = 0.1; Sc = 2

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Ξ

Θ
HΞ
L

Fig. 6: Change of temperature profile θ(ξ) for different values of Nb.

Β = 0

HaL

Nt = 0.1, 0.2, 0.3

Λ = 1; n = 1; Pr = 1
Nb = 0.1; Sc = 2

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Ξ

Φ
HΞ
L

Β = 1

HbL

Nt = 0.1, 0.2, 0.3

Λ = 1; n = 1; Pr = 1
Nb = 0.1; Sc = 2

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Ξ

Φ
HΞ
L

Fig. 7: Change of nanoparticle volume fraction profile φ(ξ) of different thickness parameter β

for different values of Nt. (a) β = 0; (b) β = 1.
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b c  =  0 . 7  

Fig. 8: Local Sherwood number Shx for various values of β with condition λ = 1, n = 1, P r =

1, Sc = 2, Nb = 0.1, Nt = 0.3.

4.4. Analysis of the local Nusselt number and the local Sherwood number180

The variations of heat transfer rate and mass transfer rate for various values

of sheet shape parameter are investigated. Fig. 9 (a) describes variation in local

Nusselt number with an increase in shape parameter n for different values of

Pr. It can be seen that heat transfer rate at the stretching sheet decreases when

the shape parameter is increased. This is due to the fact that the temperature185

of surface becomes larger as n increases. Further the thermal boundary layer

thickness increases and the thermal resistance becomes stronger. Fig. 9 (b)

illustrates the variation of local Sherwood number with the sheet shape param-

eter for different values of Schmidt number. The increase of shape parameter

leads to the decrease of the mass transfer on the sheet. It is also important190

that the rate of decline for local Nusselt number becomes larger with increase of

the Schmidt number. The effects of the thickness parameter β on local Nusselt

number and local Sherwood number are presented in Fig. 10. One can conclude

from Fig. 10 (a) and (b) that the increase of the thickness parameter causes the

reduction of heat transfer on the sheet surface (decrease of local Nusselt num-195

ber) and mass transfer of nanoparticles (decrease of local Sherwood number).

Because larger thickness parameter means thicker thermal boundary layer and

higher thermal resistance, which finally results in lower heat transfer on sheet

surface. Mass transfer of nanoparticles is similar to heat transfer on the sheet

surface.200
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Fig. 9: Local Nusselt number Nux with conditions Pr = 1, 2 and local Sherwood number Shx

with conditions Sc = 1, 2 for various values of n as λ = 1, β = 1, Nb = 0.1, Nt = 0.1.
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Fig. 10: Local Nusselt number Nux with conditions Pr = 1, 2 and local Sherwood number

Shx with conditions Sc = 1, 2 for various values of β as λ = 1, β = 1, Nb = 0.1, Nt = 0.1.

5. Conclusions

The effects of variable thickness stretching sheet on heat and mass transfer

for nanofluid in boundary layer flow has been investigated. The two-component

Buongiorno model is utilized in the mathematical formulation to describe the

motion of nanoparticles. Approximate solutions are obtained by HAM and these205

results are in good agreement with the numerical solutions. Several important

conclusions are as follows:

(I) Thickness parameter has significant effects on the velocity, temperature

fields and the local Nusselt number. As thickness parameter increases,
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local Nusselt number decreases, while the velocity and temperature profiles210

increase.

(II) Shape parameter of stretching sheet strongly affects the velocity fields and

the local Nusselt number. As the shape parameter increases, both velocity

and local Nusselt number decrease.

(III) There appears a critical value of the thickness parameter, at which the215

nanoparticle volume fraction profile has different distribution on the d-

ifferent side of the critical value (βc ≈ 0.7). For β < βc, the variation

of nanoparticle volume fraction distribution with increasing therophoresis

parameter is similar to the plate model. For β > βc, the nanoparticle

volume fraction distribution decreases with increasing therophoresis pa-220

rameter near the surface, but the opposite trend occurs far away from the

surface.

(IV) The variation of the local Sherwood number are not necessarily monotonic

with thickness parameter β as showed in Fig. 8. In monotone variation

situation such as Nt = 0.1, the local Sherwood number decreases with225

increasing the shape parameter and thickness parameter.
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Nomenclature

a variable thickness parameter, [m]

C nanoparticle volume fraction, [kg m−3]

C0 reference nanoparticle volume fraction, [kg m−3]

Cw nanoparticle volume fraction at stretching surface, [kg m−3]

C∞ ambient nanoparticle, [kg m−3]

DB Brownian diffusion coefficient, [m2 s−1]

DT thermophoretic diffusion coefficient, [m2 s−1]

f similar stream function, [−]

k thermal conductivity, [Wm−1 K]

l reference length, [m]

Nb Brownian motion parameter, [−]

Nt thermophoresis parameter, [−]

Nux local Nusselt number, [−]

n shape parameter, (n > 0), [−]

Pr Prandtl number, [−]

qm wall mass flux, [kg m−2s−1]

qw wall heat flux, [W m−2]

Rex local Reynolds number, [−]

Sc Schmidt number, [−]

Shx local Sherwood number, [−]

T temperature of fluid, [K]

T0 reference temperature, [K]

Tw sheet surface temperature, [K]

T∞ ambient temperature, [K]

17



u,v velocity in x,y-axis direction, [m s−1]

u0 reference velocity, [m s−1]

Uw stretching sheet velocity, [m s−1]

x,y x,y-axis, [m]

Greek symbols

α thermal diffusivity, [m2 s−1]

β surface thickness parameter, [−]

η similarity variable, [−]

ξ similarity variable after coordinate transformation, [−]

θ dimensionless variable of T , [−]

φ dimensionless variable of C, [−]

ψ stream function, [m2 s−1]

λ local Deborah number, (λ > 0), [−]

λ1 relaxation time, [s]

ν kinematic viscosity, [m2 s−1]

(ρcp)f heat capacity of fluid, [kg m−3K]

(ρcp)p heat capacity of nanoparticle, [kg m−3K]

τ nanoparticle heat capacity ratio, [−]

Subscripts

w condition at the surface, [−]

∞ ambient condition, [−]

c critical value, [−]

f fluid, [−]

p pressure, [−]

Superscripts

′ differentiation with respect to η or ξ, [−]
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