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Abstract

This paper investigates the space-fractional anomalous diffusion in unsteady Casson fluid
through a porous medium, based on an uncoupled continuous time random walk. The
influences of binary chemical reaction and activation energy between two horizontal rotating
parallel plates are taken into account. The governing equations of motion are reduced to
a set of nonlinear differential equations by time derivatives discretization and generalized
transformation, which are solved by bvp4c and implicit finite difference method (IFDM).
Stability and convergence of IFDM are proved and some numerical comparisons to the
previous study are presented with excellent agreement. The effects of involved physical
parameters such as fractional derivative parameter, rotation parameter and time parameter
are presented and analyzed through graphs. Results indicate that the increase of fractional
derivative parameter triggers concentration increase near the lower plate, while it causes a
reduction near the upper plate. It is worth mentioning that the decrease of heat transfer
rate on the plate is seen with the higher time parameter.

Keywords: Casson fluid, Arrhenius reaction, Anomalous diffusion, Implicit finite
difference scheme, Stability and convergence

1. Introduction

The convective flow, heat and mass transport in a rotating frame of reference are vital due
to their extensive applications such as dynamo effect, food processing, centrifugal filtration,
etc. Many studies have been conducted on the modeling of rotating frame motions. The
steady and unsteady Couette flows in a rotating frame were considered by Jana et al. [1–
3]. Kheshgi and Scriven [4] studied the flow of Newtonian fluid through a rotating square
channel. In presence of a magnetic field, Takhar et al. [5] analyzed flow and heat transfer
characteristics in a rotating fluid over a stretching surface. They found the skin friction
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coefficient is strongly dependent on the rotation parameter. Later, Sheikholeslami and Ganji
[6] discussed the effects of Brownian motion and thermophoresis on nanofluid between two
infinite parallel plates with uniform angular velocity. Ghadikolaei et al. [7] explained the
influence of magnetic field and volume fraction of carbon nanotubes in a rotating frame.
Furthermore, there have been dozens of investigations about this field [8–11].

Diffusion-reaction process with activation energy occurs in applications involving chemi-
cal engineering, oil reservoir engineering, food processing, etc. The concentration of reactant
plays a key role in the diffusion-reaction process. All kinds of fluids flow under the influence
of chemical reaction have been discussed by various researchers. Bestman [12] considered
the effect of Arrhenius activation energy on the free convection flow. Further, Makinde et
al. [13, 14] examined unsteady convection with Arrhenius reaction and Soret-Dufour effects
past a vertical plate. Moreover, Awad et al. [15] investigated the 3D unsteady flow in
a rotating viscous fluid with binary chemical reaction and activation energy. The results
show the increase in the dimensionless activation energy enhances the concentration profile.
In addition, Abbas et al. [16] studied binary chemical reaction on stagnation point flow
of Casson fluid. Sajid et al. [17] analyzed Maxwell nanofluid flow with activation energy.
However, these models rarely involved Arrhenius activation energy in fractional anomalous
diffusion. The appropriate fractional modeling needs to be further considered.

In the past few years, numerous investigations on the anomalous diffusion have been
carried out in the complex and heterogeneous background, for instance, porous medium.
This interest has been motivated by its importance in some application fields such as hy-
drology [18], biology [19], electrochemistry [20] and so on. The anomalous diffusion provides
super-diffusive or sub-diffusive phenomenon of the transport comparing with the standard
diffusion behavior [21–24]. In particular, one way of characterizing this diffusion is the pop-
ular continuous time random walk (CTRW) theory [25]. The anomalous super-diffusion is
obtained by uncoupled CTRW with the Poissonian waiting time and the Lévy distribution
for the jump length [26]. Krepysheva et al. [27] studied the space-fractional advection-
diffusion based on CTRW. Pan et al. [28, 29] studied this kind of diffusion problem about
space-fractional thermal transfer in nanofluids through a porous medium.

Inspired by the above research, in this paper, we present a study for space-fractional mass
transport of Casson fluid in a porous medium, derived from an uncoupled CTRW, in which
the influence of Arrhenius reaction in a rotating system is taken into account. The unsteady
rotating fluid flow and the heavy-tailed effect of anomalous diffusion are characterized by
time parameter t, rotation parameter Ω, and fractional derivative parameter γ, respectively.
The structure of the paper is as follows: in Section 2, basic governing equations are proposed.
In Section 3, the set of coupled nonlinear equations are solved by using bvp4c and implicit
finite difference method (IFDM). Moreover, the stability and convergence of IFDM are
proved. The analyses of results and discussion are given in Section 4. Section 5 summarizes
the concluding remarks.
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2. Basic governing equations

The model consists of flow, heat and space-fractional mass transfer of 3D unsteady
Casson fluid between two horizontal parallel plates in a porous medium with Arrhenius
reaction condition. The physical model and Cartesian coordinate system used are shown in
Fig. 1. The Casson fluid and the plates rotate together around the y-axis with a constant
angular velocity Ω. The fixed distance between the upper and lower plates along the y-axis is
denoted by h. The x-axis is measured horizontally along the plates, whereas y-axis is taken
perpendicular to the plates and normal to the xy-plane is z-axis. To make the position of
origin unchanged, the lower plate is stretched linearly with the velocity u0 = ax (a > 0) by
two equal and opposite forces. The rheological model of an isotropic Casson fluid is given
by [30]

Sij =

{
2(µB + py/

√
2π)eij, π > πc

2(µB + py/
√

2πc)eij, π < πc
, (1)

where eij is the (i,j)th component of the deformation rate, π = eijeij is the product of the
component of the deformation rate with itself, and πc is a critical value of this product based
on the non-Newtonian model. µB is the plastic dynamic viscosity of the non-Newtonian
fluid and py is the yield stress. The reaction rate of binary chemical reaction with Arrhenius
activation energy is written as [16]

RC = k2r(C − Ch)(T/Th)
bexp (−Ea/(κT )) , (2)

where k2r is the chemical reaction rate constant. (T/Th)
bexp(−Ea/(κT )) is the modified

Arrhenius function, where κ is the Boltzmann constant and b (−1 < b < 1) is a dimension-
less constant. The governing equations of the flow, heat and mass transfer are presented,
respectively, as follows:

divV = 0, (3)

ρ

[
∂V

∂t
+ (V · ∇)V + 2Ω×V + Ω× (Ω× r)

]
= −∇p+ divS− µV/K, (4)

∂T

∂t
+ (V · ∇)T = α∆T, (5)

∂C

∂t
+ (V · ∇)C = τ γ−21 D · ∇γC − k2r(C − Ch)(T/Th)

bexp (−Ea/(κT )) , (6)

where V = (u, v, w) is the velocity components in the direction of Cartesian axes (x, y, z). ρ
refers to the fluid density and t is the time. p is the pressure, µ is the dynamic viscosity and
K is the permeability of a porous medium. α is the thermal diffusivity and D is the mass
diffusivity. The additional coefficient τ1 is introduced to balance the dimension and we set
τ1 = 1 in the following discussion. ∇γC = Dγ

xC +Dγ
yC, where Dγ

xC, Dγ
yC are the fractional

Caputo derivatives for 1 < γ < 2 defined by [31]

Dγ
xC =

∂γC

∂xγ
=

1

Γ(2− γ)

∫ x

0

(x− ζ)1−γ
∂2C

∂x2
dζ, (7)
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Dγ
yC =

∂γC

∂yγ
=

1

Γ(2− γ)

∫ y

0

(y − ζ)1−γ
∂2C

∂y2
dζ. (8)

The Caputo derivative often appears in mass conservation and physical boundary condi-
tion, more regular solution profile and zero derivative of constant [32, 33]. The initial and
boundary conditions are

t ≤ 0 : u = v = w = 0, T = Th, C = Ch as y > 0, (9)

t > 0 :

{
u = ax, v = w = 0, T = T0,−D ∂C

∂y
= Hm (C0−C) as y = 0

u = v = w = 0, T = Th, C = Ch as y = h
, (10)

where a represents a positive constant, Hm is the convective mass coefficient. To transform
Eqs. (3)-(10) in dimensionless forms, we introduce dimensionless units via the transforma-
tions

x∗ =
x

h
, y∗ =

y

h
, z∗ =

z

h
, t∗ =

νt

h2
, u∗ =

uh

ν
, v∗ =

vh

ν
, w∗ =

wh

ν
,

θ∗ =
T − Th
T0 − Th

, φ∗ =
C − Ch
C0 − Ch

, p∗ =
ph2

ρν2
,Ω∗ =

Ωh2

ν
,Da =

K

h2
.

(11)

Substituting (11) into (3)-(10), we obtain the following forms (omitting the superscript ∗
for convenience)

∂u

∂x
+
∂v

∂y
= 0, (12)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ 2Ωw = −∂p

∂x
+

(
1 +

1

β

)(
∂2

∂x2
+
∂2

∂y2

)
u− u

Da
, (13)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

(
1 +

1

β

)(
∂2

∂x2
+

∂2

∂y2

)
v − v

Da
, (14)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
− 2Ωu =

(
1 +

1

β

)(
∂2

∂x2
+

∂2

∂y2

)
w − w

Da
, (15)

∂θ

∂t
+u

∂θ

∂x
+ v

∂θ

∂y
=

1

Pr

(
∂2

∂x2
+

∂2

∂y2

)
θ, (16)

∂φ

∂t
+u

∂φ

∂x
+ v

∂φ

∂y
=

1

Sc

(
∂γ

∂xγ
+

∂γ

∂yγ

)
φ− σ (1 + bδθ) e−E/(1+δθ)φ. (17)

The corresponding dimensionless initial and boundary conditions are

t ≤ 0 : u = v = w = 0, θ = 0, φ = 0 as y > 0, (18)

t > 0 :

{
u = λx, v = w = 0, θ = 1, ∂φ

∂y
= −Bim (1− φ) as y = 0

u = v = w = 0, θ = 0, φ = 0 as y = 1
, (19)

where β = µB2πc/py is the Casson parameter. Da is the Darcy number, σ = k2rh
2/ν is

the dimensionless chemical reaction rate constant, δ = (T0 − Th)/Th is the temperature
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relative parameter and E = Ea/(κTh) is the dimensionless activation energy. λ = ah2/ν is
the dimensionless stretching constant, Pr = ν/α is the Prandtl number, Sc = ν/D is the
Schmidt number and Bim is the Biot number of mass diffusion. If the Casson parameter
tends to infinite (β →∞), we may regard this model as a Newtonian fluid.

3. Numerical procedure

The FDM solves partial differential equations (PDE)s on a space grid over a series of
time steps. For the sake of simplicity, Eqs. (12)-(17) are discretized with a finite difference
approximation for the time derivatives, which can be written as

∂un
∂x

+
∂vn
∂y

= 0, (20)

un−un−1
τ

+ un
∂un
∂x

+ vn
∂un
∂y

+ 2Ωwn = −∂pn
∂x

+

(
1+

1

β

)(
∂2

∂x2
+
∂2

∂y2

)
un −

un
Da

, (21)

vn−vn−1
τ

+ un
∂vn
∂x

+ vn
∂vn
∂y

= −∂pn
∂y

+

(
1 +

1

β

)(
∂2

∂x2
+

∂2

∂y2

)
vn −

vn
Da

, (22)

wn−wn−1
τ

+ un
∂wn
∂x

+ vn
∂wn
∂y
− 2Ωun =

(
1 +

1

β

)(
∂2

∂x2
+

∂2

∂y2

)
wn −

wn
Da

, (23)

θn−θn−1
τ

+un
∂θn
∂x

+ vn
∂θn
∂y

=
1

Pr

(
∂2

∂x2
+

∂2

∂y2

)
θn, (24)

φn−φn−1
τ

+ un
∂φn
∂x

+ vn
∂φn
∂y

=
1

Sc

(
∂γ

∂xγ
+
∂γ

∂yγ

)
φn − σ(1 + bδθn)e

−E
(1+δθn)φn, (25)

where τ is time step, and a truncation error of PDEs is o(τ). Here un, vn, wn, θn and
φn represent the unknown solutions of nth time level, while un−1, vn−1, wn−1, θn−1 and
φn−1 indicate the known quantity of n-1th level (n = 1, 2, . . . , Nτ ). For simplicity of Eqs.
(20)-(25) at each time level, we introduce these parameters:

u = xf ′ (η) , v = −f (η) , w = xg (η) , θ = θ (η) , φ = φ (η) , η = y. (26)

Substituting Eq. (26) into Eqs. (20)-(25) and eliminating the pressure gradient yields the
following forms

− τ
(

1 +
1

β

)
f ivn − τfnf ′′′n +

(
1 +

τ

Da
+ τf ′n

)
f ′′n + 2τΩg′n=f ′′n−1, (27)

− τ
(

1 +
1

β

)
g′′n − τfng′n +

(
1 +

τ

Da
+ τf ′n

)
gn − 2τΩf ′n = gn−1, (28)

− τ

Pr
θ′′n − τfnθ′n + θn = θn−1, (29)

− τ

Sc
Dγ
ηφn − τfnφ′n+

(
1 + τσ (1 + bδθn) e−E/(1+δθn)

)
φn = φn−1, (30)
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with the initial and boundary conditions

t ≤ 0 : f ′ = f = g = θ = φ = 0 as η > 0, (31)

t > 0 :

{
f ′ = λ, f = g = 0, θ = 1, φ′ = −Bim (1− φ) as η = 0

f ′ = f = g = θ = φ = 0 as η = 1
. (32)

The primes denote derivative with respect to η.
The physical quantities of engineering interest in flow, heat and mass transfer are the

skin friction coefficient Cf , the local Nusselt number Nux and the local Sherwood number
Shx, which are expressed as

Cf =
τw
ρu20

=⇒ Re−1x Cf =
x

h2λ

(
1 +

1

β

)
f ′′(0),

Nux =
xqw

α(T0 − Th)
=⇒ Nux = −xθ′(0), Shx =

xqm
D(C0 − Ch)

=⇒ Shx = −xφ′ (0) ,
(33)

where Rex = xu0/ν is the local Reynolds number.
The coupled governing equations (12)-(18), based on time derivatives discretization and

generalized transformation, are deduced into a set of nonlinear similarity equations (27)-
(31). In order to analyze the influence of involved physical parameters (Da, Ω, Pr, Sc,
Bim, γ, σ, E, and t), the values of some physical parameters are fixed as: τ = 0.01, N =
200, λ=1, b=0.5, β=1.5, and δ = 0.5. In each time level, the solutions of momentum and
energy equations of Casson model (27)-(29) are obtained by bvp4c, while the concentration
equation (30) is solved by IFDM.

3.1. Solution of momentum and energy problems by bvp4c

In order to check the effectiveness and validity of our numerical schemes, some numerical
results verified with previous studies are presented. Where the same boundary conditions
and parameters (R = 1, Da = 2, Ω = 0.5, β → ∞ with the conditions of steady-state) are
used as in Ref. [6], we validate the algorithm by comparing with the velocity profiles shown
in Fig. 2. It is seen from Fig. 2 that the values of velocity generated from the current
analysis are in excellent agreement with those from the literature by Sheikholeslami and
Ganji [6] for the case of the steady flow of Newtonian fluid.

3.2. Solution of convection anomalous diffusion problem by IFDM

3.2.1. Discretized equation of the convection anomalous diffusion

We define a discrete space point ηj = jh and a discrete time point tτ = nτ , where
h = 1/N , j = 0, 1, . . . , N and n = 0, 1, . . . , Nτ . Forward difference approximation is utilized
for advection term and classical L2 approximation is used to diffusion term [34] in (30). The
φ′n(0) of the boundary condition (32) is discretized by forward difference approximation of
φ′n(0) = (φn1 − φn0 )/h+O(h).
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The finite difference representation of (30) reads

− τ

SchγΓ(3− γ)

j−1∑
k=0

dj−k(φ
n
k+2
− 2φn

k+1
+ φn

k
)− τfnj

φnj+1 − φnj
h

+
(

1 + τσ
(
1 + bδθnj

)
e−E/(1+δθ

n
j )
)
φn
j

= φn−1j

(34)

for j = 1, 2, . . . , N − 1 and n = 1, 2, . . . , Nτ .

Remark 1. The IFDM of (34) has a local truncation error of er=O(h+ τ).
Eqs. (31), (34) and (32) can be expressed in vector-matrix differential equation as follows

A~φn = ~φn−1, (35)

where A = (ajk)
N
j,k=0 denotes an (N + 1) × (N + 1) matrix corresponding to the spa-

tial discretization (31), (34) and (32) at every time step. The 0th row of A is (1 +
Bi−1m h−1,−Bi−1m h−1, 0, · · · , 0) and its Nth row is (0, 0, · · · , 1). The components of the jth
row of A matrix (j = 1, 2, . . . , N − 1, k = 2, 3, . . . , N) are

aj0 =
−dj

τ−1SchγΓ(3− γ)
,

aj1 =
−dj−1 + 2dj

τ−1SchγΓ(3− γ)
+ δj1

[
τfn1
h

+
(
1 + τσ (1 + bδθn1 ) e−E/(1+δθ

n
1 )
) ]
,

ajk =
−dj−k + 2dj−k+1 − dj−k+2

τ−1SchγΓ(3− γ)
− δj,k−1

τfnj
h

+ δjk

[
τfnj
h

+
(

1 + τσ
(
1 + bδθnj

)
e−E/(1+δθ

n
j )
)]

,

(36)

where σ
(
1 + bδθnj

)
e−E/(1+δθ

n
j ) >0 for physical characteristics of the model. δjk is the Kro-

necker delta. The non-zero entries of A satisfy the following inequalities [28, 35],

a00 > 0, a01 < 0, a
N,N−1

= 0, a
NN

= 1, ajj > 0, for all j,

aj0 < 0 for j = 1, 2, . . . , N − 1, aj1 > 0 for j = 2, 3, . . . , N − 1,

ajk < 0 for j = 1, 2, . . . , N − 1, k = 2, 3, . . . , j − 1, j + 1.

(37)

3.2.2. Monotonicity of the discretization matrix A

We now prove that A is invertible and A−1 ≥ 0. The off-diagonal entries in column 1 of
matrix A are positive, which have a limit on the reversibility of the matrix (see Refs [35, 36]).

Then matrix A multiplies by elementary row transformation matrices E(k) := (e
(k)
ij )Ni,j=0,

where e
(k)
ij = εij − ak0/a00 · εikεj0. Let A′ = E(N−1)E(N−2) · · ·E(1)A, and A′ = (a′jk)

N
j,k=0,

where row 0 of A′ is (a00, a01, 0, · · · , 0). We clearly obtain

a′j0 = 0, for j = 1, 2, . . . , N − 1,

a′jk = ajk for k ≥ 2 and all j,

a′11 > 0 and a′j1 < 0 for j = 2, 3, . . . , N − 1.

(38)
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Lemma 3.1. A′ is an M-matrix. Then A is invertible with A−1 ≥ 0, thus the matrix A is
monotone.

Proof. For the matrix A′, diagonal entries are positive while off-diagonal entries are non-
positive. We have

∑N
k=0 a

′
0k =

∑N
k=0 a

′
Nk = 1. With

∑N
k=0 ajk =

[
1+τσ

(
1 + bδθnj

)
e−E/(1+δθ

n
j )
]
,

(σ
(
1 + bδθnj

)
e−E/(1+δθ

n
j ) > 0) for j = 1, 2, . . . , N − 1, one has

N∑
k=0

a′jk = 0 + (aj1 +
Bi−1m h−1

1 +Bi−1m h−1
aj0) +

N∑
k=2

ajk

= (
Bi−1m h−1

1 +Bi−1m h−1
− 1)aj0 +

N∑
k=0

ajk

= (
Bi−1m h−1

1 +Bi−1m h−1
− 1)aj0 +

[
1 + τσ

(
1 + bδθnj

)
e−E/(1+δθ

n
j )
]

> 0.

(39)

There exists a vector ~w:=(1, 1, · · · , 1)T that satisfies A′ ~w > ~0. Hence A′ is an M-matrix and
(A′)−1 exists with (A′)−1 ≥ 0. We can get

A−1 = (A′)−1E(N−1)E(N−2) · · ·E(1). (40)

So A−1 exists with A−1 ≥ 0, thus the matrix A is monotone. The proof is completed.

3.3. Stability and convergence

Lemma 3.2. A is a monotone matrix of order N+1 and there exists a vector ~w:=(1, 1, · · · , 1)T

with ‖~w‖∞ = 1 that satisfies (A~w)0 = 1, (A~w)N = 1 and (A~w)j = (1+τσ
(
1 + bδθnj

)
e−E/(1+δθ

n
j ))

for j = 1, 2, · · · , N − 1. Then ‖A−1‖∞ ≤ 1 [37].

Proof. Let A−1 = (ãjk)
N
j,k=0. Since I = A−1A we have for j = 0, 1, . . . , N ,

1 = ‖~w‖∞ = ~wj = (A−1A~w)j =
N∑
k=0

ãjk(A~w)k ≥
N∑
k=0

ãjk = (A−1 ~w)j, (41)

and note that
‖A−1‖∞ = ‖A−1 ~w‖∞, (42)

which yields
‖A−1‖∞ = max

j
(A−1 ~w)j ≤ 1. (43)

Theorem 3.1. (stability)
The IFDM of (34) is unconditionally stable.
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Proof. We rewrite (34) as
~φn = A−1~φn−1. (44)

Now, we suppose that φ̃n is an approximate solution of (44). The error εn = φ̃n−~φn satisfies

εn = A−1εn−1. (45)

By lemma 3.2,

‖εn‖∞ = ‖A−1εn−1‖∞ ≤ ‖A−1‖∞‖εn−1‖∞ ≤ ‖εn−1‖∞. (46)

Applying (46) repeatedly n times, we obtain

‖εn‖∞ ≤ ‖ε0‖∞. (47)

Therefore the IFDM of (34) is unconditionally stable.

Theorem 3.2. (convergence)
The IFDM of (34) is convergent, and the order of convergence is O(τ + h).

Proof. In order to discuss the convergence of the numerical method, we first give some
definitions that enj = ~φ(ηj, tn) − ~φnj and en := (en1 , e

n
2 , · · · , enj−1)T . For the initial boundary

conditions e0j = 0, en0 = 1/(1 +Bimh)en1 , enN = 0, we can obtain the following error equation

en = A−1en−1 +M, (48)

and e0 = 0, where M = τ(O(τ + h))(1, 1, · · · , 1)T .
Hence we have

en = ((A−1)
n

+ (A−1)
n−1

+ · · ·+ (A−1)
2

+ (A−1)
1

+ I)M. (49)

Then there exists the following inequality

‖en‖∞ ≤ (‖(A−1)n‖∞ + ‖(A−1)n−1‖∞ + · · ·+ ‖(A−1)1‖∞ + ‖I‖∞)‖M‖∞. (50)

By lemma 3.2,
‖en‖∞ ≤ (n+ 1)τ |O(τ + h)|. (51)

Consequently, the IFDM of (34) is convergent.
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4. Results and Discussion

In this paper, the unsteady convection flow, heat transfer and space-fractional mass trans-
fer of Casson fluid between two horizontal parallel plates in a porous medium with Arrhenius
reaction are studied. The numerical results of velocity, temperature and concentration pro-
files for different rotation parameter, fractional derivative parameter, time parameter and
chemical reaction rate constant are presented and the variations of skin friction coefficient
Cf and local Nusselt number Nux, as well as local Sherwood number Shx are examined.

Fig. 3 shows the influence of different values of the rotation parameter on the velocity
distribution in the z-direction. The results in show that as the distance from the lower plate
increases, the transverse velocity first increases to the peak value, afterward decreases to 0,
meanwhile changes the direction of the velocity to increase again, and then decreases to 0
(reaching the upper plate). The intersection indicates that the transverse velocity is 0, and
the velocity on both sides of the intersection increases, but the velocity direction is opposite.
It can be seen that intersection moves when the time parameter changes. Moreover, the
transverse velocity becomes lower for a bigger value of time parameter (t = 0.2) on the
lower plate nearby, while the opposite trend close to the upper plate appears. The greater
the rotation parameter is, the higher the peaks of transverse velocity distribution curves will
be. Besides, with a greater rotation parameter, the transverse velocity of Casson fluid are
both faster near the lower plate and the upper plate.

Fig. 4 displays the behavior of fractional derivative parameter γ on the concentration
of reactant. The increase of fractional derivative parameter from 1.7 to 2 leads to the
enhancement of concentration near the lower plate, while causes a reduction near the upper
surface. The intersection shows the tailing phenomenon of anomalous diffusion of reactant
concentration in space. Concentration anomalous diffusion in space is delayed compared with
normal diffusion, so when the time t and the distance from the lower plate η are fixed, the rate
of velocity change of concentration anomalous diffusion is always lower than that of normal
diffusion. These results clearly demonstrate that for an increase of fractional derivative
parameter, the concentration boundary layer thickness decreases. On the other hand, as
shown in Fig. 4, there is the effect of fractional derivative parameter on concentration
profile in integer order model with γ = 2 (the highest order of space derivative) by IFDM,
which is compared with the effect of bvp4c. The accuracy of the two algorithms is proved
by the height overlap of two lines with γ = 2.

Fig. 5 illustrates the influence of the fractional derivative parameter on the concentration
profile for a fixed position at parameter η = 0.2. It is seen that the concentration goes up
with the increase of time parameter. Moreover, the distribution becomes larger with the
increase of fractional derivative parameter at the fixed position t. When the concentration
is fixed, the time needed to reach the current concentration is smaller with the increase of
the fractional derivative parameter. That is to say, the fractional derivative parameter has
the effect of delay and the larger fractional derivative parameter leads to a stronger delay
effect.

Fig. 6 shows the distribution curves for parameters Da = 2,Ω = 0.5, P r = 6.2, Sc =
2, Bim = 0.9 and γ = 1.8 with different values of chemical reaction rate constant σ. It can
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be seen from the figure that the concentration of reactant enhances with the increase of
time parameter. Meanwhile, the values of concentration in both E = 0 and E = 0.5 become
smaller with the increase of the chemical reaction rate constant. The concentration diffusion
curves become lower for a smaller value of dimensionless activation energy E.

Fig. 7 illustrates the behavior of time parameter on concentration field with Casson fluid
of high Schmidt number or low Schmidt number. It is observed that concentration increases
with the enhancement of time parameter. Also the thickness of concentration boundary
layer is noted to thicken with an increment in time parameter. The results indicate, for a
larger Schmidt number, the concentration diffusion is slower. In other words, the Schmidt
number is smaller and actually the diffusivity for mass transfer is larger, which leads to a
decline in concentration. Because the Schmidt number is the ratio of kinematic viscosity
and mass diffusivity.

Figs. 8 (a-c) show the distribution curves of skin friction coefficient Cf , local Nusselt
number Nux and local Sherwood number Shx. The effects of rotation parameter Ω and
Darcy numberDa on skin friction coefficient Cf are provided in Fig. 8 (a). It is observed that
the skin friction coefficient on the plate increases for higher Darcy number. Physically, the
wall friction force rises with augments of permeability of a porous medium. It is important
to note that the skin friction coefficient on the smaller rotation parameter is higher than the
bigger rotation parameter, when the values of Darcy number are fixed.

Fig. 8 (b) presents the influence of different values of time parameter t and Prandtl
number Pr on local Nusselt number Nux. It is noticed that with the increasing values of time
parameter, the values of local Nusselt number become lower. That is to say, the heat transfer
rate significantly decreases for the time. In addition, the local Nusselt number is found to be
higher with the increase of Prandtl number at the fixed time parameter. Physically, Prandtl
number indicates the ratio of the momentum transfer and thermal diffusion, which affects
the thickness of thermal boundary layer. Larger Prandtl number implies weaker thermal
diffusivity, which gives a thinner thermal boundary layer and smaller thermal resistance. So
the increase of Prandtl number causes the reduction of heat transfer on the surface.

The local Sherwood number Shx is plotted as a function of Schmidt number Sc for
different Biot number of mass diffusion Bim while the other parameters are fixed in Fig. 8
(c). It is clear that the increase of Biot number of mass diffusion enhances the local Sherwood
number. Moreover, for larger Schmidt number, the values of the local Sherwood number
become stronger. As a result, the mass transfer rate at the plate is physically enhanced with
the increase in Schmidt number.

5. Concluding remarks

This paper presents research on unsteady convective flow, heat and space-fractional
anomalous diffusion in a rotating Casson fluid between two horizontal parallel plates. We
take binary chemical reaction and activation energy in the concentration diffusion model
through a porous medium. The numerical solutions of nonlinear equations are obtained by
utilizing bvp4c and IFDM. The stability and convergence of IFDM for Eq. (34) are proved.
Moreover, the influences of the involved physical parameters on the velocity, temperature
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and concentration field are shown graphically and analyzed in detail. We can obtain the
following results:

(i) For higher fractional derivative parameter, the reactant concentration increases near
the lower plate, while causes a reduction near the upper plate.

(ii) The concentration becomes smaller with the increase of the chemical reaction rate
constant.

(iii) The skin friction coefficient is reduced due to the rotation parameter.

(iv) The local Nusselt number decreases as the time parameter rises.
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Nomenclature
a stretching rate
Bim Biot number of mass diffusion
C concentration
Cf skin friction coefficient
C0, T0 concentration and temperature at lower plate
Ch, Th concentration and temperature at upper plate
D mass diffusivity
Da Darcy number
E dimensionless activation energy
g dimensionless transverse velocity
Hm convective mass coefficient
K permeability of the porous medium
k2r chemical reaction rate constant
Nux local Nusselt number
p pressure
Pr Prandtl number
qm wall mass flux
qw wall heat flux
Rex local Reynolds number
Sc Schmidt number
Shx local Sherwood number
t dimensionless time parameter
u,v,w velocity in x,y,z-axis direction
u0 stretching sheet velocity
V velocity vector
x,y,z x,y,z-axis
Greek symbols
α thermal diffusivity
β Casson parameter
γ fractional derivative parameter
η similarity variable
φ dimensionless variable of C
θ dimensionless variable of T
µ dynamic viscosity of fluid
ν kinematic viscosity
ρ density of fluid
σ dimensionless chemical reaction rate constant
τ dimensionless time step
τ1 dimensional balance ratio
τw wall shear stress
Ω rotation parameter
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Subscripts
0 condition at the lower plate
h condition at the upper plate
Superscript
′ differentiation with respect to η
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Figures

Fig. 1: Schematic of the physical model under study.
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Fig. 2: The comparison of velocity profiles between the present work and Sheikholeslami and Ganji [6] at
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Fig. 3: Transverse velocity g for different values of the rotation parameter Ω.
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Fig. 5: Concentration φ for different values of the fractional derivative parameter γ at η = 0.2.
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