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Abstract

This paper studies a new type of homogeneous(HOM)-heterogeneous(HET) re-

actions in Al2O3-water-based nanofluid flowing through porous media over a

stretching plate. Prior investigators have focused mainly on the catalytic effects

on the plate, we model the influence of heterogeneous catalysis in porous media

on these reactions. The HET reactions on the surfaces of porous media and

plate are both governed by the first-order kinetics, while the HOM reaction in

the fluid is given by the isothermal cubic autocatalytic kinetics. In addition,

the thermal conductivity of four distinct shapes of nanoparticle, sphere, brick,

cylinder, and platelet, is taken into consideration with the Hamilton-Crosser

model. The obtained nonlinear differential systems simplified by using similar-

ity transformations are numerically calculated by the bvp4c algorithm. Results

demonstrate that the increase of interfacial area of porous media enhances the

rate of surface-catalyzed reaction and therefore porous media can greatly short-

en the chemical reaction time. Moreover, we find that platelet nanoparticles

exhibit the highest convective heat transfer capacity.
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1. Introduction

Nanofluids have attracted much attention due to their higher thermal con-

ductivity than traditional base fluids with poor heat transfer performance, such

as water, ethylene glycol, and oil. The metallic or nonmetallic nano-scale par-

ticles with the diameter of 1-100 nm added base fluids are called as a nanofluid

which is firstly proposed by Choi [1]. Later on, nanofluids technology is studied

by many investigators experimentally and computationally to achieve enhanced

heat transfer rates in industry [2–5]. Bachok et al. [6] reported that flow and

heat transfer features of nanofluids on a moving plate containing different types

of nanoparticles: Cu, Al2O3 and TiO2. Lin et al. [7] investigated particle shape

effects on the Marangoni boundary layer flow in a copper-water nanofluid. The

influence of nanoparticle shape on nanofluid forced convection in porous media

is examined by Sheikholeslami and Bhatti [8]. In this paper, we consider the

influence of the shape and volume fraction of Al2O3 nanoparticles in porous

media on the velocity, temperature and concentration fields.

Porous media is a material containing many tiny pores, which is widely

used in industrial production about artificial porous media, such as filters in

filter equipment, catalyzer. The flow in porous media has been studied both

experimentally and theoretically. Recent examples can be found in catalytic

reactive flows in porous media. Hunt et al. [9–11] studied the advective-diffusive

transport phenomena in a porous, catalytic microreactor. Further, Guthrie et

al. [12, 13] considered the first-order catalytic reaction on the inner surface

of parallel-plate microchannel. They used the local thermal non-equilibrium

method with two porous-fluid interface models to study the heat transfer in the

porous section of the microreactor. At the same time, the heat and mass transfer

in a porous microreactor with Casson fluid and inclined magnetic field were

presented by Saeed et al. [14, 15]. Importantly, Alizadeh et al. [16] depicted

the forced convection of heat and mass on a cylindrical catalytic surface with

non-uniform transpiration and impinging flow in porous media. In addition,

Gomari et al. [17] reported the nanofluid stagnation-point flows over a cylinder
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embedded in porous media.

The study of HOM-HET reactions has numerous important engineering ap-

plications such as combustion, catalysis, biochemical systems. Chaudhary et al.

[18–20] studied a simple model for HOM-HET reactions in boundary layer flow.

Later, Khan and Pop [21] described the effects of suction and injection on the

stagnation-point flow over an infinite permeable wall with HOM-HET reactions.

Further, Bachok et al. [22] investigated the stretching sheet with HOM-HET

reactions effects. Kameswaran et al. [23] presented the HOM-HET reactions

in a nanofluid flow by a porous stretching sheet. Qayyum [24] considered the

HOM-HET reactions in the MHD mixed convective flow. The isothermal HOM

reaction represented by cubic autocatalysis in the flow field is defined as [20]:

A+ 2B → 3B, (1)

and HET reaction on the catalyst surface by a first-order process is defined as:

A→ B, (2)

where A and B are chemical species having concentrations a and b, respectively.

For HOM reaction, the reaction rate is given by

∂a

∂t
=
∂b

∂t
= −kcab2. (3)

The reaction rate of the first order reaction occurring at the fluid-solid interface

is as follows:

DA
∂a

∂n
= −DB

∂b

∂n
= ksa, (4)

where DA and DB are the diffusion coefficients of species A and B, respectively.

n is the unit normal vector towards the fluid and ks is the HET reaction rate

constant. In the above studies, scholars considered that species A reacts het-

erogeneously on the wall (catalyst surface). That is to say, the wall’s surface or

the wall itself is a catalyst. In our paper, porous media and stretching surface

consist of the same catalyst. In this way, the HET reaction also occurs on the

surface of porous media, called surface-catalyzed reaction. The reaction rate in
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porous media is governed by [25]

rp = −Sksa, (5)

where S is the interfacial area of the porous media.

The structure of the paper is as follows: in Section 2, the mathematical

formulations of the model are proposed. The analyses of numerical results and

discussions are studied in Section 3. The conclusions have been summarized in

Section 4.

2. Formulation of the problem

Al2O3-water nanofluid is adopted as the working fluid past a stretching sheet

in porous media consisting of the catalyst shown in Fig. 1. The influence of

nanoparticles with different shapes on heat transfer is considered. The subse-

quent analysis includes the following assumptions [9].

• The nanofluid flow is a two-dimensional steady laminar flow, which satis-

fies the condition of no-slip boundary.

• The HET reactions on the surfaces of porous media and plate are both

governed by the first-order kinetics, while the HOM reaction in the fluid

is given by the isothermal cubic autocatalytic kinetics.

• The diffusion coefficients of chemical species A and B are of comparable

size.

• The thermal dispersion, thermal radiation and local thermal non-equilibrium

in porous media are ignored.

• The porous media is homogenous and isotropic, and the chemical reactions

are temperature independent.

• Physical properties such as density, porosity, specific heat, and thermal

conductivities are constant.
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• Velocity of linear stretching sheet along the x-direction is uw = cx, (c > 0).

Based on the above assumptions, the governing equations of flow and heat

transfer of a nanofluid with HOM-HET reactions as well as a surface-catalyzed

reaction occurring on the surface of porous media can be demonstrated as:

∇ · u = 0, (6)

(u · ∇)u =
µnf
ρnf
∇2u− µnf

kρnf
u, (7)

(u · ∇)T = ∇ · (αnf∇T ) , (8)

where the velocity vector u has components (u, v) along the (x, y) axes, k is

the permeability of the porous media and αnf = knf/(ρcp)nf is the thermal

diffusivity.

Fig. 1: Schematic diagram.

The equation representing concentration is written in usual notation as:

(u · ∇)C = ∇ · (D∇C) , (9)

where C shows concentration and D is the mass diffusivity.

Based on Eq. (5), we consider a modified HOM-HET reactions model in the

following form:

u
∂a

∂x
+ v

∂a

∂y
= DA

∂2a

∂y2
− kcab2 − Sksa, (10)
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u
∂b

∂x
+ v

∂b

∂y
= DB

∂2b

∂y2
+ kcab

2 + Sksa. (11)

The boundary conditions for the momentum, energy and concentration equa-

tions are given by

u = uw = cx, v = 0, T = Tw, DA
∂a
∂y = ksa,DB

∂b
∂y = −ksa as y = 0

u = 0, T = T∞, a = a0, b = 0 as y →∞
, (12)

where c is the stretching rate and a0 is uniform concentration of species A.

The effective dynamic viscosity of the nanofluid is given by Brinkman model

[26]:

µnf =
µf

(1− φ)
2.5 , (13)

where φ is the volume fraction of nanoparticles and µf indicates the dynamic

viscosity of fluid. The nanofluid density based on nanoparticles volume fraction

is used [27]:

ρnf = ρf (1− φ) + ρpφ, (14)

in which ρf is the density of fluid and ρp is the density of nano-solid-particles.

The properties of nanofluid are depicted in Table 1.

Table 1: Physical properties of nanoparticles and base fluid (water).

Properties

ρp [kg m−3] cp [J kg−1K−1] k [W m−1K−1] β [K−1] σ [Ω−1m−1]

(Al2O3) 3970 765 40 0.85×10−5 1×10−10

(H2O) 997.1 4179 0.613 21×10−5 0.05

The effects of nanoparticle shapes on thermal conductivity of the Al2O3-

water nanofluid are studied by Hamilton-Crosser model [28]:

knf
kf

=
kp + (m− 1) kf − (m− 1)φ (kf − kp)

kp + (m− 1) kf+φ (kf − kp)
, (15)
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where kp and kf are the conductivities of the particle material and the base fluid,

m is shape factor. For different nanoparticle shapes, the values of sphericity are

given in Table 2.

Table 2: The values of sphericity and shape factor of different shapes of nanoparticles [28, 29].

Nanoparticle shapes Aspect ratio Sphericity ϕ Shape factor m

Sphere - 1 3

Platelet 1:1/8 0.52 5.7

Cylinder 1:8 0.62 4.9

Brick 1:1:1 0.81 3.7

Introducing the following dimensionless variables

η =
(
c
νf

)1/2
y, ψ = (cνf )

1/2
xf (η) , θ(η) = T−T∞

Tw−T∞
, g (η) = a

a0
, h (η) = b

a0
, (16)

and substituting Eq. (16) into Eqs. (6)-(8) and Eqs. (10)-(12), then we obtain

f ′′′ + φ1ff
′′ − φ1f ′

2 − k1f ′ = 0, (17)

φ2θ
′′ + Prfθ′ = 0, (18)

1

Sc
g′′ + fg′ −Kcgh

2 −Kvsg = 0, (19)

δ

Sc
h′′ + fh′ +Kcgh

2 +Kvsg = 0. (20)

The corresponding dimensionless boundary conditions are

f (0) = 0, f ′ (0) = 1, f ′ (η)→ 0 as η →∞

θ(0) = 1, θ(η)→ 0, as η →∞

g′ (0) = Ksg (0) , g (η)→ 1 as η →∞

δh′ (0) = −Ksg (0) , h (η)→ 0 as η →∞

, (21)
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where

φ1 = (1− φ)
2.5

[
(1− φ) +φ

ρp
ρf

]
, φ2 =

knf
kf

1(
(1− φ) + φ

(ρcp)p
(ρcp)f

) . (22)

The primes denote derivative with respect to η. The dimensionless constants

in Eqs. (17)-(21) are the permeability parameter k1, the Prandtl number Pr,

the Schmidt number Sc, the HOM parameter Kc, the HET parameter Ks, the

surface-catalyzed parameter Kvs, and the ratio of the diffusion coefficient δ.

They are respectively defined as:

k1 =
µf
ρfkc

, P r =
νf
αf
, Sc =

νf
DA

,Kc =
kca

2
0

c
,

Kvs = SvKs, Sv =
SDA

c1/2ν
1/2
f

,Ks =
ksν

1/2
f

DAc1/2
, δ =

DB

DA
,

(23)

where Sv is interfacial area parameter. Under the assumption that the diffusion

coefficients DA=DB , i.e., δ = 1 [18], we have from Eqs. (19) and (20)

g (η) + h (η) = 1. (24)

Thus Eqs. (19) and (20) reduce to

1

Sc
g′′ + fg′ −Kcg(1− g)

2 −Kvsg = 0, (25)

and are subject to the boundary conditions

g′ (0) = Ksg (0) , g (η)→ 1 as η →∞. (26)

The local Nusselt number is

Nux =
xqw

kf (Tw − T∞)
, qw = −knf

∂T

∂y

∣∣∣∣
y=0

=⇒ Nux = −knf
kf

θ′ (0)
√

Rex, (27)

where Rex = uwx/vf shows the local Reynolds number.

3. Results and Discussions

In this paper, we study the effects of modified HOM-HET reactions on the

flow of Al2O3-water nanofluid over a stretching plate through porous media.
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It is noteworthy that the porous media and the surface of the stretching plate

consist of the same catalyst. So the surface-catalyzed reaction takes place on the

surface of porous media. The effects of Al2O3 nanoparticles with different shapes

on heat transfer are also considered. The set of coupled nonlinear ordinary

differential equations (17)-(18) and (25) subjected to the boundary conditions

given in Eq. (26) are solved by using bvp4c with surface-catalyzed parameter

Kvs, Schmidt number Sc, HOM parameter Kc, HET parameter Ks, Prandtl

number Pr, volume fraction of nanoparticles φ and shape factor m as prescribed

parameters.

3.1. Validation

In order to verify the model, relevant parameters are set to make the physical

problem similar to the problem that has been studied in the literature. In par-

ticular, the volume fraction of nanoparticles is reduced to zero and the catalytic

layer is discarded. Table 3 shows that the numerical results −f ′′(0) obtained

are compared with the analytical and numerical results obtained by predeces-

sors [23, 30] for different permeability parameter k1. It is seen that the present

results are in excellent agreement with both results presented by Kameswaran

et al. [23] and Hayat et al. [30].

Table 3: Comparison between values of −f ′′(0) and previous results for different k1.

k1 Kameswaran et al. [23] Hayat et al. [30] Present work

Analytical Numerical Numerical Numerical

1 1.41421356 1.41421356 1.4142 1.4142

1.5 1.58113883 1.58113883 1.5811 1.5811

2 1.73205081 1.73205081 1.7320 1.7321

5 2.44948974 2.44948974 2.4494 2.4495

3.2. Temperature fields

Fig. 2 shows the dimensionless temperature distribution curves with varying

Prandtl number Pr. The temperature distributions decrease with the increase
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of Prandtl number. Physically, the increase of Prandtl number decreases the

thermal diffusivity of the Al2O3-water nanofluid. The thickness of the thermal

boundary layer is also reduced. Conversely, the temperature is higher in view

of the higher permeability parameter. It has been proved that decreasing the

permeability of porous media increases the Nusselt number [12, 31], which leads

to a decrease in the temperature of Al2O3-water nanofluids.

0 1 2 3 4 5
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

q(h
)

h

 k 1 = 1 ,  P r = 1
 k 1 = 1 ,  P r = 2
 k 1 = 1 ,  P r = 3
 k 1 = 2 ,  P r = 1
 k 1 = 2 ,  P r = 2
 k 1 = 2 ,  P r = 3

P r = 1 ,  2 ,  3  

 

Fig. 2: Temperature distribution curves for parameters φ = 0.01,m = 5.7, Sc = 1,Ks =

1,Kvs = 1 and Kc = 1 with different values of Prandtl number Pr.

The influence of volume fraction of Al2O3 nanoparticles on temperature

distribution curves is indicated in Fig. 3. When the shape of nanoparticles

is fixed, the temperature goes up due to the increase of volume fraction of

nanoparticles φ. With the enhancement of volume fraction of nanoparticles, the

thermal conductivity and the thickness of the thermal boundary layer increase,

which is in line with the main purpose of using nanofluids. It is worth noting

that when the volume fraction of nanoparticles is small(φ = 0.01), no matter

how the shape of nanoparticles changes, the temperature will not be affected.

As can be seen from Fig. 3, when the volume fraction is large and fixed, the

temperature of platelet-type nanoparticles is higher than that of sphere.
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Fig. 3: Temperature distribution curves for parameters Pr = 1, Sc = 1,Ks = 1,Kvs =

1,Kc = 1 and k1 = 1 with different values of volume fraction of nanoparticles φ.

3.3. Ratio of thermal conductivity and Nusselt number

Linear regression is carried out with the volume fraction of nanoparticles

and the ratio of thermal conductivity, as shown in Fig. 4. Fig. 4 illustrates

the influence of different shapes of nanoparticles (Sphere, Brick, Cylinder, and

Platelet) on the heat characteristics of Al2O3-water nanofluid about the ratio

of thermal conductivity knf/kf . The ratio of thermal conductivity increases

linearly with the elevated volume fraction of nanoparticles. The ratio of ther-

mal conductivity is improved in turn: spheres, bricks, cylinders, and platelets

from the slopes of Fig. 4. Similarly, the local Nusselt number is an increas-

ing function of the volume fraction of nanoparticles in Fig. 5. Previously, the

analytical results of nanofluid flow in porous catalytic microreactors have been

reported [9]. The regression results have well goodness of fit R2. There is a

positive correlation between local Nusselt number and shape factor m (Sphere

< Brick < Cylinder < Platelet). Local Nusselt number is the ratio of convective

heat transfer to conductive heat transfer. In order to enhance convective heat

transfer, it is necessary to make Nux as large as possible. There is no doubt

that platelet nanoparticle, which has the largest slope, should be chosen.
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Fig. 4: Effects of different nanoparticle shapes on the ratio of thermal conductivity.
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Fig. 5: Effects of different nanoparticle shapes on the local Nusselt number.

3.4. Concentration field

Fig. 6 represents the effects of different values of surface-catalyzed param-

eter Kvs on the dimensionless concentration g(η). Results indicate that an en-

hancement in the surface-catalyzed parameter decreases the concentration. The

concentration boundary layer becomes thicker due to the increase of the surface-

catalyzed parameter. Physically, the surface-catalyzed reaction rate speeds up

with the increase of reaction interface on porous media, and the concentration
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of species A gradually reaches the lowest at the same position (η fixed). Com-

pared with the non-catalytic porous media (k1 = 1, Kvs = 0), the concentration

of species A obviously decreases on the porous media and the sheet with the

same catalyst when η is fixed. This indicates that the porous media composed

of the same catalyst as the sheet greatly shortens the reaction time. It is noted

that when k1 = 0, there are no porous media in the physical model, and the

concentration of species A is maximum at the same position.

0 1 2 3 4 5
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

K v s =  0

k 1 =  0 ,  K v s =  0

K v s =  0 . 1 ,  0 . 2 ,  0 . 3 ,  0 . 5

g(h
)

h

 K v s =  0
 K v s =  0 . 1
 K v s =  0 . 2
 K v s =  0 . 3
 K v s =  0 . 5
 k 1 = 0 ,  K v s = 0

 

 

Fig. 6: Concentration distribution curves for parameters φ = 0.01, P r = 1,m = 5.7, Sc =

1,Ks = 1,Kc = 1 and k1 = 1 with different values of surface-catalyzed parameter Kvs.

Fig. 7 demonstrates the impact of Schmidt number Sc on concentration

distribution of species A. It is obvious that by enhancing the values of Sc, con-

centration g(η) decreases, while the boundary layer thickness becomes thicker.

Sc is prescribed as the ratio of kinematic viscosity to the diffusion coefficient.

The velocity diffusion of species A is dominant with an increase of Sc, which

causes the reactant particles to accelerate and collide, thus concentration decays.

It is also noted that the concentration is high in surface-catalyzed parameter

Kvs = 0.5 case compared to Kvs = 1 case. This is because when Kvs becomes

larger, it means that the adsorption interface on porous media becomes wider,

resulting in a faster reaction rate.
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Fig. 7: Concentration distribution curves for parameters φ = 0.01, P r = 1,m = 5.7,Kc =

1,Ks = 1 and k1 = 1 with different values of Schmidt number Sc.

The variation of dimensionless wall concentration for different values of HOM

parameter Kc and HET parameter Ks is shown in Fig. 8. It is observed that

concentration at the surface decreases as the strength of the HOM-HET reac-

tions increases. It is worth mentioning that the surface-catalyzed parameter

has a great influence on the wall concentration. The intense surface-catalyzed

reaction on porous media results in a lower wall concentration.
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Fig. 8: Wall concentration distribution curves for parameters φ = 0.01, P r = 1,m = 5.7, Sc =

1 and k1 = 1 with different values of HOM parameter Kc and HET parameter Ks.
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The influence of HOM parameter Kc on the dimensionless concentration is

displayed in Fig. 9. The concentration drops as indicated by the increase in

HOM parameter. This is because the increase of the HOM parameter of the

same position (η fixed) accelerates the rate of HOM reaction in fluid, so the

concentration of species A comes down. Further the concentration distribution

in case of surface-catalyzed parameter Kvs = 0.5 is higher than Kvs = 1 for

Kc = 0.5, 1, 1.5. Furthermore, the increase in Kvs causes thickening in the

concentration boundary layer.
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h
 

 

Fig. 9: Concentration distribution curves for parameters φ = 0.01, P r = 1,m = 5.7, Sc =

1,Ks = 1 and k1 = 1 with different values of HOM parameter Kc.

4. Conclusions

In this article, analysis has been made for the Al2O3-water nanofluid with

novel HET-HOM reactions in the presence of porous media consisting of the cat-

alyst. The surface-catalyzed reaction occurring on the surface of porous media

is considered for the first time in HET-HOM reactions model. The numerical

solutions of governing equations are obtained by using bvp4c. The relation of

velocity, temperature and concentration fields with involved physical parameters

like surface-catalyzed parameter Kvs, HOM parameter Kc, HET parameter Ks,

Prandtl number Pr, volume fraction of nanoparticles φ and Schmidt number Sc
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has been discussed. The effects of different nanoparticle shapes on heat transfer

properties with Hamilton-Crosser model are also considered. The main results

are listed as follows:

• The concentration of chemical speciesA is a decreasing function of Schmidt

number due to the accelerated collision of reactant particles.

• With the influence of heterogeneous catalysis in porous media, the increase

of surface-catalyzed parameter leads to a violent reaction on porous media

and shortens reaction time.

• Platelet nanoparticles have the highest convective heat transfer capacity

in Al2O3-water nanofluid and deserve further study.
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Nomenclature

a, b concentration of species A and B respectively, [kg m−3]

a0 uniform concentration of species A, [kg m−3]

c stretching rate, [m s−1]

DA, DB diffusion coefficient of species A and B, [m2 s−1]

g, h dimensionless concentration of species A and B, [−]

Kc HOM parameter, [−]

Ks HET parameter, [−]

Kvs surface-catalyzed parameter, [−]

k permeability of porous media, [m2]

k1 permeability parameter, [−]

ki(i = c, s) reaction rate constants, [−]

kj(j=p, f, nf) thermal conductivity, [WK m−1]

m shape factor, [−]

Nux local Nusselt number, [−]

Pr Prandtl number, [−]

qw heat flux at the wall, [W m−2]

Rex Reynolds number, [−]

S interfacial area, [m2 g−1]

Sc Schmidt number, [−]

T temperature, [K]

u,v velocity in x,y-axis direction, [m s−1]

uw stretching sheet velocity, [m s−1]

u velocity vector, [m s−1]

x,y x,y-axis, [m]

Greek symbols

αnf thermal diffusivity, [m2 s−1]

η similarity variable, [−]

φ solid volume fraction of nanoparticles, [−]

ψ stream function, [m2 s−1]

µj(j = f, nf) dynamic viscosity of fluid, [Ns m−2]
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νf kinematic viscosity of fluid, [m2 s−1]

ρj(j = p, f, nf) density, [kg m−3]

δ ratio of the diffusion coefficient, [−]

Subscripts

w condition at the surface, [−]

∞ ambient condition, [−]

f base fluid, [−]

p nano-solid-particles, [−]

nf nanofluid, [−]

Superscript

′ differentiation with respect to η, [−]
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