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Abstract

This paper presents a study on space fractional anomalous convective-diffusion and chem-
ical reaction in the magneto-hydrodynamic fluid over an unsteady stretching sheet. The
fractional diffusion model is derived from decoupled continuous time random walks in a
heterogeneous porous medium. A novel transformation which features time finite difference
is introduced to reduce the governing equations into ordinary differential ones in each time
level. Numerical solutions are obtained by an implicit finite difference scheme. The sta-
bility and convergence of the method are analyzed. Results show that increasing fractional
derivative parameter enhances concentration near the surface while an opposite phenomenon
occurs far away from the surface. There is a reduction of mass transfer rate on the sheet
with an increase in the fractional derivative parameter. Moreover, the numerical solutions
are compared with exact solutions and good agreement has been observed.

Keywords: Heterogeneous porous medium, Anomalous diffusion, Unsteady stretching
sheet, Finite difference method, Stability and convergence

1. Introduction

The investigation of boundary layer flow past a stretching sheet has received considerable
attention in industrial applications, such as melt-spinning, hot rolling, manufacture of plastic
and polymer sheets, etc. To be more specific, the fluid has been shown under a variety
of circumstances, i.e., magnetic field [1], porous medium [2], mass diffusion [3] and others
[4, 5] for the stretching problem. The above studies only take steady flow into consideration.
However, the flow field should be unsteady, owing to sudden stretching of the flat sheet under
external actions. Elbashbeshy et al. [6] considered the unsteady flow and heat transfer of the
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laminar boundary layer over a horizontal stretching surface. Dandapat et al. [7] presented
the influence of variable fluid thermophysical properties on the unsteady flow of a thin liquid
film over a stretching sheet. Subsequently, a number of authors have studied the model of
an unsteady stretching sheet in Refs. [8–11].

Recent works have shown that the fractional calculus theory has important applica-
tions in widespread fields of engineering and science [12, 13]. The traditional convection-
diffusion equation combines the first time derivative and the second space derivative [14].
The fractional diffusion modifies the time or space derivatives with various fractional coun-
terpart operators [15], which is distinct from the Gaussian diffusion. It is characterized by
deviations from traditional linear time dependence in its mean square displacement e.g.,
〈(x − 〈x〉)〉2 ∼ tα with α 6= 1, which relies on the non-Markovian features manifested by
the systems [16]. Space fractional derivatives for 1 < α < 2, correspond to long power-law
particle jumps, while time fractional derivatives for 0 < α < 1, correspond to long power-law
waiting times between particle jumps [17]. Based on the applications of fractional deriva-
tives in time or space, various studies are carried out to simulate the thermal transport and
mass diffusion of particles [18–20].

It is known that diffusion in porous media is of current attention to the scientific and
technical applications. This interest arises because of the influence of oil recovery, subsurface
contamination and moisture dispersion in building materials [21–23]. The classical experi-
mental results have shown non-Fickian dispersion processes in heterogeneous porous media
[24]. Complex geometries in porous media may be considered as random fractal [25]. Con-
tinuous time random walks (CTRWs) become helpful tools in the assessment of dispersive
processes in heterogeneous porous media [26], which are introduced in [27]. The CTRWs
have also been applied in the analysis of diffusion behaviors in a porous medium by other
scholars [28, 29]. Motivated by the above discussions, the objective of this paper is to study
the anomalous diffusion in magneto-hydrodynamic (MHD) flow through a heterogeneous
porous medium over an unsteady stretching sheet. Applications of the present study are
also useful in chemical engineering systems. The fractional diffusion model is derived from
the stochastic theory of decoupled CTRWs.

The structure of the paper is organized as follows: in Section 2, physical backgrounds
and mathematical modeling are proposed. The derivation of transformation featuring time
finite difference for the governing equations is presented in Section 3. In Section 4, the
set of equations are solved by using bvp4c and implicit finite difference method (IFDM)
and stability and convergence of IFDM are strictly proved. The analyses of results and
discussions are given in Section 5, followed by conclusions in Section 6. Finally, the derivation
of the space fractional diffusion model is depicted in Appendix.
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Nomenclature
a stretching rate, [m s−1]
B0 magnetic flux density, [T ]
C concentration, [kg m−3]
Cf skin friction coefficient, [−]
Cw concentration at stretching surface, [kg m−3]
C∞ ambient concentration, [kg m−3]
D mass diffusivity, [m2 s−1]
F similar stream function, [−]
Hm convective mass coefficient, [m s−1]
K permeability of the porous medium, [m2]
M Hartmann number, [−]
qm wall mass flux, [kg m−2s−1]
R dimensionless chemical reaction parameter, [−]
Rex local Reynolds number, [−]
Sc Schmidt number, [−]
Shx local Sherwood number, [−]
t dimensionless time parameter, [−]
u,v velocity in x,y-axis direction, [m s−1]
uw stretching sheet velocity, [m s−1]
~u velocity vector, [m s−1]
x,y x,y-axis, [m]
Greek symbols
β fractional derivative parameter, [−]
η similarity variable, [−]
ξ similarity variable after coordinate transformation, [−]
φ dimensionless variable of C, [−]
ψ stream function, [m2 s−1]
µ dynamic viscosity of fluid, [Nsm−2]
ν kinematic viscosity, [m2 s−1]
ρ density of fluid, [kg m−3K]
σ electrical conductivity of fluid, [S m−1]
τ dimensionless time step, [−]
τ1 dimensional balance ratio, [mβ−2]
τw wall shear stress, [N m−2]
Ω porosity parameter, [−]
$ scaled convective mass transfer parameter, [−]
Subscripts
w condition at the surface, [−]
∞ ambient condition, [−]
f fluid, [−]
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Superscript
′ differentiation with respect to η or ξ, [−]

2. Geometry and mathematical modeling

We consider the two-dimensional unsteady flow of MHD fluid due to a stretching sheet
with the linear velocity uw = ax, (a > 0). The mass transfer process is governed by the
fractional convection-diffusion equation in a heterogeneous porous medium. The concen-
tration of stretching surface is given by convection form, which is characterized by a high
concentration Cw and a convective mass transfer coefficient Hm. Furthermore, the first-order
chemical reaction takes place in the flow. Since the magnetic Reynolds number is assumed
to be small enough for most conducting fluids used in industrial applications, the induced
magnetic field can be negligible. The physical model and coordinate system are shown in
Fig. 1. The governing equations for the continuity, momentum and concentration in laminar
boundary layer are presented, respectively, as follows:

∇ · ~u = 0, (1)

ρ
∂~u

∂t
+ ρ(~u · ∇)~u = µ∇2~u− (µ/K)~u− σB2

0~u, (2)

∂C

∂t
+ ~u · ∇C = τβ−2

1 D ·Dβ
yC −R(C − C∞). (3)

We write ~u = (u, v). Here u and v are velocity components in the directions of x and y, ρ
refers to the fluid density and t is the time variable. µ means the viscosity, σ is the electrical
conductivity of the fluid and B0 is the magnetic flux density. D is the mass diffusivity, K is
the permeability of porous medium, C∞ is the ambient concentration and R is the chemical
reaction coefficient. The additional coefficient τ1 is introduced to balance the dimension and
we set τ1 = 1 in the following discussion. The Caputo fractional derivative with 1 < β < 2
is defined as [30]

Dβ
yC =

∂βC

∂yβ
=

1

Γ(2− β)

∫ y

0

(y − ζ)1−β ∂
2C

∂y2
dζ. (4)

The initial and boundary conditions are

t ≤ 0 : u(x, y, t) = v(x, y, t) = 0, C(x, y, t) = C∞ as y > 0, (5)

t > 0 :

{
uw(x, t) = ax, v(x, t) = 0,−D ∂C

∂y
= Hm(Cw − C) as y = 0

u(x, t) = 0, C(x, t) = C∞ as y →∞
, (6)

where a represents a positive constant.
The following dimensionless variables are introduced

x∗ =
x√
ν/a

, y∗ =
y√
ν/a

, t∗ =
t

1/a
, u∗ =

u√
aν
, v∗ =

v√
aν
,

φ̂∗ =
C − C∞
Cw − C∞

, R∗ =
R

a
,M =

σB2
0

aρ
,Ω =

ν

aK
.

(7)
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Substituting (7) into (1)-(6), then we obtain the following nonlinear partial differential
equations (here we omit the superscript ∗ for simplicity)

∂u

∂x
+
∂v

∂y
= 0, (8)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂2u

∂y2
− (M + Ω)u, (9)

∂φ̂

∂t
+ u

∂φ̂

∂x
+ v

∂φ̂

∂y
=

1

Sc

∂βφ̂

∂yβ
−Rφ̂. (10)

The nondimensional initial and boundary conditions are

t ≤ 0 : u = v = 0, φ̂ = 0 as y > 0, (11)

t > 0 :

{
u = x, v = 0, φ̂ = 1 + $̃ ∂φ̂

∂y
as y = 0

u = 0, φ̂ = 0 as y →∞
, (12)

where Sc = ν/D is the Schmidt number, $̃ = D/Hm is the convective mass transfer
parameter, Ω is the porosity parameter, M is the Hartmann number, and R is the chemical
reaction parameter.

3. A novel transformation featuring time finite difference

For sake of calculation simplicity, we replace the partial derivatives ∂u/∂t, and ∂φ̂/∂t of
unknown functions u, and φ̂ by the difference quotients (un − un−1)/τ , and (φ̂n − φ̂n−1)/τ ,
respectively, where τ is the time step [31]. Eqs. (8)-(10) can be written as

∂un
∂x

+
∂vn
∂y

= 0, (13)

un − un−1

τ
+ un

∂un
∂x

+ vn
∂un
∂y

=
∂2un
∂y2

− (M + Ω)un, (14)

φ̂n − φ̂n−1

τ
+ un

∂φ̂n
∂x

+ vn
∂φ̂n
∂y

=
1

Sc

∂βφ̂n
∂yβ

−Rφ̂n. (15)

Here un, φ̂n represent the unknown solutions of nth time level and un−1, φ̂n−1 represent the
known quantity of n-1th time level.

To obtain the solutions, we define the stream function ψ satisfying u = ∂ψ/∂y and
v = −∂ψ/∂x. We introduce the following dimensionless functions F , φ̂ and the similarity
variable η as [32]

η = y, ψ = xF (η), φ̂ = φ̂(η). (16)
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Using (16), Eqs. (13)-(15) reduce to the following nondimensional forms

(τM + τΩ + 1)F ′n + τF ′2n − τFnF ′′n − τF ′′′n = F ′n−1, (17)

(1 + τR)φ̂n − τF φ̂′n −
τ

Sc
Dβ
η φ̂n = φ̂n−1, (18)

subject to the initial and boundary conditions

t ≤ 0 : F ′ = F = 0, φ̂ = 0 as η > 0, (19)

t > 0 :

{
F ′n = 1, Fn = 0, φ̂n = 1 +$φ̂′n as η = 0

F ′n = 0, φ̂n = 0 as η →∞
. (20)

The primes denote derivative with respect to η. The ambient condition of (20) is usually
replaced in numerical method by the suitable finite value

F ′n = 0, φ̂n = 0, as η → η0. (21)

We exploit the coordinate transform η = η0ξ, then (17) and (18) become

(τM + τΩ + 1)f ′n +
τ

η0

f ′2n −
τ

η0

fnf
′′
n −

τ

η2
0

f ′′′n = f ′n−1, (22)

(1 + τR)φn −
τ

η0

fnφ
′
n −

τ

ηβ0Sc
Dβ
ξ φn = φn−1. (23)

The initial and boundary conditions are given by

t ≤ 0 : f ′ = f = 0, φ = 0 as ξ > 0, (24)

t > 0 :

{
f ′n = η0, fn = 0, φn = 1 +$φ′n as ξ = 0

f ′n = 0, φn = 0 as ξ = 1
, (25)

where $ = $̃/η0 is the scaled convective mass transfer parameter and the primes denote the
differentiation with respect to the similarity variable ξ. The quantities of practical interest
in this paper are the skin friction coefficient Cf and the local Sherwood number Shx, which
are defined as

Cf =
τw
ρu2

w

, Shx =
xqm

D(Cw − C∞)
. (26)

τw is the wall shear stress and qm is the mass flux at the stretching surface, which are given
by

τw = µ
∂u

∂y

∣∣∣∣
y=0

, qm = −D∂C
∂y

∣∣∣∣
y=0

. (27)

The skin friction coefficient Cf and the local Sherwood number Shx are obtained as

CfRe
1/2
x = F ′′(0), Shx/Re

1/2
x = −φ′(0), (28)

where Rex = xuw/ν is the local Reynolds number.
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4. Numerical technique

4.1. The novel transformation

The governing equations (13)-(15) are transformed into ordinary differential equations
(ODEs) with regard to each time level (17)-(18) using novel transformation. Unlike the
traditional similarity transformation, this novel transformation featuring time difference
provides an effective method for solving space fractional partial differential equations of
unsteady boundary layer model.

4.2. The discretization of the convection anomalous diffusion problem

Consider ξn = τn for n = 0, 1, · · · , Nτ and a truncation error o(τ) of the difference in
time before similarity transformation. Set h = 1/N , ξj = jh, for j = 0, 1, ..., N . Then, to

discretize −Dβ
ξ φn and φ′n in (23), we use the classical L2 approximation of −Dβ

ξ φn(ξj) =

− 1
hβΓ(3−β)

j−1∑
k=0

dj−k(φ
n
k+2 − 2φnk+1 + φnk) +O(h) [33] and forward difference approximation of

φ′n(ξj) = (φnj+1−φnj )/h+O(h), respectively, where φnk denotes the computed approximation

to φn(ξk). We set dr = r2−β
+ − (r − 1)2−β

+ for all integers r, with

s+ =

{
s if s ≥ 0,
0 if s < 0.

(29)

The full discretization of (23) is

− τ

Scηβ0h
βΓ(3− β)

j−1∑
k=0

dj−k(φ
n
k+2
− 2φn

k+1
+ φn

k
)−

τfnj
η0

φnj+1 − φnj
h

+ (1 + τR)φn
j

= φn−1
j

(30)

for j = 1, 2, ...N − 1 and n = 1, 2, ..., Nτ .
Remark 1. The implicit finite difference scheme of (30) has a local truncation error of

er=O(h+ τ).
Eqs. (30), (24) and (25) can be written in matrix form

A~φn = ~φn−1. (31)

φ′n(0) of the boundary condition (25) is discretized by forward difference approximation of
φ′n(0) = (φn1 − φn0 )/h+O(h).

The unknowns ~φn := (φn0 , φ
n
1 , · · · , φnN)T are the solutions in nth time level of the linear

system (31). ~φn−1:= (1, φn−1
1 , φn−1

2 , · · · , φn−1
N−1, 0)T are the variables of n-1th time level, which

are treated as constants. A = (ajk)
N
j,k=0 denotes a (N + 1)× (N + 1) matrix corresponding

to the discretization (24), (25) and (30). The 0th row of A is (1 + $h−1,−$h−1, 0, · · · , 0)
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and its Nth row is (0, 0, · · · , 1). For j = 1, 2, . . . , N − 1, k = 2, 3, · · · , N , the entries of the
jth row of A satisfy

aj0 =
−dj

τ−1Scηβ0h
βΓ(3− β)

,

aj1 =
−dj−1 + 2dj

τ−1Scηβ0h
βΓ(3− β)

+ δj1

[
τfn1
hη0

+ (1 + τR)

]
,

ajk =
−dj−k + 2dj−k+1 − dj−k+2

τ−1Scηβ0h
βΓ(3− β)

+ δjk

[
τfnj
hη0

+ (1 + τR)

]
− δj,k−1

τfnj
hη0

,

(32)

where R satisfies R > 0 for physical characteristics of the model. We set

δjk =

{
1 if j = k
0 otherwise

. (33)

The non-zero entries of A satisfy various inequalities [34–36],

a00 > 0, a01 < 0, a
N,N−1

= 0, a
NN

= 1, ajj > 0, for all j,

aj0 < 0 for j = 1, 2, . . . , N − 1, aj1 > 0 for j = 2, 3, . . . , N − 1,

ajk < 0 for j = 1, 2, . . . , N − 1 and k = 2, 3, . . . , j − 2, j − 1, j + 1.

(34)

4.3. Monotonicity of the discretization matrix A

To ensure that A is invertible and admit the important inequality A−1 ≥ 0. The positive
off-diagonal entries in column 1 of matrix A become limitations for further analysis [34, 35].

So we multiply A by elementary row transformation matrices E(k) := (e
(k)
ij )Ni,j=0, where

e
(k)
ij = εij −

ak0

a00

εikεj0. (35)

Let
A′ = E(N−1)E(N−2) · · ·E(1)A, (36)

and denote A′ = (a′jk)
N
j,k=0. Row 0 of A′ is (a00, a01, 0, · · · , 0). By this technique a′j0 = 0 for

j = 1, 2, . . . , N − 1. For k ≥ 2 and all j, we clearly obtain a′jk = ajk. a
′
11 > 0 and a′j1 < 0

for j = 2, 3, . . . , N − 1 can be proved in [34].

Lemma 4.1. A′ is an M-matrix. Furthermore, A is invertible and A−1 ≥ 0, thus the matrix
A is monotone.

Proof. The matrix A′ has positive diagonal entries and nonpositive off-diagonal entries.
It is easy to validate that

∑N
k=0 a

′
0k =

∑N
k=0 a

′
Nk = 1. With

∑N
k=0 ajk = 1 + τR, (R > 0),
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one has

N∑
k=0

a′jk = 0 + (aj1 +
$h−1

1 +$h−1
aj0) +

N∑
k=2

ajk

= (
$h−1

1 +$h−1
− 1)aj0 +

N∑
k=0

ajk

= (
$h−1

1 +$h−1
− 1)aj0 + (1 + τR)

> 0

(37)

for j = 1, 2, . . . , N − 1. Thus there exists a vector ~w:=(1, 1, · · · , 1)T , subject to A′ ~w > ~0.
Consequently, A′ is an M-matrix and (A′)−1 ≥ 0. By (36), we have

A−1 = (A′)−1E(N−1)E(N−2) · · ·E(1), (38)

which implies that A−1 exists and A−1 ≥ 0, thus matrix A is monotone.

4.4. Stability and convergence

Lemma 4.2. A is a monotone matrix of order N+1 and there exists a vector ~w:=(1, 1, · · · , 1)T

with ‖~w‖∞ = 1 such that (A~w)0 = 1, (A~w)N = 1 and (A~w)i = 1+τR for i = 1, 2, . . . , N−1.
Then ‖A−1‖∞ ≤ 1 [37].

Proof. Let A−1 = (ãij)
N
i,j=0. Since I = A−1A we have

1 =‖~w‖∞ = ~wi = (A−1A~w)i =
N∑
j=0

ãij(A~w)j

≥
N∑
j=0

ãij = (A−1 ~w)i

(39)

for i = 0, 1, · · · , N , and note that

‖A−1‖∞ = ‖A−1 ~w‖∞, (40)

which yields
‖A−1‖∞ = max

i
(A−1 ~w)i ≤ 1. (41)

Theorem 4.1. (stability of the IFDM) The implicit finite difference method of (30) is un-
conditionally stable.
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Proof. We rewrite (30) as
~φn = A−1~φn−1. (42)

We suppose that φ̃n is an approximate solution of (42). The error εn = φ̃n − ~φn satisfies

εn = A−1εn−1. (43)

From lemma 4.2,

‖εn‖∞ = ‖A−1εn−1‖∞ ≤ ‖A−1‖∞‖εn−1‖∞ ≤ ‖εn−1‖∞. (44)

Applied (44) repeatedly n times, we obtain

‖εn‖∞ ≤ ‖ε0‖∞. (45)

Therefore the implicit numerical method defined by (30) is unconditionally stable.

Theorem 4.2. (convergence of the IFDM) The implicit finite difference method of (30) is
convergent, and the order of convergence is O(τ + h).

Proof. To discuss the convergence of the numerical method, let us suppose that enj =
~φ(ηj, tn) − ~φnj and en := (en1 , e

n
2 , · · · , enj−1)T . Using the initial boundary conditions e0

j = 0,
en0 = $/($ + h)en1 , enN = 0, we obtain the following error equation

en = A−1en−1 +M, (46)

and e0 = 0, where M = τ(O(τ + h))(1, 1, · · · , 1)T .
Hence we get the following error equation

en = ((A−1)
n

+ (A−1)
n−1

+ · · ·+ (A−1)
2

+ (A−1)
1

+ I)M. (47)

Then

‖en‖∞
≤(‖(A−1)

n‖∞ + ‖(A−1)
n−1‖∞ + · · ·+ ‖(A−1)

1‖∞ + ‖I‖∞)‖M‖∞.
(48)

Using lemma 4.2,
‖en‖∞ ≤ (n+ 1)τ |O(τ + h)|. (49)

Consequently, the implicit numerical method defined by (30) is convergent.
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4.5. Accuracy and effectiveness of the algorithm

In the computation we choose parameters τ = 0.01 and N = 300. It is assumed that
the velocity F and concentration φ have no significant changes after less than 10−4 at all
grid points in adjacent time steps. The value of η0 is taken as 5 to satisfy the boundary
condition (25). It is noted that velocity profiles with similarity variable η are shown in Figs.
2-4, while concentration profiles after coordinate transformation with similarity variable ξ in
order to fit in with the IFDM are presented in Figs. 5-6. When the steady state is reached,
the velocity equation (17) with the boundary conditions F ′(0) = 1, F (0) = 0 and F ′(∞) = 0
in (20) suggests a exact solution [38]:

F (η) =
1√

1 +M + Ω
(1− e−η

√
1+M+Ω). (50)

In this paper, we present the bvp4c to solve it numerically for different values of Hartmann
number M and porosity parameter Ω. The comparisons of numerical solutions of steady
state (t = 6) and exact solutions for velocity profiles are presented in Fig. 2. It is important
to note that the numerical results agree well with the exact solutions. Furthermore, the
results effectively show that the method of transformation featuring time finite difference
(13)-(15) is correct. It is indicated in Fig. 5 that the comparisons of solid line by IFDM and
dashed line by bvp4c for concentration profiles in β = 2 are made. Excellent agreement is
obtained as expected.

5. Results and Discussions

In this paper, the fractional convection-diffusion in unsteady MHD fluid flow through a
heterogeneous porous medium with first-order chemical reaction is investigated. The effects
of involved physical parameters on velocity and concentration fields are analyzed in detail,
such as Hartmann number M , porosity parameter Ω, time parameter t, fractional derivative
parameter β, scaled convective mass transfer parameter $, and Schmidt number Sc. Then
the variations of skin friction coefficient Cf and local Sherwood number Shx are examined.

Fig. 3 illustrates the impacts of Hartmann number M on the conducting fluid flow with
the conditions Ω = 0.1, Sc = 5, R = 0.2, $ = 1.1, β = 1.9 and t = 0.5. By assuming
Hartmann number M=0, the values of velocity are higher than that of the case, where a
vertical magnetic field is applied to the conducting fluid. The Lorentz force is generated by
the vertical magnetic field in conducting fluid, which tends to slow fluid flow. Therefore the
velocity of the MHD fluid is reduced with the increase of Hartmann number. One can see
that the velocity boundary layer thickness gets depressed slightly with the enhancement in
the Hartmann parameter physically. The effects of a continuous change of time parameter
on velocity distributions at different spatial positions are shown in Fig. 4. It is clear that
the velocity profiles increase until reaching steady with the enlargement of time parameter.
Moreover, the velocity closer to the wall becomes larger at all the fixed unsteady time and
it takes to reach the maximum velocity in a shorter time. It is noted that the fluid velocity
decreases with the increment of η because of the effect of stretching flow.
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Fig. 5 reveals the effects of fractional derivative parameter β on concentration profiles.
The concentration distribution decreases with the increasing fractional derivative parameter
near the surface, but the opposite trend occurs far away from the surface. This is because the
fractional anomalous diffusion takes into account nonlocality and the fractional model is able
to more accurately simulate heavy-tailed motions than the standard model. It can be further
obtained that the concentration gradient increases, while the thickness of concentration
boundary layer becomes thinner with the augments of β. Fig. 6 displays the effects of
the continuous change of time parameter on concentration distribution at different spatial
positions. From this figure, one can see that the concentration profiles of the MHD fluid
are decreased with the increase in the similarity variable ξ. The fastest change in the
concentration occurs in the case of ξ = 0.05. In addition, the concentration change slows
down with the increase of distance from the wall. It is concluded that the increase in time
parameter causes an increase in concentration profiles.

Fig. 7 depicts that the effect of Schmidt number Sc and the scaled convective mass
transfer parameter $ on the local Sherwood number Shx. It is observed that the local
Sherwood number decreases with increasing values of the scaled convective mass transfer
parameter. Moreover, larger Schmidt number corresponds to higher local Sherwood number.
That is to say, increasing Schmidt number leads to the increase of mass transfer on the sheet.
Table 1 shows the skin friction coefficient distributions for different Hartmann numberM and
porosity parameter Ω, when the other parameters are fixed (Sc = 5, R = 0.2, β = 1.9, and
$ = 1.1). With the augments of M and Ω, skin friction coefficient increases obviously. So
Lorenz force hinders MHD fluid flow on the sheet and with the increase of porosity parameter,
the friction on the wall is enhanced. The local Sherwood number distributions for different
chemical reaction parameter R and fractional derivative parameter β are presented in Table
2 with M = 0.1,Ω = 0.1, R = 0.2, and $ = 1.1. The local Sherwood number increases as the
chemical reaction parameter rises, but decreases with the augments of fractional derivative
parameter. These results demonstrate that the fractional derivative parameter reduces the
mass transfer clearly, i.e., anomalous diffusion reduces the mass transfer rate at the surface,
while the chemical reaction improves the mass transfer rate at the surface.

6. Conclusions

The unsteady flow and mass transfer of an incompressible MHD fluid over a moving plate
are studied in the present paper. Anomalous diffusion in a heterogeneous porous medium is
also considered. Under the condition of chemical reaction, the momentum equation together
with the concentration equation is converted into ordinary differential forms by using the
novel transformation featuring time finite difference. Numerical solutions are obtained by
using bvp4c and IFDM in symbolic computation software. Stability and convergence of the
IFDM are established. The effects of physical parameters on the flow, anomalous diffusion
characteristics in the boundary layer, the skin friction coefficient, and the local Sherwood
number are discussed in detail. From the computations and discussions above, we can draw
the following conclusions:

12



(I) The fractional derivative parameter exerts significant influences on the concentration
field. The thickness of concentration boundary layer becomes thinner with the increase
of the fractional derivative parameter. Increasing fractional derivative parameter en-
hances concentration near the surface, but the opposite behavior occurs far away from
the surface.

(II) Due to the application of the novel transformation featuring time finite difference, the
system of space fractional partial differential equations is reduced to the numerical
problem of ODEs for each time level.

(III) The velocity closer to the stretching sheet becomes larger on the unsteady-state time
and it reaches the maximum velocity in a shorter time.

(IV) The local Sherwood number increases as the chemical reaction parameter rises, but
decreases by the increasing values of fractional derivative parameter.
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7. Appendix-Derivation of the space fractional diffusion equation

Now we outline the argument for the stochastic theory of CTRWs. Let Ψ(r, t) be the
probability distribution of making a step of length r in a time between t and t + dt. The
total transition probability in (t,t+ dt) is [39–42]

Ψ(t) =
∑
r

Ψ(r, t) = Ψ(k = 0, t). (51)

Φ(t) is the survival probability that the interval (0, t) is empty

Φ(t) = 1−
∫ t

0

Ψ(τ)dτ. (52)

The conditional probability density η̃(r, t) of being at position r in the interval between t
and t+ dt is given by

η̃(r, t) =
∑
r′

∫ t

0

η̃(r
′
, t)Ψ(r− r

′
, t− τ)dτ + δR(t)δr,0 (53)

in which the initial condition of the random walk at position r = 0 at time t = 0 is
incorporated. From using η̃(r, t) it follows that we can write the probability C(r, t) of the
particle at place r at time t

C(r, t) =

∫ t

0

η̃(r, t− τ ′)Φ(τ ′)dτ ′. (54)
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The probability C(r, t) applys (53) and (54) along with a change in the order of the inte-
grations to get

C(r, t) =
∑
r′

∫ t

0

C(r
′
, τ)Ψ(r− r

′
, t− τ)dτ + Φ(t)δr,0. (55)

In Fourier-Laplace space (55) is derived

C(k, ω) = C(k, ω)Ψ(k, ω) + Φ(ω). (56)

The result can be obtained

C(k, ω) =
1−Ψ(ω)

ω

1

1−Ψ(k, ω)
. (57)

Now, we assume that space and time behaviors of CTRWs form are independent, i.e.,
Ψ(r, t) = φR(t)λR(r). The decoupled CTRWs process is characterized by the characteristic
waiting time and the jump length variance [43]

τR =

∫ ∞
0

dt t

∫ ∞
−∞

Ψ(r, t)dr and σ2
R =

∫ ∞
0

dt

∫ ∞
−∞

r2Ψ(r, t)dr. (58)

We choose σ2
R = ∞ as Lévy jump length distribution and τR < ∞ as Poissonian waiting

time, i.e.,

λR(k) = e−σ
β
R|k|

β ∼ 1− σβR|k|
β and λR(r) ∼ σ−βR |r|

−1−β, 1 < β < 2, |r| � σR. (59)

Substituting the asymptotic expansion form (59) into (57), we obtains

C(k, ω) =
1

ω +D|k|β
, (60)

where D = σβR/τR is the diffusion coefficient and the dimension of D is cmβs−1. Taking
Fourier-Laplace inversion, we obtain the space fractional diffusion equation

∂C

∂t
= D · ∇β

rC(r, t). (61)

For Lévy flights in an external velocity field v, the fractional advection-diffusion equation
(ADE) are given in a similar way [44, 45]

C(k, ω) =
1

ω + ivk +D|k|β
. (62)

In (x, t) space,
∂C

∂t
+ v

∂C

∂x
= D · ∇β

xC(x, t). (63)
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Walks fit a heavy-tailed probability distribution (β < 2) between computations and valida-
tion experiments [46, 47]. If β = 2, (63) becomes the classical ADE. Besides, the derived
equation is often represented by fractional derivatives in the Riemann-Liouville sense. How-
ever, the Caputo derivative often appears in applications. There is a general relation between
the Caputo and Riemann-Liouville forms. To see this, some basic definitions and useful re-
lations which are of relevance on fractional calculus are given as follows. Let 0 < x ≤ 1 and
m − 1 < n < m, (n ∈ R). The Riemann-Liouville fractional derivative RLDn is defined as
[48]

RLDnxg(x) =
1

Γ(m− n)

dm

dxm

∫ x

0

(x− t)m−n−1g(t)dt , (64)

where Γ(x) =
∫∞

0
tx−1e−tdt is the Gamma function. An alternative definition is the Caputo

fractional derivative Dn, which is defined in terms of RLDn by [49]

Dnxg(x) = RLDnx [g − Tm−1[g; 0]] =
1

Γ(m− n)

∫ x

0

(x− t)m−n−1g(m)(t)dt , (65)

where Tm−1[g; 0] is the Taylor polynomial of degree m − 1 for g(x) centered at x = 0.
Therefore, in the manuscript, we study the fractional convection-diffusion equation with the
Caputo fractional derivative for MHD fluid flow in a heterogeneous porous medium.

8. References

[1] H. Andersson, MHD flow of a viscoelastic fluid past a stretching surface, Acta Mechanica 95 (1) (1992)
227–230.

[2] P. Besthapu, R. U. Haq, S. Bandari, Q. M. Al-Mdallal, Mixed convection flow of thermally stratified
MHD nanofluid over an exponentially stretching surface with viscous dissipation effect, Journal of the
Taiwan Institute of Chemical Engineers 71 (2017) 307–314.

[3] W. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, International journal of
heat and mass transfer 53 (11-12) (2010) 2477–2483.

[4] T. Hayat, Z. Abbas, M. Sajid, Series solution for the upper-convected Maxwell fluid over a porous
stretching plate, Physics Letters A 358 (5) (2006) 396–403.

[5] M. Ramzan, M. Bilal, J. D. Chung, Effects of thermal and solutal stratification on Jeffrey magneto-
nanofluid along an inclined stretching cylinder with thermal radiation and heat generation/absorption,
International Journal of Mechanical Sciences 131 (2017) 317–324.

[6] E. Elbashbeshy, M. Bazid, Heat transfer over an unsteady stretching surface, Heat and Mass Transfer
41 (1) (2004) 1–4.

[7] B. S. Dandapat, B. Santra, K. Vajravelu, The effects of variable fluid properties and thermocapillarity
on the flow of a thin film on an unsteady stretching sheet, International Journal of Heat and Mass
Transfer 50 (5) (2007) 991–996.

[8] A. Ahmadi, A. Zahmatkesh, M. Hatami, D. Ganji, A comprehensive analysis of the flow and heat
transfer for a nanofluid over an unsteady stretching flat plate, Powder Technology 258 (2014) 125–133.

[9] M. R. Eid, K. L. Mahny, Unsteady MHD heat and mass transfer of a non-Newtonian nanofluid flow of a
two-phase model over a permeable stretching wall with heat generation/absorption, Advanced Powder
Technology 28 (11) (2017) 3063–3073.

[10] M. Khan, M. Azam, Unsteady heat and mass transfer mechanisms in MHD Carreau nanofluid flow,
Journal of Molecular Liquids 225 (2017) 554–562.

[11] A. Hamid, M. Khan, et al., Unsteady mixed convective flow of Williamson nanofluid with heat transfer
in the presence of variable thermal conductivity and magnetic field, Journal of Molecular Liquids 260
(2018) 436–446.

15



[12] F. Liu, I. Turner, V. Anh, An unstructured mesh finite volume method for modelling saltwater intrusion
into coastal aquifers, Journal of Applied Mathematics and Computing 9 (2) (2002) 391–407.

[13] V. Volpert, Y. Nec, A. Nepomnyashchy, Fronts in anomalous diffusion–reaction systems, Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
371 (1982) (2013) 20120179.

[14] P. Szymczak, A. Ladd, Boundary conditions for stochastic solutions of the convection-diffusion equation,
Physical review E 68 (3) (2003) 036704.

[15] H. Qi, X. Jiang, Solutions of the space-time fractional Cattaneo diffusion equation, Physica A: Statistical
Mechanics and its Applications 390 (11) (2011) 1876–1883.

[16] S. Fedotov, V. Méndez, Non-markovian model for transport and reactions of particles in spiny dendrites,
Physical review letters 101 (21) (2008) 218102.

[17] M. M. Meerschaert, A. Sikorskii, Stochastic models for fractional calculus, Vol. 43, Walter de Gruyter,
2012.

[18] L. Liu, L. Zheng, F. Liu, Time fractional Cattaneo-Christov anomalous diffusion in comb frame with
finite length of fingers, Journal of Molecular Liquids 233 (2017) 326–333.

[19] X. Chen, Y. Ye, X. Zhang, L. Zheng, Lie-group similarity solution and analysis for fractional viscoelastic
MHD fluid over a stretching sheet, Computers & Mathematics with Applications 75 (8) (2018) 3002–
3011.

[20] M. I. Asjad, F. Miraj, I. Khan, Soret effects on simultaneous heat and mass transfer in MHD viscous
fluid through a porous medium with uniform heat flux and Atangana-Baleanu fractional derivative
approach, The European Physical Journal Plus 133 (6) (2018) 224.

[21] T. K. Perkins, O. C. Johnston, A Review of Diffusion and Dispersion in Porous Media, Society of
Petroleum Engineers Journal 3 (3) (1963) 70–84.

[22] H. F. Lecoanet, J.-Y. Bottero, M. R. Wiesner, Laboratory assessment of the mobility of nanomaterials
in porous media, Environmental Science & Technology 38 (19) (2004) 5164–5169.

[23] D. Grolimund, M. Borkovec, Colloid-facilitated transport of strongly sorbing contaminants in natural
porous media: Mathematical modeling and laboratory column experiments, Environmental science &
technology 39 (17) (2005) 6378–6386.

[24] U. Scheven, D. Verganelakis, R. Harris, M. Johns, L. Gladden, Quantitative nuclear magnetic resonance
measurements of preasymptotic dispersion in flow through porous media, Physics of fluids 17 (11) (2005)
117107.

[25] J. Thovert, F. Wary, P. Adler, Thermal conductivity of random media and regular fractals, Journal of
Applied Physics 68 (8) (1990) 3872–3883.

[26] B. Berkowitz, H. Scher, S. E. Silliman, Anomalous transport in laboratory-scale, heterogeneous porous
media, Water Resources Research 36 (1) (2000) 149–158.

[27] B. Berkowitz, H. Scher, On Characterization of Anomalous Dispersion in Porous and Fractured Media,
Water Resources Research 31 (6) (1995) 1461–1466.

[28] B. Berkowitz, A. Cortis, M. Dentz, H. Scher, Modeling non-Fickian transport in geological formations
as a continuous time random walk, Reviews of Geophysics 44 (2) (2006) 177–186.

[29] P. De Anna, T. Le Borgne, M. Dentz, A. M. Tartakovsky, D. Bolster, P. Davy, Flow intermittency,
dispersion, and correlated continuous time random walks in porous media, Physical review letters
110 (18) (2013) 184502.

[30] A. Saadatmandi, M. Dehghan, A tau approach for solution of the space fractional diffusion equation,
Computers & Mathematics with Applications 62 (3) (2011) 1135–1142.
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Figures

Fig. 1: The physical model of unsteady stretching sheet in a heterogeneous porous medium.
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Fig. 2: The numerical solutions and exact solutions comparison for the velocity profiles with the conditions
t=6 (steady).
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Fig. 3: Effects of Hartmann number on velocity with the conditions Ω = 0.1;Sc = 5;R = 0.2;$ = 1.1;β =
1.9; t = 0.5.
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Fig. 4: Effects of time parameter and similarity variable η on velocity with the conditions M = 0.1; Ω =
0.1;Sc = 5;R = 0.2;$ = 1.1;β = 1.9.
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Fig. 5: Effects of fractional derivative parameter on concentration with the conditionsM = 0.1; Ω = 0.1;Sc =
5;R = 0.2;$ = 1.1; t = 1.
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Fig. 6: Effects of time parameter and similarity variable ξ on concentration with the conditions M = 0.1; Ω =
0.1;Sc = 5;R = 0.2;$ = 1.1;β = 1.9.
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Fig. 7: Effects of Schmidt number and scaled convective mass transfer parameter on local Sherwood number
with the conditions M = 0.1; Ω = 0.1;R = 0.2;β = 1.9; t = 1.

Table 1: Skin friction coefficient distributions for different M and Ω with t = 1.

CfRe
1/2
x Ω

0 1 2 3 4

M 0.2 -1.3991 -1.6636 -1.9053 -2.1283 -2.3356
0.4 -1.4540 -1.7136 -1.9513 -2.1709 -2.3754
0.6 -1.5079 -1.7627 -1.9966 -2.2130 -2.4147
0.8 -1.5608 -1.8111 -2.0412 -2.2544 -2.4535

Table 2: Sherwood number distributions for different R and β with t = 1.

Shx/Re
1/2
x β

1.8 1.85 1.9 1.95 2

R 0.2 0.8476 0.8464 0.8453 0.8443 0.8434
0.4 0.8510 0.8498 0.8487 0.8477 0.8467
0.6 0.8541 0.8529 0.8517 0.8507 0.8496
0.8 0.8568 0.8556 0.8544 0.8534 0.8523
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