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Urban Anomaly Analytics: Description,
Detection, and Prediction

Mingyang Zhang, Tong Li,Student Member, IEEE, Yue Yu,
Yong Li,Senior Member, IEEE, Pan Hui,Fellow, IEEE and Yu Zheng,Senior Member, IEEE,

Abstract—Urban anomalies may result in loss of life or property if not handled properly. Automatically alerting anomalies in their early
stage or even predicting anomalies before happening are of great value for populations. Recently, data-driven urban anomaly analysis
frameworks have been forming, which utilize urban big data and machine learning algorithms to detect and predict urban anomalies
automatically. In this survey, we make a comprehensive review of the state-of-the-art research on urban anomaly analytics. We first
give an overview of four main types of urban anomalies, traffic anomaly, unexpected crowds, environment anomaly, and individual
anomaly. Next, we summarize various types of urban datasets obtained from diverse devices, i.e., trajectory, trip records, CDRs, urban
sensors, event records, environment data, social media and surveillance cameras. Subsequently, a comprehensive survey of issues on
detecting and predicting techniques for urban anomalies is presented. Finally, research challenges and open problems as discussed.

Index Terms—Anomaly detection, spatiotemporal data mining, urban computing, event detection.
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1 INTRODUCTION

U RBAN anomalies are typically unusual events occur-
ring in urban environments, such as traffic conges-

tion and unexpected crowd gathering, which may pose
tremendous threats to public safety and stability if not
timely handled [1], [2]. For example, on January 26, 2017, in
Harbin, the largest city in the northeastern region of China,
a single traffic incident caused a serial rear-end collision
accident where eight people were killed, and thirty-two
people were injured. The government then admitted that
they did not detect the incident timely, which caused they
could not take immediate actions to prevent the happening
of the consequential tragedy. Therefore, for policymakers
and government, detecting anomalies at the early stage and
even predicting anomalies before happening are of the great
value to prevent serious incidents from occurring. On the
other hand, detecting and predicting urban anomalies are
also of great importance to improve the quality of life for
citizens [3]. For example, traffic jams are the most headache
problem for most metropolises nowadays. A severe traffic
jam can bring a lot of economic loss and ruin people’s
good moods. If most traffic jams happened in a city can
be predicted or detected at the early stage, it can further be
avoided becoming serious by notifying people to change
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their travel routes or transport. In this way, it will save
people a lot of time on the commute and further improve
their quality of lives.

Meanwhile, smart devices and various kinds of sensors
widely located in cities collect the data produced in urban
areas in real-time and form a large-scale, cross-domain and
multi-view data ecosystem. These collected data, termed
urban big data [4], [5], differentiate from other types of data
from three aspects. First, the volume of urban big data is
large. Huge number of urban activities leave rich digital
footprints such as trajectories of vehicles and posts on social
media platforms, which compose of immense amount of
urban data. Second, the forms of urban big data are various.
Different sources usually produce urban data in different
forms, including structured data such as human trip records
and unstructured data such as surveillance videos. More-
over, urban data are associated with timestamps and loca-
tion tags, which usually contain rich contextual information
and bring complex temporal and spatial correlations and
dependencies among different data points. Due to these
unique qualities, the study of urban big data has formed
an emerging research area that attracted wide interests in
recent years. On one hand, new systems and algorithms
have been proposed for efficient management [6], [7], [8]
and analysis [9], [10] of urban big data. On the other
hand, the arising of urban big data also inspired many new
applications, ranging from understanding city-scale human
mobility and activity patterns [11], [12], [13], [14], [15],
[16], [17], inferring land usage and region functions [18],
[19], [20] to discovering traffic problems [21], predicting air
quality [22] and diagnosing urban noise problems [23].

In this urban big data era, new urban anomaly analysis
frameworks have formed as well which utilize data-driven
intelligence to detect and predict urban anomalies automat-
ically [24], [25], [26]. Compared with traditional methods
which rely on human observations and reports, the data-
driven urban anomaly analysis frameworks are low-cost
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Fig. 1: The logic of data-driven urban anomaly analysis.

and more efficient [5], [27]. For example, many taxis are
equipped with GPS devices that can report precise locations
of cars in a second-level sample rate. From these location
series, we can quickly know the trajectories of taxis and
further infer the traffic condition in specific areas and detect
traffic anomalies by looking at the speed and routing choices
of cars. The logic of data-driven urban anomaly analysis is
shown in Fig. 1. We first define three concepts that establish
the bridge connecting cyberspace and physical space.

• Urban data are spatiotemporal data produced by
mobile devices or distributed sensors in cities. These
data are usually associated with timestamps and lo-
cation tags. The urban data can be in different forms
and contain information of a location in a particular
time or time interval.

• Urban dynamics refer to the changes of urban phys-
ical status, which includes urban human mobility
such as crowds or traffic flows and changes of urban
environment. They are the fundamental elements of
urban events and the basic description of a place’s
condition.

• Urban events refer to social or individual activities
that happen in urban areas, which are the underlying
causes of urban dynamics. In the context of urban
anomaly detection and prediction, we consider two
types of urban events: normal urban events and
abnormal urban events. The former are regular ur-
ban human activities or environment changes. The
latter are unexpected irregular events, which are the
targets of urban anomaly detection and prediction.

To understand the logic of data-driven urban anomaly
analysis, we start with illustrating the relations among
above three concepts from the view of real world causality.
First, urban events are the root causes of urban dynamics.
The changes of urban status, such as moving of human
beings and cars, are always driven by motivations that
correspond to specific urban events. For example, the traffic
flows on roads around a residence area at 6pm may be
caused by the event that people going home from work
places. Second, urban dynamics impact urban data. For
example, the gathering of crowds will make the number
of cellphones connecting to the nearby cellular towers rise

sharply. The logic of data-driven urban anomaly detection
or prediction follows the opposite direction. First, urban
dynamics are described by urban data. Urban dynamics
are hard to be directly observed and understood timely
and comprehensively due to their rapidly changing and
spatial complexity, but they can be inferred from urban
data. For example, from the loop detectors on main roads
we can easily know about the traffic conditions around
the city. Second, urban dynamics indicate the underlying
urban events. The assumption that normal urban dynamics
correspond to normal events while abnormal urban dy-
namics indicate urban anomalies makes the cornerstone of
data-driven urban anomaly detection and prediction. By
detecting abnormal patterns in urban dynamics or predict
abnormal urban dynamics, we can finally achieve the goal
of urban anomaly detection or prediction.

Following above logic, we propose a general framework
of data-driven urban anomaly analysis in Fig. 2. Various
types of urban data are first represented in specific data
structures. Then the data are feed into detection or pre-
diction models to identify or forecast the happening of
concerned urban anomalies. The four components of the
framework correspond to following questions we discuss
in this survey.

• What kinds of urban data are used and how to
represent them in data structures?

• What are the general detection and prediction meth-
ods?

• What kinds of anomalous events can be detected and
predicted?

To answer above questions, we systematically study
relevant research in recent years and draw our conclusions.
We overview the related works from three aspects, i.e., urban
data, anomaly types and methods. First, in section 2, we
describe the types of urban data commonly used and the
data structures used to represent urban data. In section 3, we
introduce four main types of urban anomalies studied in the
existing literature, i.e., traffic anomaly, unexpected crowds,
environment anomaly, and individual anomaly. After that,
we summarize the algorithms proposed in the related litera-
ture in section 4. In section 5, we discuss the open challenges
in urban anomaly filed. Finally, conclusions are drawn in
section 6. In Table 1, we list the literature in terms of what
types of anomaly they detect or predict and what kinds of
datasets and methods they use.

There are several surveys on related topics. Outlier de-
tection for various types of data have been widely studied
and reviewed [28], [29], [30]. Our paper focuses on the scope
of urban anomalous event detection, which has formed
special logic and methods due to the unique attributes of
urban big data and its close connection to the real-world
environment. Zheng et al. [5] first proposed the concept
of urban computing and discussed data-driven urban ap-
plications including urban planning, transportation, public
safety and so on. This paper also involved urban anomaly
detection as a child topic of urban computing, but merely
reviewed the methods of traffic anomaly and disaster de-
tection. In this survey, we greatly extend the discussion
by giving a systematic formulation and review of urban
anomaly from the aspects of basic logic, data types, anomaly
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types and methods. There are also some survey papers on
traffic anomaly detection [31], [32]. Compared with these
works, our survey covers a wider range of general urban
anomalies and aims to provide a universal discussion on
the detection and prediction logic and framework of ur-
ban anomalies. The contributions of this paper are three-
fold. First, we formulated and reviewed the data-driven
urban anomaly detection and prediction problem for the
first time. We defined the basic concepts and proposed
the general logic. Second, we systematically investigated
considerable number of recent related works and proposed
our taxonomies in terms of the urban data, anomaly types,
detection and prediction methods. Third, we discussed the
challenging problems in this area and pointed out potential
research directions.

2 URBAN DATA

2.1 Tyeps of urban data
The datasets are the core part of data-driven urban anomaly
detection and prediction. Nowadays, various data can be
collected from electronic devices. One of the most important
sources is smartphones. For example, when users make
phone calls or access cellular networks, their locations will
be recorded and can be used to track user mobility and
even estimate the density of populations [63]. The text
and pictures posted on social media by smartphones are
also ideal semantic descriptions of the urban environment,
which can help to understand the events happening around.
Also, electronic sensors distributed around urban areas are
the other important sources of urban data. For example,
the surveillance cameras can collect surrounding scenes and
traffic sensors provide real-time traffic status. In this section,
we classify urban datasets into eight categories in terms
of data types and attributes. six of them are structured
data, i.e., trajectory, trip records, urban sensor records, and
mobile phone call detail records (CDRs), event records and
environment data. The other two are unstructured data, i.e.,
social media data and surveillance camera data.

2.1.1 Trajectory
A trajectory consists of a series of time-location records,
which are reported by GPS devices in a sample rate of
the second level. The trajectory datasets provide the most
detailed and comprehensive records of object movements.
One of the primary sources of trajectory data is the taxis
with GPS equipment. As one of the most critical urban
transport, taxis are widespread in urban areas and run for
almost 24 hours every day. Lots of works are based on taxi
trajectories[46], [111], [61], [71], [112]. In practice, trajectory
datasets can be used to detect traffic anomalies, unexpected
crowds, and even individual anomalies. For example, gath-
ering events are detected by predicting human mobility
using trajectory data [69], traffic incident is caught based
on taxi trajectories [59] and taxi driving fraud is identified
by detecting trajectory outliers [44].

We summarize popular trajectory datasets used in ex-
isting literature in Table 2. These datasets are collected from
metropolitan areas, especially the areas of a large population
such as Beijing, Shanghai, and Singapore. The duration
of datasets varies from days to years. The sample rate is

usually at the second or minute level, which is considered
dense enough to track the mobility of vehicles. The quantity
of datasets is given by the number of trajectories(T) or the
location points(P) reported by GPS.

2.1.2 Trip records
Trip records are usually collected from taxis and sharing
bike systems. Each trip record contains the start location,
end location, trip distance, and trip duration. One of the
primary applications of vehicle trip data is to understand
human mobility in urban areas. For example, the total num-
ber of taxi trips from one region to another region reflects the
number of people moving from one area to another to some
extent. Hence, people gathering events can be discovered by
monitoring taxi trips.

The most commonly used trip record datasets are listed
in Table 3. These datasets are published by city taxi or public
sharing bike operators and updated every month or season.
The duration of these datasets is up to years, except the bike
trip dataset from San Francisco. In taxi trajectory datasets,
the start and end locations are usually given as the street
name or block name, while in sharing bike systems the
locations are bike stations. Each dataset contains millions
of trip records produced by thousands of unique vehicles.

2.1.3 CDRs
Mobile phone call detail records (CDRs) include the time
and location information of phone calls [113]. CDR data use
the positions of the associated base stations as user locations.
Besides, the time interval between two phone calls made by
one user is usually up to hours or even days, which makes
CDRs sparser than trip data. However, since the penetration
of mobile phones and the vast number of phone calls made
every day, CDRs are more accessible and of a large volume.
With these advantages, CDRs are widely used to estimate
human mobility and population distributions [114], [115],
[116]. The typical CDR datasets are listed in Table 4. These
datasets are collected by the internet service providers (ISPs)
and contain millions of users with the duration from months
to one year.

2.1.4 Urban sensing data
Apart from mobile phones and GPS devices, there are also
many sensors distributed around urban areas to collect
urban data. The most common sensors are the loop detec-
tors on roads, which are installed underneath pavements
at around half a mile intervals. Loop detectors record the
vehicles passing that location. The records can be utilized
to evaluate vehicle speeds and road conditions [91], [90],
[87]. Besides, public transport card reading machines in bus
and subway stations are another important user sensors
that record the volume of people flows [65]. These various
sensors can reflect the urban dynamics of one location from
different perspectives.

2.1.5 Event records
For specific types of urban anomalies, there are some
datasets comprehensively recording the event time, loca-
tions and descriptions. For example, the traffic accident
records provided by traffic management departments are
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TABLE 1: Urban Anomaly Analysis Works. (Tj. is Trajectory, Tp. is Trip, US. is Urban Sensor, SM. is Social Media, ER. is Event Records, EV. is Environment Data. SC. is
Surveillance Camera. In Urban Anomaly columns, T. is Traffic Anomaly, C. is Unexpected Crowds, E. is Environment Anomaly, I. is Individual Anomaly. In Detection
columns, S. is Spatiotemoral Feature Based, P. is Urban Dynamics Pattern based. In Prediction columns, C. is Classification Methods, R. is Regression Methods.)

Literatures Urban Data Urban Anomaly Detection Prediction
Name Year TJ. TP. C. US. ER. EV. SM. SC. T. C. E. I. S. U. V. C. R.

Lee et al.[33] 2008
√ √ √

Piciarelli et al.[34] 2008
√ √ √

Li et al.[35] 2009
√ √ √

Benezeth et al.[36] 2009
√ √ √

Kim et al.[37] 2009
√ √ √

Mehran et al.[38] 2009
√ √ √

Ge et al.[39] 2010
√ √ √

Mahadevan et al.[40] 2010
√ √ √

Yang et al.[41] 2011
√ √ √

Yang et al.[42] 2011
√ √ √

Pang et al.[43] 2011
√ √ √

Ge et al.[44] 2011
√ √ √

Zhang et al.[45] 2011
√ √ √

Chen et al.[46] 2011
√ √ √

Saligrama et al.[47] 2012
√ √ √

Ceapa et al.[48] 2012
√ √ √

Zhang et al.[49] 2012
√ √ √

Chawla et al.[21] 2012
√ √ √

Witayangkurn et al.[50] 2013
√ √ √

Pan et al.[51] 2013
√ √ √

Li et al.[52] 2013
√ √ √

Zhu et al.[53] 2013
√ √ √

Rozenshtein et al.[54] 2014
√ √ √ √

Yang et al.[55] 2014
√ √ √

Sabokrou et al.[56] 2015
√ √ √

Cheng et al.[57] 2015
√ √ √

Xu et al.[58] 2015
√ √ √

Kinoshita et al.[59] 2015
√ √ √

Chen et al.[60] 2015
√ √ √

Zhang et al.[61] 2015
√ √ √

Zheng et al.[62] 2015
√ √ √ √

Dong et al.[63] 2015
√ √ √

Wang et al.[64] 2016
√ √ √

Wang et al.[65] 2016
√ √ √

De et al.[25] 2016
√ √ √

Banerjee et al.[66] 2016
√ √ √

Wu et al.[67] 2017
√ √ √

Chiang et al.[68] 2017
√ √ √

Vahedian et al.[69] 2017
√ √

Hu et al.[70] 2017
√ √ √ √

Zhu et al.[71] 2017
√ √ √

Khezerlou et al.[72] 2017
√ √ √

Teng et al.[73] 2017
√ √ √ √

Chen et al.[74] 2017
√ √ √

Tomaras et al.[75] 2017
√ √ √

Xu et al.[76] 2017
√ √ √

Ravanbakhsh et al.[77] 2017
√ √ √

Sabokrou et al.[78] 2018
√ √ √

Lin et al.[79] 2018
√ √ √

Zhang et al.[1] 2018
√ √ √

He et al.[80] 2018
√ √ √

Zhang et al.[81] 2018
√ √ √

Zhu et al.[82] 2018
√ √ √

Djenouri et al.[83] 2018
√ √ √

Trinh et al.[84] 2019
√ √ √

Djenouri et al.[85] 2019
√ √ √

Zhang et al.[2] 2019
√ √ √ √

Chong et al.[86] 2004
√ √ √

Oh et al.[87] 2005
√ √ √

Adbel et al.[88] 2006
√ √ √

Ahmed et al.[89] 2012
√ √ √

Xu et al.[90] 2013
√ √ √

Xu et al.[91] 2013
√ √ √

Yu et al.[92] 2014
√ √ √

Copeland et al.[93] 2015
√ √ √

Madaio et al.[94] 2015
√ √ √

Potash et al.[95] 2015
√ √ √

Chen et al.[96] 2016
√ √ √ √

Madaio et al.[97] 2016
√ √ √

Konishi et al.[98] 2016
√ √ √

Huang et al.[99] 2016
√ √ √

Wang et al.[100] 2016
√ √ √

Chojnacki et al.[101] 2017
√ √ √

Sun et al.[102] 2017
√ √ √ √

Wu et al.[103] 2017
√ √ √

Ren et al.[104] 2018
√ √ √

Singh et al.[105] 2018
√ √ √

Abernethy et al.[106] 2018
√ √ √

Kumar et al.[107] 2018
√ √ √

Yuan et al.[108] 2018
√ √ √

Huang et al.[109] 2018
√ √ √

Huang et al.[110] 2019
√ √ √
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Fig. 2: General framework of data-driven urban anomaly analysis.

TABLE 2: Trajectory datasets

Dataset Duration Sample Rate (s/point) #T/#P (×103) #Vehicles
Porto[67] 1.5 years 15 486 T 442

Shanghai1[67] 10 days 10 757 T 13650
Beijing1[79] 1 week - 450 P 8940

Singapore[68] 2 months - 50 P -
Shanghai2[61] 2 years - 10,000,000 P 10000
Hanzhou[61] 1 year - 3,000,000 P 5000
Beijing2[51] 2 months 70.5 19,455 T 13597

TABLE 3: Trip Record Datasets

Dataset Duration #Trips (×106) #Vehicles
NYC-taxi1 [79] 1 year 3 -

Washington [48] 3 year 8 3296
NYC-bike [62] 1 year 8 6811
NYC-taxi2 [62] 1 year 165 14144

San Francisco [35] 30 days 0.8 500

available in several cities [86], [82], [96]. These datasets are
usually used for detection or prediction result validation.
Crime records provided by police offices are also used in
some works [100], [109], [110], which usually include the
time, location, category and severity information. As a spe-
cial kind of urban anomaly, crime events have close relation
with location properties such as average income and pop-
ulation density. Therefore, the crime records are commonly
adopted for neighborhood crime rate prediction [100], [109].

2.1.6 Environment data
Concerning environment anomaly detection in urban ar-
eas, environment data are the primary data source. The
environment information such as building conditions can
be used to evaluate fire risk in urban areas [105], [97],
[94]. Also, in the case of water system monitoring, the test
results of water samples are used [101], [95], [107]. On the
other hand, the happenings of other kinds of anomalous
events are sometimes affected by environmental factors as
well. Thus, environment data, as the extra information, are
usually used to assist anomalies detection and prediction.
For example, the weather data are widely used in traffic
anomaly detecting since the bad weather is a primary cause
of traffic accidents [91], [88], [92], [86].

2.1.7 Social media
Social media data from Twitter and Weibo are widely em-
ployed for event discovering as well [120]. However, for
urban anomalous events, social media datasets are usually
not used separately. For example, the topic distribution of
social media data is used as a feature and together with
other types of urban data for multi-view anomaly detection
and prediction [62], [73]. In some literature, social media
data are also used to get a semantic understanding of
detected events [51].

2.1.8 Surveillance Camera
Surveillance camera plays a vital role in capturing and
monitoring human mobility. Detecting abnormal behaviors
such as traffic peccancy from surveillance camera videos
is an important research area that attracted wide interests.
We list widely used camera surveillance datasets in Table 5.
The subway dataset consists of two videos, ‘entrance gate’
(1 hour 36 minutes long with 144,249 frames) and ‘exit
gate’ (43 minutes long with 64,900 frames) [121]. The UCSD
dataset collects the videos from walkways in the campus of
University of California, San Diego. The data are split into
two subsets, Peds1 and Peds2. Peds1 records the people
walking towards and away from the camera and contains
34 training video samples and 36 testing video samples.
Peds2 records the pedestrians parallel to the camera plane
and contains 16 training video samples and 12 testing video
samples [122]. The VIRAT dataset [123] consists of station-
ary ground camera data over 25 hours and 16 different
scenes of high resolution. The CUHK dataset [124] contains
15 sequences of 2 minutes for each. In this dataset, there are
14 types of abnormal events including running, throwing
objects, loitering and so on.
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TABLE 4: CDR Datasets

Dataset Duration # of users or divices(×106) # of records (×106)
San Francisco[114] 1 month 1 -
Massachusetts[117] 4 months 1 -

Shen Zhen[115] 1 year 10 435
Haiti[118] 6 weeks 1.9 -

Senegal[63] 5 months 0.05 -
Los Angles[119] 140 days 0.2 321
New York[119] 140 days 0.15 223

TABLE 5: Camera Records Datasets

Dataset # of Frames Resolution
Subway-entrance[121] 144,249 512× 384

Subway-exit[121] 64,900 512× 384
UCSD-Ped1[122] 14,000 158× 238
UCSD-Ped2 [122] 5,600 320× 240

VIRAT[123] 37,500-45,000 1920× 1080
CUHK [124] 35,240 -

2.2 Urban data representation
For urban data to be processed by detection and prediction
models, they must be represented by data structures. The
choices of data structures depend on the natural properties
of urban data. One common property of above mentioned
six types of urban data is that they are associated with times-
tamps and locations. This kind of data are generally termed
as spatiotemporal data, which differ from other data types
because of the presence of correlations in both spatial and
temporal domains [125]. Therefore, the representation of
urban data need to take their spatial relations and temporal
relations into consideration. In this subsection, we discuss
five data structures that are commonly used to represent
urban data, which are respectively point, sequence, matrix,
tensor and graph. We will discuss the characteristics of each
data structure and what types of urban data they are used
to represent as shown in Fig. 3.

• The simplest way is to represent urban data instances
with independent points. In this way, neither of the
spatial and temporal relations between urban data
instances is considered. Points are usually used to
represent passively collected urban data, such as
social media and taxi trips. For those types of ur-
ban data, The time intervals between consecutive
data instances are not fixed and in the same time,
the locations where data instances are produced are
also uncertain, which make it hard to model their
temporal dependency and spatial relations.

• Some urban data are generated in a specific sample
rate, which naturally form time series that can be
represented by sequences. For example, a trajectory
contains a sequence of GPS locations that generated
in every few seconds. Some other urban data, such
as trips and CDRs, are a set of independent event
records, which can also be modeled as sequences
by counting the number of events that fall into
consecutive time intervals. Comparing with points,
sequences reserve the temporal orders of urban data
instances but also lose the spatial relations.

• If the urban data are multivariate time series, they
are usually truncated into fixed length in time di-
mension and represented as matrices. The second
dimension of the matrix can be regions [74] or fea-
tures [55]. In the former case, even multiple locations
are considered in this representation, the relations
between locations are still neglected. Therefore, a
matrix representation still can only reserve temporal
dependencies.

• Urban data usually contain multidimensional in-
formation including times, locations and features,
which can represented by tensors. In practice, 3D
tensors are most commonly used. For example, in
some works [126] urban areas are divided into n× n
grids and sequential observed data in these grids
form a tensor. In this case, the geographic adjacency
relations are reserved by the representation. In some
other works [79], [74], the three dimensions are re-
spectively time, location and multivariate features
such as observations from different sensors.

• Above data structures can reserve very limited spa-
tial relations between urban data instances. The
graph is utilized in some works to overcome this
shortcoming [54], [25], [73]. For example, trip data
can be represented with graphs that have locations
as nodes, and the weights of edges are decided by
traffic flow between regions. And data collected from
distributed urban sensors can also be represented
as graphs with locations as nodes and geographic
relations as edges.

Different data representations usually lead to different de-
tection or prediction models. For example, by representing
urban data as sequences, urban anomaly detection can be
transformed to classic time series outlier detection prob-
lem [127]. With a matrix or tensor representation, recent
deep learning techniques such as Convolutional Neural Net-
work(CNN) can be applied to process urban data. In section
4, we will discuss the detection and prediction models in
details.

3 URBAN ANOMALOUS EVENTS

The events happening in urban areas can be simply classi-
fied into two types, normal events, and abnormal events.
The normal events refer to regular activities following
certain patterns or rules, while the abnormal events refer
to incidental events happening by accident. For example,
crowds gathering at rush hours around a subway station is
a normal event since it follows a regular pattern occurring
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periodically every weekday. A pop concert held around
can also cause a significant rise in subway traffic, but it
should be considered as an anomalous event since it rarely
happens and follows an irregular pattern. In this section,
we will discuss four kinds of urban anomalies that are most
commonly studied, i.e., traffic anomaly, unexpected crowds,
environment anomaly, and individual anomaly.

3.1 Traffic Anomaly
The traffic is of vital importance for the daily lives of
citizens. Detecting and predicting traffic anomalies attract
a lot of researchers [87], [88], [128], [129]. Traffic anomalies
mainly have two types. The first one is traffic congestion
that is usually caused by traffic incidents or traffic overload.
Traffic congestion will cause the slowdown in traffic speed
or increase in traffic volume on specific roads, but these
effects only last for a short time like a few minutes or hours.
The other one is road management, like maintenance or
closure of roads, which usually causes a sharp drop in traffic
volume and the effect will keep for a longer time.

The works on traffic anomaly analysis can be classified
into two types: local traffic anomaly analysis and group traf-
fic anomaly analysis. The first type of works treat the road
network as a combination of independent road segments
and detect or predict the anomalies for each road segment.
In these works, traffic features such as vehicle speed are
first extracted for different road segments. Then general
anomaly detection methods [28] such as statistical meth-
ods [63], [55], [64] and neighborhood based methods [85] are
applied in the feature space to identify traffic anomalies. The
second type of works consider the road segments are not
independent and traffic anomalies usually affect multiple
road segments instead of merely one road segment. In other
words, if the road network is regarded as a graph, a traffic
anomaly is more likely an anomalous subgraph instead
of an abnormal edge. Based on this consideration, some
works detected a group of connected road segments as an
abnormal group[51], [68]. In [21], [128], the authors further
explored the causal interactions among road segments and
identified the root cause of traffic anomalies.

3.2 Unexpected Crowds
Unexpected crowds in urban areas are one of the major
threats to public safety. For example, on Dec. 31th, 2014,
more than 300,000 people flowed into the Bund in Shanghai
for the light show on New Year’s Eve. The volume of
crowds highly exceeds the expectation of organizers and the

overcrowding led to a tragic stampede and caused 36 people
killed and 49 injured in the end. Such accidents could be
prevented if the gathering of people is detected or predicted
in its early stage [51], [63]. On the other hand, the increase
in people density in a region usually can be reflected in
the urban data domain, such as the sudden increase in the
number of cellular subscribers for the base stations around
that area and the unexpected rise in the number of exiting
passengers of nearby subway stations [48]. These abnormal
changes in urban data can help to discover the happening
of unexpected crowds.

One significant difficulty to detect or predict unexpected
crowds is the limited number of recorded events, which
makes it hard to evaluate the effectiveness of different
detecting and predicting algorithms. In practice, existing
works usually use festival celebration, pop concerts, and
sports matches as abnormal events, which can be discrim-
inated by their effect scope. For example, concerts and
matches only have a local influence, while the other events
like festivals and extreme weather usually cause unusual
changes of urban dynamics in city-scale.

3.3 Environment Anomaly
Urban environment anomalies are also a significant category
of anomalous urban events and highly related to public
safety. For example, fire incidents in cities are a severe
threat to people’s lives and property [97], [105]. Besides,
the pollution of the water system is another kind of urban
environment anomaly that may harm residents’ health [101],
[107].

Unlike other kinds of urban anomalies, environment
anomalies are mainly caused by environment changes in-
stead of large-scale human activities and usually do not
show significant signs before happening. Hence, instead of
directly detecting and alerting the urban anomalous, current
works of environment anomalies focus on evaluating the
risk or tracing the causes. For example, Micheal et al. [97]
evaluated whether a building has a risk of fire based on the
building condition information. Alex et al. [101] explored
the residential water contamination based on water sample
tests.

3.4 Individual Anomaly
Traffic anomalies and unexpected crowds usually have a
lot of participators and have a relatively large-scale im-
pact. However, there are still some urban anomalies that
are caused by abnormal individual activities and have less
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public influence. For example, and some criminal or illegal
activities such as taxi fraud [44] and illegal parking [80].

In this survey, we term such events as individual anoma-
lies and also consider it a critical anomaly category. There
are two reasons. On the one hand, the detection of such
anomalies can help to discover criminal or illegal activities
and protect urban security. On the other hand, a large-scale
anomalous event is consist of a lot of individual anomalies.
Analyzing the spatial and temporal interactions of a lot of
individual anomalies can also help to detect other kinds of
anomalies.

4 ALGORITHMS

4.1 Anomaly Detection
In this section, we will discuss the state-of-art algorithms
on urban anomaly detection. While urban anomaly detec-
tion lies in the scope of outlier detection which has been
widely studied and reviewed [130], [28], it has particularities
because of the complexity of urban data and close con-
nection with physical urban environment. We classify the
algorithms into three main groups including spatiotemporal
feature based, urban dynamic pattern based and video
anomaly detection methods. An overview of our classifi-
cation is shown in Fig. 4.

4.1.1 Spatiotemporal Feature Based
Spatiotemporal feature based methods reduce the urban
anomaly detection problem to a classical anomaly detection
problem. Classical anomaly detection algorithms can not
be directly applied to urban anomaly detection problem
because urban data are affected by complex urban environ-
mental factors and contain enormous amount of redundant
information. To cope with this problem, essential informa-
tion needs to be extracted from urban data to construct or
learn a feature to embed the data instances into a general
feature space. The general process of spatiotemporal feature
based methods is shown in Fig. 5, which consists of two
cascaded steps. In the first step, spatiotemporal features are
extracted from urban data. In second step, the features are
feed into an outlier detector to identify anomalies.

There are three levels of spatiotemporal features adopted
by existing works. The first level is simple physical features,
which are direct observations from urban data and usually
have explicit physical meanings such as vehicle speed and
travel time. The second level is hand-crafted features that
constructed from urban data based on specific definitions,
such as spatiotemporal similarity and driving routing pat-
tern. And the last level is features learned from urban
data by representation learning methods such as subspace
learning and manifold learning methods.

4.1.1.1 Simple physical feature: Simple physical fea-
tures are widely used because they are easy to access and
have clear real world meanings. In [64], [68], the average
vehicle speed is used to detect traffic accidents or conges-
tion. They divided urban road networks into small segments
and estimated the traffic flow speed based on trajectories in
a small time slot. In [64], Wang et al. computed the change
rate of traffic flow speed and regarded an anomaly occurring
when the change rate exceeds a threshold. In [68], Chiang
et al. derived a congestion score based on vehicle speed to
detect traffic congestion. Additionally, some existing works
use travel distance as a feature to detect urban anomalies.
As for the trips of similar start point and destination, their
travel distance should also be similar and around a constant.
Based on this fact, Zhang et al. [49] proposed a framework to
detect taxi trips with abnormal travel distance and further
inferred traffic congestion based on abnormal trips. Simi-
larly, in [44], the travel distance was used as the evidence
for taxi fraud detection. As for trajectory outlier detection,
the moving direction is another useful feature. In [39], Ge
et al. proposed a system calculating an outlier score for a
trajectory based on its moving direction sequence.

4.1.1.2 Hand-crafted feature: Higher-level human-
designed features are also used for urban anomaly detec-
tion. A widely considered feature is temporal or spatial simi-
larity. An example [1] is shown in Fig. 6. This work considers
the spatiotemporal similarity among urban regions as the
features. First, urban area is partitioned into small regions
based on road network. Then for each region the authors
calculate a similarity score between this region and all other
regions from their historical taxi and bike trip records. Li et
al. [35] represented road networks as a directed graph and
computed the similarity between edges. They considered
every edge should have stable neighbors in the feature space
and detected traffic anomalies by monitoring the change
of edge neighbors. In [63], Dong et al. considered temporal
similarity. They first identified anomalous users by compar-
ing the similarity between an individual’s current trajectory
and his/her historical trajectories. They then detected unex-
pected crowds by searching gathered abnormal individuals.
In the case of traffic anomaly detection, routing behavior
can also be modeled as a feature. Pan et al. [51] defined
the routing pattern between two locations as a vector of the
traffic volume on each path that connects the two locations.
In [44], the authors represented a trajectory as a sequence
of symbols of the passed locations. They then assigned a
codeword to each symbol. By this meaning, the anomalous
trajectories have unusually high code cost based on coding
theory. In [83], [85], the authors proposed flow distribution
probability based on the traffic flow during a time interval
at a location, then traffic anomalies are detected by applying
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general outlier detection methods on the database of flow
distribution probabilities.

4.1.1.3 Representation learning: While simple phys-
ical features and hand-crafted features are easy to access and
understood, they can hardly reserve the complex spatial and
temporal correlations of urban data instances. In order to
obtain comprehensive spatiotemporal features from urban
data, representation learning methods are adopted in many
works.

Principal Component Analysis (PCA) and its variants are
the most popular subspace learning methods. The principal
idea of PCA is to use an orthogonal transformation to
convert linearly correlated data into linearly uncorrelated
data. A variant of PCA is Robust PCA [131] that can tolerate
non-Gaussian noises. In [21], PCA was applied on a link-
time matrix which shows the traffic volume on different
roads in time windows to detect anomalous routes. Then the
root cause of traffic anomaly can be located by exploring the
linkage relations between roads. Yang et al. [55] introduced
the Bayesian Robust PCA [132] algorithm to co-factorize
multiple traffic data streams to learn shared features of dif-
ferent traffic measurement data. A commonly used manifold
learning algorithm is Locally Linear Embedding (LLE) [133].
The LLE algorithm learns the representation of a data point
by constructing it as the linear combination of its K nearest
neighbors. The weights are derived in the sense of least
square construction error, and the vector of weights is re-
garded as features of the original data point. Yang et al. [42]
represents the traffic flow collected from distributed sensors
in a time window as a matrix. They then apply the LLE and

Edge features

Abnormal System

Normal System

Node features

Edge features

Node features

Shared hidden space

Normal samples

Abnormal samples

Fig. 7: The framework of multi-view learning method pro-
posed by Teng et al. [73].

PCA algorithm together to obtain an LLE-PCA feature [134]
for abnormal event detection.

Multi-view learning methods are adopted for learning
spatiotemporal features across multiple datasets in [73]. As
shown in Fig. 7, a dynamic network is first constructed
based on urban data. The dynamic network contains a
series of directed weighted graphs which represent urban
dynamics in consecutive time slots. The nodes in graphs
stand for geographic regions, and the edges represent the
traffic flows between different regions with the weight set
as the traffic volume. The spatial feature such as the twitter
topic distribution of each region is assigned as node proper-
ties. Then a multi-view hypersphere learning algorithm was
proposed to learn a latent representation of each node that
fuses both node and edge side information, and anomalous
nodes were detected in the latent space.

After obtaining appropriate features, urban anomaly
detection can be transformed into classical anomaly detec-
tion problems. Classical anomaly detection methods can
be grouped into several categories, statistical methods,
classification based methods, nearest neighborhood-based
methods, clustering based methods[28]. The first two cat-
egories’ methods are most frequently used in the second
step of spatiotemporal feature based urban anomaly detec-
tion methods. The principle of statistical anomaly detection
methods is to estimate the distribution of data and con-
sider the instances of low probabilities as anomalies. There
are two common methods to estimate the data distribu-
tion, parametric methods and nonparametric methods. The
gaussian-based parametric method is a main method used
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in urban anomaly detection [64], [49], [66], [39], [63], [51].
The Gaussian-based model assumes data follow a Gaussian
distribution and estimates the parameters with Maximum
Likelihood Estimates (MLE). Based on the estimated pa-
rameters, the anomaly score of an instance can be defined
as the its posterior probability. Another popular parametric
method is based on the mixture model that models the
data with a mixture of parametric statistical distributions.
For example, Ge et al. [39] modeled the distribution of
travel distance between two locations with multiple Gaus-
sian distributions, where each Gaussian distribution de-
scribes the distance distribution of one path. Compared with
parametric methods, nonparametric methods make fewer
assumptions about the data distribution. Kernel function
based model[135] is a nonparametric method that estimates
probability density using kernel functions, which make no
prior assumptions about the distribution. This method is
used in [68], [60] to model the distribution of traffic speed
data and sharing bike renting data. One-class SVM, as a
classification based anomaly detection algorithm, learns the
region that contains normal points in feature space using
kernel function. The instances outside the learned region
are identified as anomalies, and the distance between the
instance and the region boundary can be regarded as the
anomaly degree. In [1], Zhang et al. used one-class SVM to
detect anomalous events.

4.1.2 Urban dynamics pattern based
While urban anomalies are of various types and have com-
plex effects, normal urban activities usually follow some
regular patterns. Based on this assumption, some works
take an indirect approach of modeling the normal urban
dynamics patterns, and then consider the data instances that
can not be well described or represented by normal patterns
indicating anomalous events. Urban dynamics pattern min-
ing has been widely studied [136], [137], [111]. In the context
of urban anomaly detection, there are two major approaches
for normal urban dynamics modeling, i.e., statistical models
and tensor factorization.

4.1.2.1 Statistical Model: A common statistical
method is to model the normal urban dynamics such as
traffic volume [61] and people flow [48] with a Gaussian
distribution, then the probability that anomalous events
happen under given an observation is calculated by statisti-
cal hypothesis testing methods. Some other works consider
there are limited underlying states behind complex urban
dynamics and urban anomalies will cause abnormal state
transitions. Hidden markov model (HMM) is used to model
the urban state transitions. As shown in Fig. 8, an HMM

contains five basic concepts, i.e., observation sequence, state
sequence, initial state, transition probability matrix, and
emission probability matrix. The observations and states of
an HMM are discrete and limited. The hidden state only
depends on the previous state, and the observation only
depends on the current state. The transition probability
matrix is to describe the probability that a state transfer to
another state. In the case of urban state modeling, obser-
vation sequence corresponds to observed urban dynamics
status and state sequence corresponds to hidden urban
states. Yang et al. [41] defined an observation as a vector that
represents the number of people and adopted the K-means
algorithm to group observation vectors into k clusters as
the observed status. Then the initial state and transition
probability matrix were estimated based on historical data.
To build the emission probability matrix, Yang et al. used
the Gaussian Mixture Model (GMM) to model the distribu-
tion of observation vectors contained in each cluster. After
building the model, the probability of a new observation
sequence could be calculated. If the probability is under
a threshold, an anomalous event is considered happening.
Witayangkurn et al. [50] proposed a similar algorithm, while
they first clustered the observation vectors to reduce the
number of observations and defined an anomaly score for
each observation instead of an observation sequence at the
anomaly detection step.

Likelihood Ratio Test (LRT) is another statistical tech-
nique widely applied in spatiotemporal anomaly detection.
LRT is originally used to compare models in terms of
their statistics. Given a dataset X , a model with parameter
θ ∈ Θ0, an alternate model with parameter θ ∈ Θ−Θ0, the
likelihood ratio is then defined as,

λ =
sup{θ∈Θ0}L(θ|X)

sup{θ∈Θ}L(θ|X)
, (1)

where Θ is the whole parameter space and Θ0 is the
restricted parameter space. This ratio can be computed by
the maximum likelihood estimate (MLE). It is also proved
that the asymptotic distribution of Λ = −2 log λ is a chi-
square distribution χ2(Λ, p − q)[138], where p and q are
the number of free parameters of the null model and the
alternative model respectively. For the anomaly detection,
the null model corresponds to the hypothesis that there is
no anomaly while the alternate model is corresponding to
the opposite case. First, a probability density function will
be chosen. Then the value Λ can be calculated by MLE. An
anomaly is detected with the confidence α when Λ > c. c is
the threshold where the area under chi-square distribution
density function is smaller than α. Wu et al. [139] proposed
a framework to detect the spatial anomaly. The authors first
partitioned the spatial area into n × n grids and checked
anomalies for each cell. They made two competing hy-
potheses on whether the process generating data in a cell is
substantially different from the process generating the data
outside that cell. Then based on hypotheses, two models
with different parameters are proposed. The parameters of
the null model are forced to be identical for every cell while
the parameters of the alternate model are customized for
each cell. Thus, the LRT can be applied to determine which
model fits the dataset better. In [43] Pang et al. extended the
LRT framework in [139] to discover traffic anomaly and both
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Fig. 9: The framework of tensor decomposition based
method proposed by Lin et al. [79].

persistent and emerging outliers can be detected in their
work. Khezerlou et al. [72] used the traffic flow to detect
gathering events. They represented the traffic flow in an
urban area as a directed graph and proposed a definition
of the edge anomaly degree based on the likelihood ratio.
Finally, they detected gathering events using the anomaly
degree of in-edges and out-edges. In [62], LRT is also used
to calculate the anomaly degree for regions.

4.1.2.2 Tensor Factorization: Some works consider
urban dynamics as combination of a certain number of
basic urban dynamics patterns that correspond to basic
urban human activities such as working, eating and recre-
ating. These patterns can be learned by apply restricted
tensor factorization techniques on tensor represented urban
data [140], [141], [142]. In Fig. 9 we show a typical exam-
ple [79] of tensor factorization based model. The upper part
of Fig. 9 shows the composition of a region-feature-time
tensor, where the feature dimension is the the traffic flow
to and from other regions. The lower part of Fig. 9 shows
the detection steps. They first adopted the non-negative
CP decomposition [143] method to decompose the tensor
into a three-factor matrix, which respectively represents the
mobility pattern, the temporal and spatial distribution of
patterns. Based on the assumption that urban dynamics
in different locations and periods share the same basic
mobility patterns, they then decomposed the upcoming
tensor with the mobility pattern matrix fixed. In the last,
abnormal events were identified in the regions that show
abnormal distributions of mobility patterns. In [74], Chen et
al. proposed to incorporate social semantic information by
cofactorizing a mobility matrix and a social activity check-in
tensor together.

4.1.2.3 Deep neural network: Deep neural networks
have achieved great success on pattern recognition from
massive high-dimensional data. Some recent works applied
deep neural network models on learning urban dynamic
patterns from urban big data. Zhang et al. [2] proposed
to decompose the urban dynamics into normal and ab-
normal components, where the former can be learned via
a neural network. Trinth et al. [84] adopted Long Short-
Term Memory(LSTM) recurrent neural network to model
the pattern of urban mobile traffic time series. The effective

learning of a deep neural network usually needs sufficient
labeled data, which are not accessible in the case of urban
anomaly detection. To address this problem, [2] proposed to
restrict the variance of neural network outputs based on the
assumption that normal urban dynamics are stable given the
spatiotemporal context. [84] augmented the training data by
resampling from the dataset.

4.1.3 Video anomaly detection
Surveillance cameras on roads are used to monitor abnor-
mal moving behavior from pedestrian or vehicle flows.
However, understanding video data is challenging due to
its high dimensionality. Various computer vision methods
are designed to capture features from videos for abnormal
events detection, ranging from single hand-crafted feature
and combined features to representations learned by deep
learning models.

In [144], [34], object trajectories in videos were used
to describe the mobility of objects. By comparing with
normal trajectory patterns, the anomaly events are detected.
However, when the object is occluded, or video scenes are
crowded, this method would be unable to handle the prob-
lem. Therefore, many methods to extract mobility patterns
are proposed to overcome this limitation. Benezeth et al. [36]
used the histogram of the pixel change; Kim et al. [37] and
Mehran et al. [38] employed the optical flow to measure
dynamic patterns of objects. However, these approaches
mainly emphasize dynamics but neglect anomalies of object
appearance [52]. For better performances, many features
need to be considered together. For example, Li et al. [52]
and Mahadevan et al. [40] used the Mixture of Dynamic
Textures (MDT) models to detect the spatial abnormality as
well as the temporal abnormality. Zhu et al. [53] used the
mobility and context features to model the events jointly.
Saligrama et al. [47] calculated the anomalous score by ag-
gregating the appearance and mobility features of its nearest
neighbor. Additionally, to capture the high-level feature, like
the interactions in videos, and the low-level feature, like the
motion feature of each video patch, Sabokrou et al. [56] and
Cheng et al. [57] used a hierarchical structure to represent
events and interactions.

In recent years, the rapid development of the deep learn-
ing methods brings revolution to image and video process-
ing domains including image classification [145], object de-
tection [146] and activity recognition [147]. A lot of modern
deep architectures are proposed to replace the hand-crafted
features to model activity patterns [148]. Fig. 10 shows
an example of Convolutional Neural Network(CNN) based
model [78]. Fig. 10(a) shows the architecture of the model,
which is a Binary Fully Convolutional Network (BFCN) con-
sists of two pre-trained convolution layers and one output
layer. The network is used to capture region features in
video frames and the features are further feed into a Gaus-
sian classifier to identify anomalies. An example of detected
anomalies is shown in Fig. 10(b), in which some pedestrians
walking in the opposite direction to other people. In [58],
[76], appearance and motion features were learned sepa-
rately by using stacked denoising autoencoders. In [149], a
fully connected autoencoder was used on optical-flows, and
a fully convolutional feed-forward autoencoder was added
to learn both local features and classifiers to capture the
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scenes, and when people walk in different directions. Since walking in opposite

direction of other pedestrians is not observed in the training video, this action

is also considered as being abnormal using our algorithm.

Frame-level and pixel-level ROCs of the proposed method in comparison to

state-of-the-art methods are provided in Figure 6; left and middle for frame-level

and pixel-level EER on UCSD Ped2 dataset, respectively. The ROCs show that

the proposed method outperforms the other considered methods in the UCSD

dataset.
Table 4 compares the frame-level and pixel-level EER of our method and

other state-of-the-art methods. Our frame-level EER is 11%, where the best

result in general is 10%, achieved by Tan Xiao et al. [57]. We outperform all

other considered methods except [57]. On the other hand, the pixel-level EER of

the proposed approach is 15%, where the next best result is 17%. As a result, our

method achieved a better performance than any other state-of-the-art method

in the pixel-level EER metric by 2%.

20

(b) An example of results.

Fig. 10: The framework of deep learning based video anomaly detection proposed by Sabokrou et al. [78].

temporal regularity of video sequences. However, as the size
of existing datasets with ground truth abnormality samples
are small, the Deep Neural Network based methods have
the problem that their networks are relatively shallow to
prevent overfitting. Also, Generative Adversarial Networks
(GANs) [150] are introduced for the task of anomaly event
detection. In [77], Ravanbakhsh et al. trained GANs with
normal data only. Thus, GANs are unable to generate ab-
normal events. By computing the difference between the
real video clips with the representations of appearance and
motion reconstructed by the GANs, abnormal areas can be
detected.

4.2 Prediction

The prediction of urban anomalous events is also a chal-
lenging task, and there are many researchers making efforts
to forecast urban anomalies. A lot of existing works collect
real-time urban dynamics to infer whether an anomaly
will happen in the near future, especially in the case of
traffic anomaly prediction. Besides, some works focus on
environment anomalies. Instead of predicting the exact time
of anomalous events, these works evaluate whether there
is a risk of a certain type of anomalies based on observed
features. Classification methods are usually used in these
two kinds of works, which is summarized in section 4.2.1.
Additionally, some other works predict overall distributions
of different anomalies by exploring rules from recorded
events. Predicting methods such as time series forecasting
and deep neural networks are adopted in these works and
summarized as regression methods in this section 4.2.2.

4.2.1 Classification methods

In studies of environment anomaly and traffic anomaly pre-
diction, classification methods are usually adopted. The cru-
cial step of making a successful classification is to construct
and select appropriate features. In the case of environment
anomaly prediction, features are usually constructed from
environment information. Madaio et al. [97] proposed a
framework to evaluate the fire risk in Atlanta. They used
around 20,000 commercial properties such as fire permits,
criminal record, and liquor license to construct features. In
[105], Singh Walia et al. considered the difference between
areas in urban functions and selected commercial and resi-
dential features respectively. On the other hand, some works
tried to predict the water system pollution in cities, and
the residents’ family information, health condition, and land

information were used as features [101], [106], [95]. After se-
lecting features, classic classification methods can be directly
used in these works, including Logistic regression(LR) [151],
Support Vector Machine (SVM) [152], Random Forest [153]
and gradient tree boosting [154]. In the case of traffic
anomaly detection, the road conditions observed by loop
detectors and weather information are usually utilized as
features. Abdel et al. [88] combined weather information
and the statistic features of road conditions like the mean
speed of vehicles. Xu et al. [91] first adopted Random Forest
to select important features [155] and made a classifier
using a Genetic Programming Model [156]. In [90], Xu et al.
employed a sequential logistic regression model to predict
the severity of traffic accidents. Moreover, Yu et al. [92]
explored the critical factors of different car crash types and
then utilized the hierarchical logistic regression model [157]
to predict traffic crashes. Deep learning models are also
adopted to predict the happening of different kinds of urban
anomalies. In [102], Sun et al. first mapped traffic data to
images and then applied CNN to predict the happening
of congestions. Based on the records of anomalous events
such as crime and illegal parking, some works focused on
predicting the happening of different categories of anomaly
at different regions in a city. In [99], Huang et al. made
the prediction by exploring both the spatial dependency
of anomaly occurrence among regions and the historical
anomaly distribution of an individual region. In [109], the
spatiotemporal and categorical signals are all embedded
into hidden representations and the prediction is made by
an attentive hierarchical recurrent network. In [110], Huang
et al. further integrated a multi-modal fusion module and a
hierarchical recurrent network to model the spatiotemporal
and cross-categorical correlations among crime records data.

4.2.2 Regression methods

In stead of predicting the happening of a single anomalous
event, some works adopt regression methods to predict the
number of anomalies happening in an urban region in a
future time slot. Wu et al. [103] represented urban anomaly
records with a tensor. They then factorized the tensor into
three factors, i.e., region, category and time matrices and
assumed region and category matrices were constant with
time. By applying the vector autoregression [158] algorithm,
the next column of the time matrix can be estimated. In the
last, by reconstructing the tensor with updated time matrix,
the number of anomalies in different regions in the next
time step can be predicted. In [100], Wang et al. exploited the
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Linear Regression and Negative Binomial Regression [159]
model to predict the crime rate of neighborhoods in a
city based on both demographic and geographic features.
Additionally, deep learning models are also introduced for
predicting the number of urban anomalies. By dividing
the urban area into grid regions and representing urban
dynamics in all regions as a matrix or tensor, the deep
learning models that make great achievements in image
processing domain can be migrated to deal with urban
dynamics. Ren et al. [104] proposed LSTM network [160]
based neural network to predict the risk of traffic accidents
in regions based on historical records. Similarly, Yuan et
al. [108] utilized the Convolutional LSTM network [161] to
predict the number of traffic accidents in different regions,
which can capture both spatial and temporal domain corre-
lations. In [96], Chen et al. further combined GPS trajectory
data and traffic accident data to learn representations of
human mobility with a stacked Denoise Autoencoder [162]
for traffic accident prediction.

5 OPEN CHALLENGES AND PROBLEMS

Urban big data-based techniques are the future and promis-
ing direction of urban anomaly analysis. A great number of
works have been done in recent years and obtained a lot
of achievements. However, there are still several open prob-
lems that have not been well addressed, such as the precise
prediction and underlying problem diagnosis. The causes of
the problems are essentially the difficulties brought by the
complexity of urban big data. To find potential solutions,
it is important to investigate the characteristics of urban
big data. Therefore, in this section we will first discuss
the challenges posed by urban big data and then present
consequential open problems of urban anomaly analysis.

5.1 Data Challenges

5.1.1 Data Variety
Urban data come from different sources are in a verity
of forms as introduced in Section 2.1. To comprehensively
discover and understand urban anomalous events, differ-
ent types of urban data from multiple views need to be
combined together. For example, to determine whether the
number of people enter a place of interest is overloaded,
the video of pedestrian flows and vehicle flows detected on
roads are both needed. However, the data volume, process-
ing efficiency and analysis techniques of different types of
data can significantly vary from each other, which makes it
hard to make use of data in multiple forms together. More-
over, different data sources usually suffer from the spatial
and temporal misalignment problem due to different sam-
ple rates and sensing areas. To get an accurate snapshot of a
specific location and time point, data produced by different
sources need to be aligned spatially and temporally, which
brings extra difficulty for precise urban anomaly detection.
Multi-modal fusion is a potential solution to the data variety
problem, which has been applied in urban applications such
as traffic prediction [163], [164]. However, the existing works
are limited on offline processing and spatiotemporal aligned
data. The real-time fusion and spatiotemporal alignment are
remained as unsolved problems.

5.1.2 Data Imbalance

Although normal urban events happen everyday and every-
where, the anomalous events rarely occur and are usually
not recorded. Hence, most of urban data are produced by
normal events, and merely a tiny part of human daily
activities happening in urban areas cause anomalous events.
This extreme imbalance of dataset brings problems from
two aspects. First, due to the complex types of anomalies,
it is hard to capture patterns of such events and evaluate
their influence on urban data. Second, with few recorded
anomalous events, it is also hard to evaluate a practical
detecting system. Many researchers used typical events such
as important festivals and concerts as targets to test the hit
rate of their methods. However, since these events are just a
subset of the anomalies in real world, it is still far away from
a systematical evaluation. Moreover, some researchers use
synthetic datasets to evaluate their algorithms. However,
the mechanism urban data are produced in real world is
extremely complex. It is nearly impossible to simulate the
effect of real-world anomalies by simple rules. To remedy
the lack of urban anomaly data, cross-city data transfer
is a feasible direction. While different cities usually have
completely different physical environments, the impact dif-
fusion process of urban anomalies in cyberspace share
similar patterns. Transferring data from different cities can
greatly enrich the anomalous records and help to discover
and model the common patterns. There are already several
works trying to combine data from multiple cities to address
urban problems such as crowd flow prediction [165] and
ridesharing detection [166]. However, combining cross-city
data for urban anomaly analysis is remaining as a blank
area.

5.1.3 Data Dependency

Most data mining and machine learning algorithms assume
data points are sampled from independent identical distri-
butions. However, this assumption does not hold for urban
big data. Urban data points are usually associated with
timestamps and location tags, which bring complex spatial
and temporal dependency among them. The spatiotemporal
dependency among urban data points lead to difficulties
for urban anomaly analysis in two aspects. First, it makes
the distribution of normal urban data vary over time and
locations. For example, the normal traffic volume on peak
hours is usually extremely high if changing the time to
midnight. Second, an anomalous event can cause jointly
abnormal changes of urban data in different time, locations
and sources through the spatiotemporal dependency, mak-
ing it difficult to diagnose the root cause. For example, the
blocking of one road may cause traffic overload on other
roads. It is hard to trace back to the underlying problem
since the causality among the changes are implicit. The
probabilistic graphical model is a natural tool to deal with
the dependency among random variables, but it cannot
be applied on urban data due to the high dimensionality
and unstructured forms. Recent advances of deep casual
inference methods [167] strive to learn variables and their
dependency relations automatically from data, which have
been applied on high-dimension unstructured data such as
images [168]. Accordingly, developing deep spatiotemporal
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casual inference models is a potential chance to address the
dependency challenge of urban big data.

5.2 Open Problems
While the unique and complex qualities of urban big data
pose the fundamental and theoretic challenges of data-
driven urban anomaly analysis, there are also several open
problems that have not been addressed to build practical
urban anomaly detection and prediction systems.

5.2.1 Reliable Detection
Reliability is an essential requirement for urban anomaly
detection. False positive and false negative reports can both
lead to wrong decisions and cause severe consequences. To
make sure the reliability of an urban anomaly detection
system, there are two major difficulties. First, the impacts
of urban anomalies usually compose of components that
are reflected by different types of urban data. For example,
the audiences attending a concert can choose different types
of transportation such as subway, taxi or shared bicycles.
Merely depending on part of these data sources may lead
to underestimation of the size of concert or even failure to
report the event. Therefore, to avoid false negative reports,
multiple data sources must be effectively combined. Second,
while detecting urban anomalies mainly rely on identifying
outliers from urban data, the urban data outliers do not nec-
essarily imply urban anomalies. Practical problems such as
physical failures of sensors or Internet fake information can
also produce abnormal urban data. To avoid false alerts, ef-
fective mechanisms must be developed to distinguish these
intrinsic outliers of urban data from real urban anomalies.

5.2.2 Precise Prediction
There are some works making efforts on evaluating the
risk of accidents and predicting the accumulated number
of anomalous events as discussed in section 4.2. However,
the precise prediction of a single event is still a blank area.
In practice, it is of great demand to the predict the precise
time and location of anomalous events in order to take
proper actions, especially in the case of crimes or fire risk.
However, there are three main difficulties to achieve this
goal. First, urban data are full of noises due to complex
urban environment. The slight signs of anomalous events in
their early stage can be easily drowned in noises. Moreover,
the precursors of anomalies sometimes show up in different
urban data sources. For example, a protest event that has
been discussed a lot on social media platform may cause a
traffic blocking event. To make precise prediction, informa-
tion across multiple datasets need to be linked. At last, after
the early signs of urban anomalies been detected, it is still
a challenge to infer the precise location and time due to the
complexity of the spatial and temporal diffusion process of
urban events.

5.2.3 Problem Diagnosis
The final goal of urban anomaly analysis is to avoid the
happening of anomalies or control and reduce the effect
of such events. The gap between existing researches and
the final goal is the diagnosis of the underlying problems.
While urban anomaly detection and prediction helps us be

aware of the happening of anomalous events, diagnosing
the root causes help to decide what kind of actions should
be taken. For example, an unexpected crowd anomaly can
be caused by many reasons, such as a concert, a celebration
parade or a terrorist attack. These three underlying events
are on different emergency levels and should be handled in
different ways. However, finding the underlying problems
is difficult because the causes of urban anomalies and the
effect of urban anomalies can be reflected by different kinds
of urban data and have significant spatial and temporal
misalignment. To trace the root causes of urban anomalies,
the underlying causality relations needs to be inferred from
multi-modal data across time, regions and domains.

6 CONCLUSION

The explosion of urban big data has brought new oppor-
tunities to solve traditional urban problems. In this paper,
we discussed new rising research areas of big urban data
based urban anomaly analytics. To give a comprehensive
introduction and literature review of this topic, we studied
a considerable number of relevant works in recent years
and answered three questions: what kinds of urban data
are commonly used in urban anomaly detection and how
to represent them? What kinds of anomalous events can
be detected or predicted? And what are the general detec-
tion and prediction methods? In the last, we summarized
the shortcomings of current researches and discussed open
problems in this field.
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