59 research outputs found
Sensorimotor speech disorders in Parkinson's disease: Programming and execution deficits.
Introduction: Dysfunction in the basal ganglia circuits is a determining factor in the physiopathology of the classic signs of Parkinson's disease (PD) and hypokinetic dysarthria is commonly related to PD. Regarding speech disorders associated with PD, the latest four-level framework of speech complicates the traditional view of dysarthria as a motor execution disorder. Based on findings that dysfunctions in basal ganglia can cause speech disorders, and on the premise that the speech deficits seen in PD are not related to an execution motor disorder alone but also to a disorder at the motor programming level, the main objective of this study was to investigate the presence of sensorimotor disorders of programming (besides the execution disorders previously described) in PD patients. Methods: A cross-sectional study was conducted in a sample of 60 adults matched for gender, age and education: 30 adult patients diagnosed with idiopathic PD (PDG) and 30 healthy adults (CG). All types of articulation errors were reanalyzed to investigate the nature of these errors. Interjections, hesitations and repetitions of words or sentences (during discourse) were considered typical disfluencies; blocking, episodes of palilalia (words or syllables) were analyzed as atypical disfluencies. We analysed features including successive self-initiated trial, phoneme distortions, self-correction, repetition of sounds and syllables, prolonged movement transitions, additions or omissions of sounds and syllables, in order to identify programming and/or execution failures. Orofacial agility was also investigated. Results: The PDG had worse performance on all sensorimotor speech tasks. All PD patients had hypokinetic dysarthria. Conclusion: The clinical characteristics found suggest both execution and programming sensorimotor speech disorders in PD patients
Re-examining tau-immunoreactive pathology in the population: granulovacuolar degeneration and neurofibrillary tangles.
INTRODUCTION: Alzheimer's disease (AD) is associated with neurofibrillary pathology, including neurofibrillary tangles (NFT), neuritic plaques (NP) and neuropil threads containing aggregated microtubule associated protein tau. Aggregated tau is also associated with granulovacuolar degeneration (GVD). The relationships between tau, GVD, NFT and dementia are unclear. METHODS: We assessed hippocampal (CA1) tau-immunoreactive GVD and NFT pathology in brain donations from the population-representative Cambridge City over 75s Cohort (CC75C) using the CERAD protocol and a modified protocol that included a morphological characterisation of tau-immunoreactive deposits within neurons as NFTs or as GVD. Associations between GVD, NFT and dementia were investigated. RESULTS: Hippocampal pyramidal neurons affected with either NFT or GVD are common in the older population. Some tau-immunoreactive deposits resemble ghost GVD neurons. Tau immunoreactivity identified GVD in 95% cases rated as none with haematoxylin and eosin staining. Both severe NFT (odds ratio (OR) 7.33, 95% confidence interval (CI) 2.01; 26.80, p = 0.003) and severe GVD (OR 7.48, 95% (CI) 1.54; 36.24, p = 0.012) were associated with dementia status. Increasing NFT (OR 2.47 95% (CI) 1.45; 4.22, p = 0.001) and GVD (OR 2.12 95% (CI) 1.23; 3.64, p = 0.007) severities are associated with increasing dementia severity. However, when the analyses were controlled for other neuropathologies (NFT, NP, Tar-DNA binding Protein-43 and amyloid deposits), the associations between GVD and dementia lost significance. CONCLUSIONS: Current neuropathological assessments do not adequately evaluate the presence and severity of the GVD pathology and its contribution to dementia remains unclear. We recommend that protocols to assess GVD should be developed for routine use and that tau, in a non-PHF associated conformation, is reliably associated with GVD.CC75C is a member study of the Cambridgeshire and Peterborough Collaboration for Leadership in Applied Health Research and Care (CLAHRC). The Cambridge Brain Bank Laboratory (which processed all CC75C cases) is supported by the National Institute for Health Research, Cambridge BioMedical Research Centre. EM-L is supported by Alzheimer’s Society (London, UK).This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13195-015-0141-
Assessing environmental features related to mental health: a reliability study of visual streetscape images.
BACKGROUND: An association between depressive symptoms and features of built environment has been reported in the literature. A remaining research challenge is the development of methods to efficiently capture pertinent environmental features in relevant study settings. Visual streetscape images have been used to replace traditional physical audits and directly observe the built environment of communities. The aim of this work is to examine the inter-method reliability of the two audit methods for assessing community environments with a specific focus on physical features related to mental health. METHODS: Forty-eight postcodes in urban and rural areas of Cambridgeshire, England were randomly selected from an alphabetical list of streets hosted on a UK property website. The assessment was conducted in July and August 2012 by both physical and visual image audits based on the items in Residential Environment Assessment Tool (REAT), an observational instrument targeting the micro-scale environmental features related to mental health in UK postcodes. The assessor used the images of Google Street View and virtually "walked through" the streets to conduct the property and street level assessments. Gwet's AC1 coefficients and Bland-Altman plots were used to compare the concordance of two audits. RESULTS: The results of conducting the REAT by visual image audits generally correspond to direct observations. More variations were found in property level items regarding physical incivilities, with broad limits of agreement which importantly lead to most of the variation in the overall REAT score. Postcodes in urban areas had lower consistency between the two methods than rural areas. CONCLUSIONS: Google Street View has the potential to assess environmental features related to mental health with fair reliability and provide a less resource intense method of assessing community environments than physical audits.There is no specific funding contributing to this study. Yu-Tzu Wu received a PhD scholarship from the Cambridge Trust, University of Cambridge. Fiona E. Matthews was supported by the Medical Research Council [grant number U105292687]This is the final version. It first appeared from BioMed Central via http://dx.doi.org/10.1186/1471-2458-14-109
Microglial immunophenotype in dementia with Alzheimer's pathology.
BACKGROUND: Genetic risk factors for Alzheimer's disease imply that inflammation plays a causal role in development of the disease. Experimental studies suggest that microglia, as the brain macrophages, have diverse functions, with their main role in health being to survey the brain parenchyma through highly motile processes. METHODS: Using the Medical Research Council Cognitive Function and Ageing Studies resources, we have immunophenotyped microglia to investigate their role in dementia with Alzheimer's pathology. Cerebral cortex obtained at post-mortem from 299 participants was analysed by immunohistochemistry for cluster of differentiation (CD)68 (phagocytosis), human leukocyte antigen (HLA)-DR (antigen-presenting function), ionized calcium-binding adaptor molecule (Iba1) (microglial motility), macrophage scavenger receptor (MSR)-A (plaque-related phagocytosis) and CD64 (immunoglobulin Fcγ receptor I). RESULTS: The presence of dementia was associated positively with CD68 (P < 0.001), MSR-A (P = 0.010) and CD64 (P = 0.007) and negatively with Iba1 (P < 0.001). Among participants without dementia, the cognitive function according to the Mini-Mental State Examination was associated positively with Iba1 (P < 0.001) and negatively with CD68 (P = 0.033), and in participants with dementia and Alzheimer's pathology, positively with all microglial markers except Iba1. Overall, in participants without dementia, the relationship with Alzheimer's pathology was negative or not significant, and positive in participants with dementia and Alzheimer's pathology. Apolipoprotein E (APOE) ε2 allele was associated with expression of Iba1 (P = 0.001) and MSR-A (P < 0.001) and APOE ε4 with CD68, HLA-DR and CD64 (P < 0.001). CONCLUSIONS: Our findings raise the possibility that in dementia with Alzheimer's pathology, microglia lose motility (Iba-1) necessary to support neurons. Conversely, other microglial proteins (CD68, MSR-A), the role of which is clearance of damaged cellular material, are positively associated with Alzheimer's pathology and impaired cognitive function. In addition, our data imply that microglia may respond differently to Aβ and tau in participants with and without dementia so that the microglial activity could potentially influence the likelihood of developing dementia, as supported by genetic studies, highlighting the complexity and diversity of microglial responses
Dementia in the older population is associated with neocortex content of serum amyloid P component.
Despite many reported associations, the direct cause of neurodegeneration responsible for cognitive loss in Alzheimer's disease and some other common dementias is not known. The normal human plasma protein, serum amyloid P component, a constituent of all human fibrillar amyloid deposits and present on most neurofibrillary tangles, is cytotoxic for cerebral neurones in vitro and in experimental animals in vivo. The neocortical content of serum amyloid P component was immunoassayed in 157 subjects aged 65 or more with known dementia status at death, in the large scale, population-representative, brain donor cohort of the Cognitive Function and Ageing Study, which avoids the biases inherent in studies of predefined clinico-pathological groups. The serum amyloid P component values were significantly higher in individuals with dementia, independent of serum albumin content measured as a control for plasma in the cortex samples. The odds ratio for dementia at death in the high serum amyloid P component tertile was 5.24 (95% confidence interval 1.79-15.29) and was independent of Braak tangle stages and Thal amyloid-β phases of neuropathological severity. The strong and specific association of higher brain content of serum amyloid P component with dementia, independent of neuropathology, is consistent with a pathogenetic role in dementia.NIH
Neuronal DNA damage response-associated dysregulation of signalling pathways and cholesterol metabolism at the earliest stages of Alzheimer-type pathology.
AIMS: Oxidative damage and an associated DNA damage response (DDR) are evident in mild cognitive impairment and early Alzheimer's disease, suggesting that neuronal dysfunction resulting from oxidative DNA damage may account for some of the cognitive impairment not fully explained by Alzheimer-type pathology. METHODS: Frontal cortex (Braak stage 0-II) was obtained from the Medical Research Council's Cognitive Function and Ageing Study cohort. Neurones were isolated from eight cases (four high and four low DDR) by laser capture microdissection and changes in the transcriptome identified by microarray analysis. RESULTS: Two thousand three hundred seventy-eight genes were significantly differentially expressed (1690 up-regulated, 688 down-regulated, P < 0.001) in cases with a high neuronal DDR. Functional grouping identified dysregulation of cholesterol biosynthesis, insulin and Wnt signalling, and up-regulation of glycogen synthase kinase 3β. Candidate genes were validated by quantitative real-time polymerase chain reaction. Cerebrospinal fluid levels of 24(S)-hydroxycholesterol associated with neuronal DDR across all Braak stages (rs  = 0.30, P = 0.03). CONCLUSIONS: A persistent neuronal DDR may result in increased cholesterol biosynthesis, impaired insulin and Wnt signalling, and increased GSK3β, thereby contributing to neuronal dysfunction independent of Alzheimer-type pathology in the ageing brain
Interleukin-8-251T > A, Interleukin-1α-889C > T and Apolipoprotein E polymorphisms in Alzheimer's disease.
An inflammatory process has been involved in numerous neurodegenerative disorders such as Parkinson's disease, stroke and Alzheimer's disease (AD). In AD, the inflammatory response is mainly located in the vicinity of amyloid plaques. Cytokines, such as interleukin-8 (IL-8) and interleukin-1α (IL-1α), have been clearly involved in this inflammatory process. Polymorphisms of several interleukin genes have been correlated to the risk of developing AD. The present study investigated the association of AD with polymorphisms IL-8 -251T > A (rs4073) and IL-1α-889C > T (rs1800587) and the interactive effect of both, adjusted by the Apolipoprotein E genotype. 199 blood samples from patients with AD, 146 healthy elderly controls and 95 healthy young controls were obtained. DNA samples were isolated from blood cells, and the PCR-RFLP method was used for genotyping. The genotype distributions of polymorphisms IL-8, IL-1α and APOE were as expected under Hardy-Weinberg equilibrium. The allele frequencies did not differ significantly among the three groups tested. As expected, the APOE4 allele was strongly associated with AD (p A and IL-1α-889C > T were not found to be risk factors for AD
Protocol for the development of a multidisciplinary clinical practice guideline for the care of patients with chronic subdural haematoma
Introduction: A common neurosurgical condition, chronic subdural haematoma (cSDH) typically affects older people with other underlying health conditions. The care of this potentially vulnerable cohort is often, however, fragmented and suboptimal. In other complex conditions, multidisciplinary guidelines have transformed patient experience and outcomes, but no such framework exists for cSDH. This paper outlines a protocol to develop the first comprehensive multidisciplinary guideline from diagnosis to long-term recovery with cSDH. Methods: The project will be guided by a steering group of key stakeholders and professional organisations and will feature patient and public involvement. Multidisciplinary thematic working groups will examine key aspects of care to formulate appropriate, patient-centered research questions, targeted with evidence review using the GRADE framework. The working groups will then formulate draft clinical recommendations to be used in a modified Delphi process to build consensus on guideline contents. Conclusions: We present a protocol for the development of a multidisciplinary guideline to inform the care of patients with a cSDH, developed by cross-disciplinary working groups and arrived at through a consensus-building process, including a modified online Delphi.</p
The nuclear retention of transcription factor FOXO3a correlates with a DNA damage response and increased glutamine synthetase expression by astrocytes suggesting a neuroprotective role in the ageing brain.
The accumulation of reactive oxygen species leading to oxidative damage and cell death plays an important role in a number of neurodegenerative disorders. FOXO3a, the main isoform of FOXO transcription factors, mediates the cellular response to oxidative stress by regulating the expression of genes involved in DNA repair and glutamine metabolism, including glutamine synthetase (GS). Immunohistochemical investigation of the population-based neuropathology cohort of the Medical Research Council's Cognitive Function and Ageing Study (MRC CFAS) demonstrates that nuclear retention of FOXO3a significantly correlates with a DNA damage response and with GS expression by astrocytes. Furthermore, we show that GS expression correlates with increasing Alzheimer-type pathology in this ageing cohort. Our findings suggest that in response to oxidative stress, the nuclear retention of FOXO3a in astrocytes upregulates expression of GS as a neuroprotective mechanism. However, the activity of GS may be compromised by increasing levels of oxidative stress in the ageing brain resulting in dysfunctional enzyme activity, neuronal excitotoxic damage and cognitive impairment
- …