242 research outputs found

    Failure and impact behavior of facade panels made of glass fiber reinforced cement(GRC)

    Get PDF
    GRC is a cementitious composite material made up of a cement mortar matrix and chopped glass fibers. Due to its outstanding mechanical properties, GRC has been widely used to produce cladding panels and some civil engineering elements. Impact failure of cladding panels made of GRC may occur during production if some tool falls onto the panel, due to stone or other objects impacting at low velocities or caused by debris projected after a blast. Impact failure of a front panel of a building may have not only an important economic value but also human lives may be at risk if broken pieces of the panel fall from the building to the pavement. Therefore, knowing GRC impact strength is necessary to prevent economic costs and putting human lives at risk. One-stage light gas gun is an impact test machine capable of testing different materials subjected to impact loads. An experimental program was carried out, testing GRC samples of five different formulations, commonly used in building industry. Steel spheres were shot at different velocities on square GRC samples. The residual velocity of the projectiles was obtained both using a high speed camera with multiframe exposure and measuring the projectile’s penetration depth in molding clay blocks. Tests were performed on young and artificially aged GRC samples to compare GRC’s behavior when subjected to high strain rates. Numerical simulations using a hydrocode were made to analyze which parameters are most important during an impact event. GRC impact strength was obtained from test results. Also, GRC’s embrittlement, caused by GRC aging, has no influence on GRC impact behavior due to the small size of the projectile. Also, glass fibers used in GRC production only maintain GRC panels’ integrity but have no influence on GRC’s impact strength. Numerical models have reproduced accurately impact tests

    Diseño de hormigón durable

    Get PDF
    Some of the factors affecting the durability of modern concrete structures are discussed, with an emphasis on the problems caused by modern portland cements. This is followed by a description of some concrete durability issues of current interest, such as plastic shrinkage, seawater attack, and sulfate attack. The strategies for testing for durability are also discussed. It is concluded that, to produce durable concretes, a holistic approach to concrete construction must be adopted.Se discuten algunos de los factores que influyen en la durabilidad de las estructuras de hormigón modernas, haciendo énfasis en los problemas causados por el cemento Portland. A esto sigue una descripción de algunas cuestiones de interés general de la durabilidad del hormigón tales como la retracción plástica, el ataque por agua de mar y el ataque por sulfatos. Se discuten también las estrategias de los ensayos de durabilidad. Se concluye que para producir hormigones durables se debe adoptar un enfoque holístico de la construcción con hormigón

    Bridge distress caused by approach embankment settlement

    Get PDF
    Surtees Bridge, which carries the A66(T) over the River Tees near Thornaby-on-Tees in the UK, has been showing signs of distress that predate its opening in 1981. Subsequent investigations have shown that the bridge distress is related to unexpectedly large settlement of the eastern approach embankment. Recent ground investigations prompted by a proposed widening of the river crossing have produced many new data on the alluvial deposits underlying the site, and explain why embankment settlement was so much larger than originally anticipated. Comparison of the geotechnical parameters obtained from the original and more recent ground investigations suggests that the original investigation significantly underestimated the thickness of an alluvial clay layer underlying the site, and that its coefficient of consolidation was overestimated. Settlement analyses using geotechnical data from the original ground investigations predict moderate embankment settlements occurring principally during construction. Settlement analyses based on all the available data predict far larger embankment settlements occurring over extended time periods. The latter analyses predict an embankment settlement similar to that observed and of sufficient magnitude to cause the observed lateral displacement of the bridge due to lateral loading of its piled foundation

    Shear Behaviour of Ligthweight Sandwich Reinforced Concrete Slabs

    Get PDF
    A new lightweight sandwich reinforced concrete (LSRC) section has been developed using prefabricated autoclaved aerated concrete (AAC) blocks as infill in the section where concrete is considered ineffective under bending. This paper presents an investigation into the strength and behaviour of LSRC slabs subjected to shear. Eight tests were conducted on four slabs, one solid and three different types of LSRC slabs. Based on the test results, all LSRC slabs exhibited similar behaviour to the equivalent solid slab and had varying shear capacities depending on the profile of AAC blocks infill. The obtained shear capacities were compared with the design values based on several major design codes and found to be within the safety predictions of the codes. ANSYS was employed to develop nonlinear finite element models of LSRC slabs. The numerical results agree well with the experimental one

    Adding functionality with additive manufacturing : fabrication of titanium-based antibiotic eluting implants

    Get PDF
    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p=0.01) improved the compressive strength (5.8±0.7MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6hour period (<28% of the total amount) were found to exceed the minimum inhibitory concentrations of Staphylococcus aureus (16μg/mL) and Staphylococcus epidermidis (1μg/mL); two bacterial species commonly associated with periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial cultures using an agar diffusion assay. Interestingly, pore channel orientation was shown to influence the directionality of inhibition zones. Promisingly, this work demonstrates the potential to additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections
    • …
    corecore