45 research outputs found

    Proteomic analysis of the developing mammalian brain links PCDH19 to the Wnt/尾-catenin signalling pathway

    Get PDF
    Clustering Epilepsy (CE) is a neurological disorder caused by pathogenic variants of the Protocadherin 19 (PCDH19) gene. PCDH19 encodes a protein involved in cell adhesion and Estrogen Receptor 伪 mediated-gene regulation. To gain further insights into the molecular role of PCDH19 in the brain, we investigated the PCDH19 interactome in the developing mouse hippocampus and cortex. Combined with a meta-analysis of all reported PCDH19 interacting proteins, our results show that PCDH19 interacts with proteins involved in actin, microtubule, and gene regulation. We report CAPZA1, 伪N-catenin and, importantly, 尾-catenin as novel PCDH19 interacting proteins. Furthermore, we show that PCDH19 is a regulator of 尾-catenin transcriptional activity, and that this pathway is disrupted in CE individuals. Overall, our results support the involvement of PCDH19 in the cytoskeletal network and point to signalling pathways where PCDH19 plays critical roles

    Frataxin-deficient neurons and mice models of Friedreich ataxia are improved by TAT-MTScs-FXN treatment.

    Get PDF
    Friedreich ataxia (FA) is a rare disease caused by deficiency of frataxin, a mitochondrial protein. As there is no cure available for this disease, many strategies have been developed to reduce the deleterious effects of such deficiency. One of these approaches is based on delivering frataxin to the tissues by coupling the protein to trans-activator of transcription (TAT) peptides, which enables cell membranes crossing. In this study, we tested the efficiency of TAT-MTScs-FXN fusion protein to decrease neurodegeneration markers on frataxin-depleted neurons obtained from dorsal root ganglia (DRG), one of the most affected tissues. In mice models of the disease, we tested the ability of TAT-MTScs-FXN to penetrate the mitochondria and its effect on lifespan. In DRG neurons, treatment with TAT-MTScs-FXN increased cell survival, decreased neurite degeneration and reduced apoptotic markers, such as 伪-fodrin cleavage and caspase 9 activation. Also, we show that heat-shock protein 60 (HSP60), a molecular chaperone targeted to mitochondria, suffered an impaired processing in frataxin-deficient neurons that was relieved by TAT-MTScs-FXN addition. In mice models of the disease, administration of TAT-MTScs-FXN was able to reach muscle mitochondria, restore the activity of the succinate dehydrogenase and produce a significant lifespan increase. These results support the use of TAT-MTScs-FXN as a treatment for Friedreich ataxia. J Cell Mol Med 2018 Feb; 22(2):834-848

    Estudio de la funci贸n de la v铆a NF-kappaB en las motoneuronas espinales y su relaci贸n con la atrofia muscular espinal

    Get PDF
    Les motoneurones espinals requereixen factors neurotr貌fics per a la seva superviv猫ncia i diferenciaci贸. L鈥檈fecte fisiol貌gic dels factors neurotr貌fics 茅s mediat per l鈥檃ctivaci贸 de diferents vies de senyalitzaci贸 i factors de transcripci贸 entre els quals es troba la via NF-kB. S鈥檋a relacionat la desregulaci贸 de l鈥檃ctivaci贸 d鈥檃questa via amb diferents patologies neuronals. S鈥檋a proposat NF- kB com a diana terap猫utica en diferents malalties neurodegeneratives. En el present estudi hem analitzat els mecanismes intracel路lulars involucrats en l鈥檃ctivaci贸 de la via NF-kB i la seva implicaci贸 en la superviv猫ncia de les motoneurones indu茂da pels factors neurotr貌fics. Els nostres resultats demostren l鈥檋abilitat dels factors neurotr貌fics de fosforil路lar el complex IKKs a trav茅s de l鈥檃ctivaci贸 de la via PI3K/Akt i d鈥檌nduir la translocaci贸 nuclear de RelA. Per altra banda, s鈥檋a demostrat que 煤nicament l鈥檃ctivaci贸 de la via can贸nica d鈥橬F-kB t茅 un efecte regulador sobre la superviv猫ncia de les motoneurones. El bloqueig de la via can貌nica causa mort apopt貌tica. Aquelles motoneurones que degeneren al inhibir la via es poden rescatar mitjan莽ant la sobre-expressi贸 de la prote茂na Bcl-xL o b茅 inhibint la prote茂na Bax. No obstant, els factors neurotr貌fics tamb茅 activen la v铆a no can貌nica d鈥橬F-kB tot hi que sense implicaci贸 en la superviv猫ncia. A les motoneurones, la inhibici贸 de la via can貌nica comporta un augment de la prote茂na pro-apopt贸tica Bim, la disminuci贸 de la prote茂na Survival Motor Neuron (SMN) i del factor de transcripci贸 CREB. La reducci贸 dels nivells de prote茂na SMN causa la malaltia neurodegenerativa heredit脿ria Atr貌fia Muscular Espinal (AME), que afecta espec铆ficament a les motoneurones espinals. En el nostre laboratori hem desenvolupat un model in vitro d鈥橝ME. La reducci贸 dels nivells d鈥橲MN causa degeneraci贸 neur铆tica i mort de les motoneurones. Aquests dos processos es poden bloquejar amb la sobreexpressi贸 de la prote茂na Bcl-xL. En conclusi贸, el nostre treball demostra la implicaci贸 de la via NF-kB en la superviv猫ncia de les motoneurones i aporta nous aven莽os per a comprendre l鈥橝ME.Las motoneuronas espinales requieren de los factores neurotr贸ficos para su supervivencia y diferenciaci贸n. El efecto fisiol贸gico de los factores neurotr贸ficos esta mediado por la activaci贸n de distintas v铆as de se帽alizaci贸n y factores de transcripci贸n entre los cuales est谩 la v铆a NF-kB. La desregulaci贸n en la activaci贸n de esta v铆a se ha relacionado con distintas patolog铆as neuronales. Se ha propuesto a NF-kB como una diana terap茅utica en distintas enfermedades neurodegenerativas. En el presente estudio hemos analizado los mecanismos intracelulares involucrados en la activaci贸n de la v铆a NF-kB y su implicaci贸n en la supervivencia de las motoneuronas inducida por los factores neurotr贸ficos. Nuestros resultados demuestran la habilidad de los factores neurotr贸ficos de fosforilar el complejo IKKs a trav茅s de la activaci贸n de la v铆a PI3-K/Akt y de inducir la translocaci贸n nuclear de RelA. Por otro lado, se ha demostrado que 煤nicamente la activaci贸n de la v铆a can贸nica de NF-kB tiene un efecto regulador sobre la supervivencia de las motoneuronas. El bloqueo de esta v铆a induce muerte celular apopt贸tica. Las motoneuronas que van a degenerar por la inhibici贸n de la v铆a NF-kB, se pueden rescatar mediante la sobre-expresi贸n de la prote铆na Bcl-xL o mediante la inhibici贸n de la prote铆na Bax. Sin embargo, los factores neurotr贸ficos tambi茅n activan la v铆a no-can贸nica de NF-kB aunque sin implicaci贸n en la supervivencia. En las motoneuronas, la inhibici贸n de la v铆a can贸nica conlleva el aumento de los niveles end贸genos de la prote铆na pro-apopt贸tica Bim y la reducci贸n de la prote铆na Survival Motor Neuron (SMN) y del factor de transcripci贸n CREB. La reducci贸n de los niveles de prote铆na SMN causa la enfermedad neurodegenerativa hereditaria Atrofia Muscular Espinal (AME), que afecta espec铆ficamente a las motoneuronas de la m茅dula espinal. En nuestro laboratorio hemos desarrollado un modelo in vitro de AME. La disminuci贸n de los niveles de SMN causa la degeneraci贸n de las neuritas y la muerte de las motoneuronas. Estos dos procesos pueden ser bloqueados por sobre-expresi贸n de la prote铆na Bcl-xL. En conclusi贸n, nuestro trabajo demuestra la implicaci贸n de la v铆a NF-kB en la supervivencia de las motoneuronas y aporta nuevos avances para la comprensi贸n de la AME.The Spinal cord motoneurons require neurotrophic factors for their survival and differentiation. The physiological effect of neurotrophic factors is mediated by activation of different signaling pathways and transcription factors including NF-kB. Deregulation in the activation of this pathway has been associated with different neural pathologies. NF-kB has been proposed as a therapeutic target in several neurodegenerative diseases. In this study we analyze the intracellular mechanisms involved in the activation of NF-kB pathway and its involvement in motor neuron survival induced by neurotrophic factors. Our results demonstrate the ability of neurotrophic factors to phosphorylate the IKKs complex through the PI3-K/Akt pathway activation and induce a nuclear translocation of RelA. On the other hand, it has been analysed the involvement of different forms of NF-kB activation pathway on motoneuron survival and the results demonstrate that only the canonical pathway has regulatory effects on the motoneuron survival. The blockade of this pathway induces apoptotic cell death. Motoneurons that will degenerate by inhibition of NF-kB, can be rescued by overexpression of Bcl-xL protein or by inhibiting Bax protein expression. However, neurotrophic factors also activate non-canonical pathway of NF-kB but this pathway does not modulate motoneuron survival. In motoneurons, inhibition of the canonical pathway leads to increased levels of the endogenous pro-apoptotic protein Bim and reduction of the Survival Motor Neuron Protein (SMN) and the transcription factor CREB. Reduced levels of SMN protein cause the hereditary neurodegenerative disease Spinal Muscular Atrophy (SMA), which specifically affects spinal cord motorneurons. In our laboratory, we developed an in vitro model of SMA. The decreased levels of SMN cause neurite degeneration and motorneuron death. These two processes can be blocked by overexpression of Bcl-xL protein. In conclusion, our study shows the involvement of NF-kB in the survival of motor neurons and provides new advances in the understanding of the SMA pathology

    NF-魏B signaling pathways: role in nervous system physiology and pathology

    No full text
    Intracellular pathways related to cell survival regulate neuronal physiology during development and neurodegenerative disorders. One of the pathways that have recently emerged with an important role in these processes is nuclear factor- 魏B (NF-魏B). The activity of this pathway leads to the nuclear translocation of the NF-魏B transcription factors and the regulation of anti-apoptotic gene expression. Different stimuli can activate the pathway through different intracellular cascades (canonical, non-canonical, and atypical), contributing to the translocation of specific dimers of the NF-魏B transcription factors, and each of these dimers can regulate the transcription of different genes. Recent studies have shown that the activation of this pathway regulates opposite responses such as cell survival or neuronal degeneration. These apparent contradictory effects depend on conditions such as the pathway stimuli, the origin of the cells, or the cellular context. In the present review, the authors summarize these findings and discuss their significance with respect to survival or death in the nervous system

    Disrupted excitatory synaptic contacts and altered neuronal network activity underpins the neurological phenotype in PCDH19-clustering epilepsy (PCDH19-CE)

    No full text
    Published: 07 January 2021PCDH19-Clustering Epilepsy (PCDH19-CE) is an infantile onset disorder caused by mutation of the X-linked PCDH19 gene. Intriguingly, heterozygous females are affected while hemizygous males are not. While there is compelling evidence that this disorder stems from the coexistence of WT and PCDH19-null cells, the cellular mechanism underpinning the neurological phenotype remains unclear. Here, we investigate the impact of Pcdh19 WT and KO neuron mosaicism on synaptogenesis and network activity. Using our previously established knock-in and knock-out mouse models, together with CRISPR-Cas9 genome editing technology, we demonstrate a reduction in excitatory synaptic contacts between PCDH19-expressing and PCDH19-null neurons. Significantly altered neuronal morphology and neuronal network activities were also identified in the mixed populations. In addition, we show that in Pcdh19 heterozygous mice, where the coexistence of WT and KO neurons naturally occurs, aberrant contralateral axonal branching is present. Overall, our data show that mosaic expression of PCDH19 disrupts physiological neurite communication leading to abnormal neuronal activity, a hallmark of PCDH19-CE.Stefka Mincheva-Tasheva, Alvaro F. Nieto Guil, Claire C. Homan and Jozef Gecz, Paul Q. Thoma
    corecore