26 research outputs found

    WNK1 and its role in hypertension

    Get PDF
    PhDWNK1 is a serine-threonine protein kinase involved in blood pressure (BP) control and electrolyte homeostasis. Intronic deletions in the WNK1 gene result in over-expression and lead to pseudohypoaldosteronism type II, a disorder characterized by hypertension and hyperkalemia. We have previously reported association between WNK1 polymorphisms and BP (associated SNPs map to promoter and intron 1). This PhD investigated whether the associated variants in WNK1 affect gene expression and also explored the role of low frequency haplotypes and copy number variation (CNV) in WNK1 with blood pressure phenotypes. Bioinformatic analysis was performed to identify conserved regions across species for intron 1 sequence and to test for the presence of any transcriptional factor binding sites (TFBS). Analysis revealed five conserved regions in intron 1 and many putative TFBS, two of these regions, Int1.8 and Int1.9 were tested for functionality using a dual-luciferase assay. Analyses revealed the Int1.8 region to have a 1.33 fold increase (p = 0.002) and Int1.9 a 0.73 fold decrease (p = 0.04) in luciferase expression in HEK293 cells, and results were consistent in the MDCK cells. Bioinformatic analysis performed on BP associated SNPs (rs1468326, rs3088353, rs2107612 and rs765250) revealed a number of TFBS present. One SNP, rs1468326 was tested for functionality using a dual luciferase assay. Analysis revealed allele A to have a 2.5 fold increase in relative luciferase activity compared to allele C (p = 4.8 x 10-11) in HEK293 cells, results were consistent in MDCK cells. To determine if there were proteins binding to rs1468326 sequence an electrophoretic mobility shift assay (EMSA) was performed, followed by LC-MS/MS for protein identification. The data revealed a protein binding to both alleles in HEK293 and MDCK cells but protein identification was not successful due to high non-specific binding. An EMSA experiment for rs3088353 was also performed and an unknown protein was found to bind to both alleles in HEK293 and MDCK cells. Real-time quantitative PCR (Q-PCR) analysis was performed on mRNA from sixty human kidney tissues to test if 4 BP associated SNPs correlate with WNK1 expression. No significant difference in expression was observed for any of the SNPs tested. Finally 24 tSNPs were genotyped in 3 case/control resources to try and validate the association of low frequency haplotypes in WNK1 with decreased risk of hypertension. Analyses revealed no association between haplotypes of WNK1 and hypertension. The role of WNK1 CNV and hypertension was also explored using Q-PCR analysis and access to large collaboration studies. No association with CNV in WNK1 was found with hypertension in either WTCCC or GBPG study. In conclusion, the functional studies performed on WNK1 variants suggest 2 SNPs are potentially functional, but further work will be required to identify the binding proteins. Genetic studies found no evidence for CNV or confirmation of low frequency haplotypes in WNK1 associated with BP phenotypes. The data in this thesis and larger GWAS recently published suggest common variants in WNK1 are not associated with BP, but the data thus far does not rule out the possibility of rare variants affecting BP at this locus

    Recombination and biased segregation of mitochondrial genomes during crossing and meiosis of different Schizosaccharomyces pombe strains

    Get PDF
    During meiosis, tethering of parental mitochondria to opposite cell poles inhibits the mixing of mitochondria with different genomes and ensures uniparental inheritance in thestandard laboratory strain of fission yeast. We here investigate mitochondrial inheritance in crosses between natural isolates using tetrad dissection and next-generation sequencing. We find that colonies grown from single spores can sometimes carry a mix of mitochondrial genotypes, that mitochondrial genomes can recombine during meiosis, that in some cases tetrads do not follow the 2:2 segregation pattern, and that certain crosses may feature a weak bias towards one of the parents. Together, these findings paint a more nuanced picture of mitochondrial inheritance in the wild

    Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast

    Get PDF
    Large structural variations (SVs) within genomes are more challenging to identify than smaller genetic variants but may substantially contribute to phenotypic diversity and evolution. We analyse the effects of SVs on gene expression, quantitative traits and intrinsic reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality curated catalogue of SVs in the genomes of a worldwide library of S. pombe strains, including duplications, deletions, inversions and translocations. We show that copy number variants (CNVs) show a variety of genetic signals consistent with rapid turnover. These transient CNVs produce stoichiometric effects on gene expression both within and outside the duplicated regions. CNVs make substantial contributions to quantitative traits, most notably intracellular amino acid concentrations, growth under stress and sugar utilization in winemaking, whereas rearrangements are strongly associated with reproductive isolation. Collectively, these findings have broad implications for evolution and for our understanding of quantitative traits including complex human diseases

    Correction: Functional profiling of long intergenic non-coding RNAs in fission yeast

    Get PDF
    Eukaryotic genomes express numerous long intergenic non-coding RNAs (lincRNAs) that do not overlap any coding genes. Some lincRNAs function in various aspects of gene regulation, but it is not clear in general to what extent lincRNAs contribute to the information flow from genotype to phenotype. To explore this question, we systematically analysed cellular roles of lincRNAs in Schizosaccharomyces pombe. Using seamless CRISPR/Cas9-based genome editing, we deleted 141 lincRNA genes to broadly phenotype these mutants, together with 238 diverse codinggene mutants for functional context. We applied high-throughput colony-based assays to determine mutant growth and viability in benign conditions and in response to 145 different nutrient, drug, and stress conditions. These analyses uncovered phenotypes for 47.5% of the lincRNAs and 96% of the protein-coding genes. For 110 lincRNA mutants, we also performed high-throughput microscopy and flow cytometry assays, linking 37% of these lincRNAs with cell-size and/or cell-cycle control. With all assays combined, we detected phenotypes for 84 (59.6%) of all lincRNA deletion mutants tested. For complementary functional inference, we analysed colony growth of strains ectopically overexpressing 113 lincRNA genes under 47 different conditions. Of these overexpression strains, 102 (90.3%) showed altered growth under certain conditions. Clustering analyses provided further functional clues and relationships for some of the lincRNAs. These rich phenomics datasets associate lincRNA mutants with hundreds of phenotypes, indicating that most of the lincRNAs analysed exert cellular functions in specific environmental or physiological contexts. This study provides groundwork to further dissect the roles of these lincRNAs in the relevant conditions

    Longevity is determined by ETS transcription factors in multiple tissues and diverse species

    Get PDF
    Ageing populations pose one of the main public health crises of our time. Reprogramming gene expression by altering the activities of sequence-specific transcription factors (TFs) can ameliorate deleterious effects of age. Here we explore how a circuit of TFs coordinates pro-longevity transcriptional outcomes, which reveals a multi-tissue and multi-species role for an entire protein family: the E-twenty-six (ETS) TFs. In Drosophila, reduced insulin/IGF signalling (IIS) extends lifespan by coordinating activation of Aop, an ETS transcriptional repressor, and Foxo, a Forkhead transcriptional activator. Aop and Foxo bind the same genomic loci, and we show that, individually, they effect similar transcriptional programmes in vivo. In combination, Aop can both moderate or synergise with Foxo, dependent on promoter context. Moreover, Foxo and Aop oppose the gene-regulatory activity of Pnt, an ETS transcriptional activator. Directly knocking down Pnt recapitulates aspects of the Aop/Foxo transcriptional programme and is sufficient to extend lifespan. The lifespan-limiting role of Pnt appears to be balanced by a requirement for metabolic regulation in young flies, in which the Aop-Pnt-Foxo circuit determines expression of metabolic genes, and Pnt regulates lipolysis and responses to nutrient stress. Molecular functions are often conserved amongst ETS TFs, prompting us to examine whether other Drosophila ETS-coding genes may also affect ageing. We show that five out of eight Drosophila ETS TFs play a role in fly ageing, acting from a range of organs and cells including the intestine, adipose and neurons. We expand the repertoire of lifespan-limiting ETS TFs in C. elegans, confirming their conserved function in ageing and revealing that the roles of ETS TFs in physiology and lifespan are conserved throughout the family, both within and between species

    Vitamin D receptor genotype influences risk of upper respiratory infection.

    Get PDF
    SNP in the vitamin D receptor (VDR) gene is associated with risk of lower respiratory infections. The influence of genetic variation in the vitamin D pathway resulting in susceptibility to upper respiratory infections (URI) has not been investigated. We evaluated the influence of thirty-three SNP in eleven vitamin D pathway genes (DBP, DHCR7, RXRA, CYP2R1, CYP27B1, CYP24A1, CYP3A4, CYP27A1, LRP2, CUBN and VDR) resulting in URI risk in 725 adults in London, UK, using an additive model with adjustment for potential confounders and correction for multiple comparisons. Significant associations in this cohort were investigated in a validation cohort of 737 children in Manchester, UK. In all, three SNP in VDR (rs4334089, rs11568820 and rs7970314) and one SNP in CYP3A4 (rs2740574) were associated with risk of URI in the discovery cohort after adjusting for potential confounders and correcting for multiple comparisons (adjusted incidence rate ratio per additional minor allele ≄1·15, P for trend ≀0·030). This association was replicated for rs4334089 in the validation cohort (P for trend=0·048) but not for rs11568820, rs7970314 or rs2740574. Carriage of the minor allele of the rs4334089 SNP in VDR was associated with increased susceptibility to URI in children and adult cohorts in the United Kingdom.National Institute for Health Research (NIHR) under its Programme Grants for Applied Research Programme (Ref. no. RP-PG-0407-10398). Chair from Asthma UK (no. CH11SJ) and Medical Research Council Centre (grant no. G1000758)

    Fitness Landscape of the Fission Yeast Genome.

    Get PDF
    The relationship between DNA sequence, biochemical function, and molecular evolution is relatively well-described for protein-coding regions of genomes, but far less clear in noncoding regions, particularly, in eukaryote genomes. In part, this is because we lack a complete description of the essential noncoding elements in a eukaryote genome. To contribute to this challenge, we used saturating transposon mutagenesis to interrogate the Schizosaccharomyces pombe genome. We generated 31 million transposon insertions, a theoretical coverage of 2.4 insertions per genomic site. We applied a five-state hidden Markov model (HMM) to distinguish insertion-depleted regions from insertion biases. Both raw insertion-density and HMM-defined fitness estimates showed significant quantitative relationships to gene knockout fitness, genetic diversity, divergence, and expected functional regions based on transcription and gene annotations. Through several analyses, we conclude that transposon insertions produced fitness effects in 66-90% of the genome, including substantial portions of the noncoding regions. Based on the HMM, we estimate that 10% of the insertion depleted sites in the genome showed no signal of conservation between species and were weakly transcribed, demonstrating limitations of comparative genomics and transcriptomics to detect functional units. In this species, 3'- and 5'-untranslated regions were the most prominent insertion-depleted regions that were not represented in measures of constraint from comparative genomics. We conclude that the combination of transposon mutagenesis, evolutionary, and biochemical data can provide new insights into the relationship between genome function and molecular evolution

    Polymorphisms in the WNK1 gene are associated with blood pressure variation and urinary potassium excretion.

    Get PDF
    WNK1--a serine/threonine kinase involved in electrolyte homeostasis and blood pressure (BP) control--is an excellent candidate gene for essential hypertension (EH). We and others have previously reported association between WNK1 and BP variation. Using tag SNPs (tSNPs) that capture 100% of common WNK1 variation in HapMap, we aimed to replicate our findings with BP and to test for association with phenotypes relating to WNK1 function in the British Genetics of Hypertension (BRIGHT) study case-control resource (1700 hypertensive cases and 1700 normotensive controls). We found multiple variants to be associated with systolic blood pressure, SBP (7/28 tSNPs min-p = 0.0005), diastolic blood pressure, DBP (7/28 tSNPs min-p = 0.002) and 24 hour urinary potassium excretion (10/28 tSNPs min-p = 0.0004). Associations with SBP and urine potassium remained significant after correction for multiple testing (p = 0.02 and p = 0.01 respectively). The major allele (A) of rs765250, located in intron 1, demonstrated the strongest evidence for association with SBP, effect size 3.14 mmHg (95%CI:1.23-4.9), DBP 1.9 mmHg (95%CI:0.7-3.2) and hypertension, odds ratio (OR: 1.3 [95%CI: 1.0-1.7]).We genotyped this variant in six independent populations (n = 14,451) and replicated the association between rs765250 and SBP in a meta-analysis (p = 7 x 10(-3), combined with BRIGHT data-set p = 2 x 10(-4), n = 17,851). The associations of WNK1 with DBP and EH were not confirmed. Haplotype analysis revealed striking associations with hypertension and BP variation (global permutation p10 mmHg reduction) and risk for hypertension (OR<0.60). Our data indicates that multiple rare and common WNK1 variants contribute to BP variation and hypertension, and provide compelling evidence to initiate further genetic and functional studies to explore the role of WNK1 in BP regulation and EH
    corecore