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Abstract

The relationship between DNA sequence, biochemical function, and molecular evolution is relatively well-described for
protein-coding regions of genomes, but far less clear in noncoding regions, particularly, in eukaryote genomes. In part,
this is because we lack a complete description of the essential noncoding elements in a eukaryote genome. To contribute
to this challenge, we used saturating transposon mutagenesis to interrogate the Schizosaccharomyces pombe genome. We
generated 31 million transposon insertions, a theoretical coverage of 2.4 insertions per genomic site. We applied a five-
state hidden Markov model (HMM) to distinguish insertion-depleted regions from insertion biases. Both raw insertion-
density and HMM-defined fitness estimates showed significant quantitative relationships to gene knockout fitness,
genetic diversity, divergence, and expected functional regions based on transcription and gene annotations. Through
several analyses, we conclude that transposon insertions produced fitness effects in 66–90% of the genome, including
substantial portions of the noncoding regions. Based on the HMM, we estimate that 10% of the insertion depleted sites in
the genome showed no signal of conservation between species and were weakly transcribed, demonstrating limitations of
comparative genomics and transcriptomics to detect functional units. In this species, 30- and 50-untranslated regions were
the most prominent insertion-depleted regions that were not represented in measures of constraint from comparative
genomics. We conclude that the combination of transposon mutagenesis, evolutionary, and biochemical data can pro-
vide new insights into the relationship between genome function and molecular evolution.

Key words: Schizosaccharomyces pombe, transposon mutagenesis, gene function, cellular fitness, noncoding genome,
Tn-Seq.

Introduction
A goal of genetics is to understand what sequence elements
within genomes specify cellular and organismal function. The
highly transcribed protein-coding regions of eukaryote
genomes are routinely detected within genomes and are
well studied. The numerous noncoding elements, on the
other hand, are more challenging to detect, profile, and

functionally describe. While biochemical assays of genome
activity can indicate functional units, inferring function based
solely on biochemical activity, for example, the ENCODE proj-
ect’s definition of functional DNA (ENCODE Project
Consortium et al. 2012), is inconsistent with evolutionary
analyses that show no signal of conservation for substantial
proportions of larger eukaryotic genomes (Doolittle 2013;
Graur et al. 2013).
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In theory, functionally important elements could be
detected by their conservation between lineages relative to
neutral elements. However, such analyses suffer from the par-
adox that more divergent species allow more sensitive detec-
tion of small functional elements, but there will be fewer
shared functional regions (Stone et al. 2005). Similarly, pat-
terns of diversity detect evolutionarily constrained regions
within a species (Fawcett et al. 2014; Jeffares et al. 2015; Yu
et al. 2015). However, these analyses are limited to summaries
of annotation types, rather than defining particular conserved
elements, because segregating genetic variants are generally
too sparse within specific genes to estimate the fitness effects
of mutations accurately. Additionally, various factors can af-
fect segregating variants and/or allele frequencies at any par-
ticular genomic locus, including recombination rate (Campos
et al. 2014) and recent events of selection which purge diver-
sity in surrounding areas (Smith and Haigh 1974; Cheeseman
et al. 2012). For these reasons, neither diversity nor divergence
analyses have sufficient power to describe functional
constraint at gene or subgenic resolution. In contrast, high-
density transposon-insertion libraries generated from inde-
pendent repeats can precisely define functional elements
and have provided estimators of gene-knockout fitness in
bacterial genomes (van Opijnen et al. 2009; Zhang et al.
2012; DeJesus and Ioerger 2013; Chao et al. 2016; Price et al.
2018). A limitation of transposon mutagenesis screens is that
some regions will have functional roles that are specific to
particular environments, developmental stages, or genetic
backgrounds (Price et al. 2018).

To define functional elements in a eukaryote genome, we
generated multiple dense insertion libraries in fission yeast
(Schizosaccharomyces pombe), using the Hermes cut and
paste transposon system (Park et al. 2009). We analyzed these
data with respect to genome annotation, genetic diversity,
divergence, and transcriptional output. We then developed a
hidden Markov model (HMM) in an effort to account for
biases in insertion frequency and smooth the stochastic in-
sertion profiles into meaningful measures of insertion-fitness
profiles that span multiple continuous genome positions.
Both the raw insertion density metric and the HMM states
showed significant relationships to independent predictors of
functional elements, including evolutionary constraint, ge-
netic diversity, annotation boundaries, and transcript levels.
Therefore, these data provide a rich resource for further study
of genic and nongenic functional elements.

Results

Generation of Dense Hermes Insertion Libraries in
Fission Yeast
We generated nine Hermes insertion libraries using modifica-
tions of previously published methods (Evertts et al. 2007;
Park et al. 2009; Guo et al. 2013). Insertions were generated
in cultures undergoing rapid mitotic proliferation, serially di-
luted for �25 cell divisions (supplementary fig. 1,
Supplementary Material online). Insertion sites were identi-
fied using a custom Hermes-end primed sequencing strategy
to produce paired-end reads (supplementary fig. 2,

Supplementary Material online). This approach included
the attachment of a 10-nucleotide (nt) unique molecular
identifier (UMI) to each sequenced DNA molecule, which
enabled us to remove PCR-generated duplicates of Hermes-
containing DNA molecules and thus count the number of
insertions per position. These counts represent either multi-
ple independent insertions at a genomic location (in different
cells within a library), or the result of a single insertion event
that has been propagated by cell division.

The libraries contained an average of 1.6 million genomic
insertions (supplementary table 1, Supplementary Material
online). Collectively, our libraries contained 31 million inser-
tions at 930,000 unique sites, an average insertion density of 1
insertion site per 13 nt of the genome.

Insertion Density is Consistent with Expectations of
Functional Constraint
Based on previous transposon analyses in bacteria and yeasts,
we expected that more important regions would tolerate
fewer insertions (Guo et al. 2013; Chao et al. 2016; Michel
et al. 2017). Initial analysis showed that both insertion density
(unique insertion positions/site) and average insertion count
(insertion instances per site) were significantly lower in essen-
tial genes compared with nonessential genes and higher in
nongenic regions (supplementary fig. 3, Supplementary
Material online). This result suggested that insertions reflect
the relative functional importance of these annotated
elements.

Notably, the mitochondrial genome also featured high in-
sertion density, but with little difference between coding and
noncoding regions (supplementary fig. 4, Supplementary
Material online). This result likely reflects that any given trans-
poson insertion among multiple mitochondrial genomes will
have little or no consequence for the cell. Nevertheless, this
finding shows that Hermes transposition can readily occur in
mitochondria.

To systematically examine the relationship between
genomic regions and insertions, we compared our
Hermes insertion data with genetic diversity (p), within
S. pombe strains and divergence between
Schizosaccharomyces species. Based on these evolutionary
measures of functional constraint, we divided the genome
into five annotation classes: coding regions of essential
genes, coding regions of nonessential genes, 50/30-
untranslated regions (UTRs) and introns, genomic regions
with no annotation (generally intergenic regions), and
noncoding RNAs. The relative levels of genetic diversity
and divergence consistently showed that essential coding
regions were subject to higher constraint than nonessen-
tial coding regions, followed by UTRs/introns, with unan-
notated regions being the least constrained. Hermes
insertion density (unique insertions/nt) and mean inser-
tion count were consistent with this ranking (fig. 1). These
findings suggest that Hermes insertion density has a
meaningful quantitative relationship to evolutionary con-
straint, even though insertions were generated in only
one culture condition.
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Application of an HMM to account for Insertion
Biases
Previous analyses have shown that the Hermes transposon
insertions are biased toward nucleosome-free DNA and that
they preferentially occur in DNA with a degenerate sequence
motif (TNNNNA) (Gangadharan et al. 2010; Guo et al. 2013).
We sought to develop a prediction of the fitness consequen-
ces of transposon insertions at a fine-scale resolution correct-
ing for such bias. This prediction should also reflect that
neighboring nucleotides in a genome do not function inde-
pendently but as “functional” units (e.g., exons, introns,

UTRs). We developed an HMM to correct for these insertion
biases and smooth the signal from stochastic insertions into
contiguous functional units. In this model, the observed data
are the insertion counts and the “hidden” state is the degree
of biological importance. Regions with greater importance are
expected to have fewer insertions.

Our model utilized measurements of nucleosome density
and sequence composition. Genome-wide profiles of nucleo-
some density were obtained from proliferating cells (Atkinson
et al. 2018). Next, the sequence composition of previously
recorded in vitro insertion sites (Guo et al. 2013) were
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FIG. 1. Hermes insertion data recapitulate signals of evolutionary constraint. For protein-coding regions of essential genes (eCDS), protein-coding
regions of nonessential genes (nCDS), 50/30-UTRs and introns (UTRþint), regions of the genome without any annotation (NOA) and noncoding
RNAs (ncRNAs) we show: (A) the genetic diversity from 57 strains of Schizosaccharomyces pombe (Jeffares et al. 2015), measured in 100-nt
windows, and (B) the phyloP measure of constraint (Gagliano et al. 2014) between four Schizosaccharomyces species (mean phyloP score, over 100-
nt windows). Similarly, for pooled proliferation Hermes data, we show: (C) the number of unique insertions/nt, and (D) the mean insertion counts
(calculated including sites without insertions as zero counts). All these plots exclude outliers.
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evaluated to find a degenerate insertion motif. We then con-
structed a sequence composition measure, termed insertion
motif similarity score (IMSS), which describes the similarity of
each position in the genome to this motif. Data from these
two measurements were used to construct generalized linear
models describing the relationship between insertion density,
nucleosome density, and IMSS (supplementary fig. 5,
Supplementary Material online).

Our HMM divided the genome into five states, from state
1 (S1), indicating the sites at which transposon insertion had
the greatest negative functional consequences, to state 5 (S5),
indicating sites at which insertion had the least negative (or
potentially positive) functional consequences. This number of
states was obtained from initial trials with the model, detailed
below. Annotated regions of the genome were used to train
the model. The first state, S1, was trained on coding regions of
essential genes (whose knockouts are inviable), S2 was trained
on coding regions of nonessential genes, S3 on regions that
may have some importance but weaker signals (introns and
UTRs), S4 on unannotated intergenic regions that show high
genetic diversity (Jeffares et al. 2015), where mutations or
insertions may be neutral, and S5 on the top-10% insertion-
dense sites to allow for the possibility that insertions in some
positions enhance cell survival.

The model was fitted to the data by maximum likelihood,
using the EM algorithm. The Viterbi algorithm was then used
to determine the most likely state (S1–S5) for each genomic
position given the nucleosome density, IMSS, and insertion
counts. Model fitting did not explicitly include annotations
(see Materials and Methods for details on HMM). HMM
states were highly consistent between independent HMM
model fitting runs (see Materials and Methods). Insertion
data, HMM states, nucleosome density, and conservation
measures are available in a dedicated genome browser
http://bahlerweb.cs.ucl.ac.uk/bioda (Firefox browser compat-
ible; Accessed on May 10, 2019) and in the fission yeast model
organism database PomBase (www.pombase.org). These tools
allow users to check functional information for regions of
interest, including fine-scale structure–function relationships
within specific genes and putative regulatory regions.

Validity and Limitations of the Model
To evaluate the validity of the HMM, we first examined the
relationship between HMM states, rates of divergence in
Schizosaccharomyces species, and diversity within S. pombe.
If lower HMM states (fewer insertions) were indicative of
more functionally important regions, we would expect
them to show lower divergence and less genetic diversity
due to increased constraint. To examine this expectation,
we divided the genome into 126,311 windows of 100 nt,
and calculated insertion density (unique insertion sites/
100 nt), mean HMM state, mean constraint (using the
phyloP algorithm), and average pairwise diversity (p) within
S. pombe strains. We found that lower HMM states were
subject to significantly higher constraint (fig. 2A). Similarly,
lower HMM states showed significantly lower genetic diver-
sity, consistent with greater purifying selection within
S. pombe (fig. 2B). This result is consistent with the notion

that HMM states S1–S3 have biological relevance, and that S1
and S2 represent functionally important regions.

This finding was not surprising, given that HMM states are
strongly correlated with insertion density (Pearson r¼ 0.78),
and we had already established that coding regions contained
lower insertion densities (fig. 1). It is possible that this
genome-wide pattern could reflect merely differences be-
tween coding and noncoding regions, which have different
constraints but also differ in GC content, nucleosome densi-
ties, and other features which might influence transposon
insertions and the usefulness of the HMM.

To examine whether the HMM could differentiate sites
that were more/less important within one annotation-class,
we examined HMM states within the protein-coding regions
of nonessential genes. We found a statistically significant re-
lationship between HMM states and constraint during evo-
lution (fig. 2C). The relationship was present, but weaker,
within coding regions of essential genes (fig. 2D). Hence,
HMM states are indicative of conserved, functionally relevant
regions genome-wide, but only weakly effective at predicting
functional elements within protein-coding genes.

HMM has the potential advantage that it could enable
discrete segmentation of genome windows to define bound-
aries of functional elements, unlike raw insertion density. To
examine whether this model-based segmentation was
biologically meaningful, we measured the relationship of
the model to previously annotated elements, such as exons,
introns, 50- and 30-UTRs, and noncoding RNAs. We defined
256,815 genomic regions that feature a continuous run of one
HMM state (“HMM-defined elements,” HDEs). All S4 or S5
HDEs were <100 nt and mostly intergenic, indicating that
only short regions in this genome can tolerate insertions
without affecting fitness.

We excluded these S4/S5 HDEs from further analysis, leav-
ing 10,015 HDEs with a median length of 618 nt, which
accounted for 90% of the mappable genome. HDE edges
were closer to edges of existing annotations than expected
by chance (Wilcoxon rank sum test, P< 10�16, fig. 3A and B).
This result is consistent with these HMM-defined regions
representing boundaries of various biologically relevant ele-
ments (including transcriptional units, spliced exons, or
protein-coding regions).

Collectively, these findings are consistent with the HMM
states S1–S3 showing a meaningful relationship to evolution-
ary constraint and boundaries of HMM-elements being
aligned to exiting annotations. This analysis is consistent
with states S1 and S2 being enriched for conserved, function-
ally important regions. A limitation of the HMM is that states
S4 and S5 were not significantly different in any biological
measure, so their meaning, if any, thus remains unclear.

Genome-Wide Fitness Consequences of Insertions
Our analysis showed that 100-nt windows with HMM states
S1/S2 are significantly more constrained within
Schizosaccharomyces species, and feature less genetic diversity
within S. pombe than regions with HMM states S3–S5 (fig. 2).
As 91% of the genome was assigned to states S1/S2, a sim-
plistic conclusion would be that transposon insertions have
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negative fitness consequences over 91% of the genome.
Broadly, model states are consistent with known molecular
biology. For example, 87% of the coding regions of essential
genes were assigned to S1, compared with 32% of nonessen-
tial protein-coding regions, and smaller proportions of 50- and
30-UTRs, which account for a large proportion of the non-
coding genome of S. pombe (fig. 3).

This modeling of insertions would suggest that most of the
noncoding genome in this species contains functional ele-
ments. For example, the HMM assigned 82% nonprotein-cod-
ing regions to S1 or S2, indicating that they were strongly
insertion-depleted relative to genome-wide expectations.
UTRs, ncRNAs, and unannotated regions were each
insertion-depleted to some extent (fig. 3E). This measure far
exceeds the proportion that would be defined as important
with the limited comparative genomics data available. For
example, 24% of regions with no functional annotation are
strongly insertion-depleted (S1), yet these regions show little
conservation between Schizosaccharomyces species (fig. 1).

If we use insertions/site as an alternative model-free metric,
noncoding regions also appear to contain functional units,

though details differ. For example, if we assume that 95% of
the coding regions of essential genes will be insertion-
depleted due to the fitness consequences of insertions, we
can establish a threshold for the insertion density of func-
tional sites, as the 95th percentile of insertion density in es-
sential coding regions (9 insertions/100 nt). We find that 66%
of the genome has fewer insertions than this threshold,
including 41% of the noncoding genome. This 41% of the
noncoding genome is significantly more conserved than
the remainder of the noncoding genome, consistent with
this simple method being sufficient to detect functionally
important regions (mean phyloP low-insertion noncod-
ing regions 0.059, high-insertion noncoding regions 0.037,
Wilcoxon rank sum test P< 10�16). Similarly, 50% of
UTRs and 48% of regions with no annotations are below
this threshold; in both cases, low-insertion regions are
significantly more conserved than high-insertion regions
with the same annotation (both Wilcoxon tests
P< 10�15). These results indicate that insertion densities
can predict sites that are likely functional, independently
of, and consistently with, the HMM.
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FIG. 2. HMM states are indicative of conserved, functionally significant regions. (A) For all 100-nt windows in the genome, we show constraint
distributions for mean HMM states S1–S5. Comparisons of S1 versus S2, S2 versus S3, and S3 versus S4 were significantly different (Wilcoxon rank
sum tests, all P< 10�16), indicated by asterisks. (B) Similarly, we show diversity for windows with mean HMM states S1–S5. Bar widths are
proportional to the number of windows, with outliers being excluded. Comparisons of S1 versus S2 and S2 versus S3 were significantly different
(Wilcoxon rank sum tests, P< 10�16 and P¼ 4�10�13). (C) For windows within nonessential protein-coding regions, constraint distributions S1
versus S2, S2 versus S3 and S3 versus S4 were significantly different (Wilcoxon rank sum tests, P< 10�16, P¼ 1�10�8, P¼ 8�10�3). (D) For 100-nt
windows within essential protein-coding regions, only constraint distributions S1 versus S2 were significantly different (Wilcoxon rank sum tests,
P< 10�16), but<1% of windows were in categories with mean HMM states>2. In all plots, horizontal red lines show median values for HMM state
2 category windows, and black horizontal bars indicate categories that were significantly different by Wilcoxon rank sum tests. All plots show
differences in metrics over 100-nt windows. Constraint was calculated as the mean phyloP measure (see Materials and Methods) of conservation
for sites within the window, and genetic diversity is average pairwise difference (p) from 57 nonclonal Schizosaccharomyces pombe strains (Jeffares
et al. 2015). Mean HMM states utilized only windows where 95% of the positions were read-mappable, to preclude low-mapping windows
masquerading as insertion-depleted windows. HMM state categories 1 and 2 were defined as windows where the mean HMM states were exactly 1
or 2 (which was frequent). HMM state categories 3–5 were defined as windows with mean HMMs within 0.5 of this range (e.g., state 3 category
>2.5 and <3.5).
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Transposon Insertion Metrics Correlate with Gene
Knockout Fitness
To examine whether raw insertion densities and/or the HMM
contained information about the relative fitness cost of gene
disruption, we calculated the mean HMM state and unique
insertion sites/nt for each protein-coding gene (supplemen-
tary table 2, Supplementary Material online). As expected,
essential coding genes had much lower metrics (fig. 1). To
examine further whether these insertion metrics contained
quantitative information about gene disruption fitness, we
compared these measures to the colony sizes of viable knock-
out mutants on solid media (Malecki and B€ahler 2016;
Malecki et al. 2016). This orthogonal measure of gene disrup-
tion fitness alteration uses solid media (insertion metrics use

liquid media), a more direct fitness measure, and different
methods to interfere with gene function (disruption vs. dele-
tion). We found that both metrics were positively correlated
with the colony size of knockout mutants (inserts/nt, Pearson
r¼ 0.28, Spearman r¼ 0.30, mean HMM state Pearson
r¼ 0.34, Spearman 0.25, all P< 10�16). Similarly, insertion
metrics were correlated with constraint (mean phyloP vs.
both inserts/nt and vs. mean HMM state, Pearson r¼ 0.30,
P< 10�16). Other measures of knockout fitness collected
from Bar-seq experiments of pooled mutants in liquid media
(Kim et al. 2010; Sideri et al. 2014) were less correlated with
both constraint and Hermes transposon insertion metrics (all
correlations <0.1), suggesting that these laboratory fitness
measures are limited in their power to predict long-term
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FIG. 3. Functional Landscape by Annotation Type. Parts (A–C) show that the boundaries of HMM-Defined Elements (HDEs) are aligned to, or close
to, the boundaries of existing annotations, as defined in legend at top right. The random expectation is derived from the same number of elements
of the same lengths, placed at random on the genome. (A) HDEs have a smaller distance to the nearest annotation than random expectation. (B)
For all HDE edges we show a cumulative density plot of nearest annotation type, including 50/30-UTRs, transcripts (transcription start/stop
positions), coding sequences (amino-acid encoding regions, CDS), noncoding RNAs (ncRNAs), with lines colored according to the legend at right.
(C) HDEs fell closest to a variety of annotations. The pie chart shows the proportions of nearest annotations, indicating a bias toward defining 50-
UTR edges. There were subtle differences between states S1, S2, and S3 in this respect (not shown). The HMM defined five states based on Hermes
transposon insertions. State 1 (S1) refers to the most important regions, with the least insertions, and state 5 (S5) with the highest density of
insertions. (D) Percentage of Schizosaccharomyces pombe genome covered by various annotation types: entire genome (100%), essential protein-
coding regions (eCDS), protein-coding nonessential regions (nCDS), canonical noncoding RNAs (snRNAs, snpRNAs, tRNAs, rRNAs, canonRNAs),
50/30-UTRs (UTRs), noncoding RNAs (ncRNAs), and unannotated regions (no-anno). (E) Proportions of each annotation type in the five states: S1
(red), S2 (black), S3 (dark gray), S4 (light gray), and S5 (white). (F) Mean HMM states for essential (eCDS) and nonessential (nCDS) coding regions.
Representative 50 points are shown for each type to indicate that most essential coding regions have mean state �1 (85% mean state <1.2).
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evolutionary constraints. In summary, although correlations
are modest, these analyses indicate that the insertion metrics
recover biologically meaningful fitness measures that add
value beyond the binary classification of essential versus non-
essential genes obtained from whole-gene disruptions.

Characterizing HMM-Defined Functional Elements
The HMM treatment of insertion data produced a data-
driven partitioning of genomic elements based on the inser-
tion model alone. To characterize the HMM-defined
elements (HDEs) further, we compared their conservation
during evolution and their RNA expression levels. The HDEs
which were most insertion-depleted, and therefore most crit-
ical for cell function (S1 elements), covered 35% of the map-
pable genome. These HDEs showed distinct features: they
were most conserved between species, the longest (mean
length 1.9 kb), most highly expressed, and enriched for essen-
tial protein-coding regions (fig. 4). Another 52% of the ge-
nome was composed of S2 elements (mean length 1.0 kb),
including mainly coding regions and UTRs, which also
showed relatively high expression levels and conservation.
The inclusion of many 50- and 30-UTRs in S1 and S2 elements
indicates that these noncoding regions often contain regula-
tory sites whose disruption impairs cellular function. Finally,
the S3 elements occupied only 3% of the genome, were sel-
dom conserved, generally short (mean length 0.18 kb), were
enriched for UTRs, ncRNAs, and unannotated regions. The
UTRs likely contain regulatory sites, because insertion density
is a predictor of constraint (see above). It would have been
difficult to identify these regions without the insertion data
because they are neither highly conserved nor highly tran-
scribed. As the Schizosaccharomyces clade contains only four
species, subtle constraint will likely remain undetected. In
summary, HMM-defined regions were aligned to known an-
notation boundaries (fig. 3A and B), were consistent with
evolutionary conservation and showed differences in tran-
scription (fig. 4).

Discussion
Dense transposon-insertion libraries can identify genes whose
disruption affects fitness (in particular conditions) within bac-
terial genomes with high resolution (van Opijnen et al. 2009;
Zhang et al. 2012; DeJesus and Ioerger 2013; Chao et al. 2016;
Price et al. 2018). However, similarly high-resolution descrip-
tions of eukaryotic genomes are more limited, and have not
yet achieved nucleotide-level definitions of fitness landscapes
(Guo et al. 2013; Michel et al. 2017). Studies with eukaryotic
genomes are more challenging, because they are larger and
contain nucleosomes, which bias integration rates. With the
high density of insertions that we achieved (31 million inser-
tions, 1 unique insertion site/13 nt), these data have potential
to describe the functional significance of genomic segments
at a very fine resolution.

As insertion positions are stochastic, we developed an
HMM to define the discrete boundaries between insertion-
depleted and insertion-rich regions. This approach
demonstrated both strengths and weaknesses. Changes in
HMM states were closely aligned to existing annotations

(fig. 3A–C), and regions with continuous runs of one HMM
state, identified elements with different properties (fig. 4),
suggesting that the model partitioned genomic elements
with different functions. The model was able to account for
the known insertion biases: HMM states strongly depended
on insertion density but only weakly correlated with nucleo-
some density and the insertion nucleotide motif (supplemen-
tary fig. 6, Supplementary Material online). Both raw insertion
density and HMM model states could identify regions with
enhanced evolutionary constraint, both genome-wide and
within specific annotation categories, showing that the trans-
poson data are broadly consistent with other fitness
measures.

Other aspects of the HMM were less conclusive. While
model fitting tests indicated that a five-state HMM was the
best-supported, HMM states S4 and S5 were always present
in short segments in the genome, and were not significantly
different from each other in terms of evolutionary constraint.
Moreover, mean HMM states for genes were only weakly
correlated with gene knockout fitness (correlation coefficients
�0.3). Either of these limitations may be due to the initial
insertion data and/or the model. There could well be other
insertion biases that are not accounted for, such as the posi-
tion of a genomic segment in the 3D space of the nucleus
(Michel et al. 2017). Such biases would limit our ability to
predict the degree of genomic importance for regions that are
refractive to transposon insertion. It is also possible that trans-
poson insertions can disrupt the function of larger
neighboring regions, although the sites of insertions them-
selves are not functional, which would inflate the HMM-
based estimate of the functional genome. Finally, a limitation
of any transposon insertion study is that the transposon
method does not reveal how noncoding genomic elements
function.

A simple model-free estimate, based on the assumption
that 95% of essential coding regions are insertion-depleted,
indicates that 66% of the genome contains functional ele-
ments. This is similar to the conclusion from comparative
genomics that 68% from Saccharomyces is subject to evolu-
tionary constraint (Siepel et al. 2005). Alternatively, based on
the HMM, we would conclude that 91% of the fission
yeast genome contains functional elements. In both cases,
substantial proportions of the noncoding genomes ap-
pear to be insertion depleted (model-free 41%, HMM
80%). And in both cases, the insertion-depleted noncod-
ing regions we define show statistically significant signals
of enhanced constraint.

Comparative genomics is likely to produce conservative
estimates of the functional proportions of genomes, because
it is more likely to detect regions that have been continuously
subject to purifying selection throughout the phylogeny of
the species aligned (Stone et al. 2005). This will reduce our
ability to detect regions that are subject to purifying selection
in one species, but not another. As there are only four
Schizosaccharomyces yeast genomes to align, we would ex-
pect a relatively ineffective detection of functional elements
from comparative genomics in fission yeasts. Consistent with
these caveats of functional genomics, we find that that 31% of
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the 100-nt windows of the genome are insertion depleted
(mean HMM state � 2), but have no signal of conservation
between Schizosaccharomyces yeast genomes. The model-
free estimate suggested that 20% of the genome is functional
but has no signal of conservation. Both these analyses indicate
that transposon mutagenesis can identify regions that are
likely functional, but undetectable with the comparative ge-
nomics data available for this species.

Alternative analyses with different transposons, different
species, or models will certainly be valuable. We expect that
future work will reveal whether these elements function as
the widespread noncoding transcripts (Atkinson et al. 2018)

and/or as regulatory elements controlling the expression of
coding genes.

Conclusion
Our analysis indicates that the fission yeast genome is densely
packed with functional elements, including many
uncharacterized nonprotein-coding elements. Based on the
HMM, we estimate that as much as 90% of the genome may
contain functional elements that are impaired by transposon
insertions, including between 40% and 80% of the nonpro-
tein-coding regions. We conclude that saturating transposon
mutagenesis data have potential to define functional
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nonprotein-coding elements within eukaryote genomes that
would be difficult to detect with any other contemporary
method.

Materials and Methods

Creating Hermes Insertion Libraries
Hermes insertion libraries were constructed as described (Park
et al. 2009) using the pHL2577 and pHL2578 plasmids, except
that the transposition frequency was calculated by dividing
the number of colonies on YES 5-FOAþG418 plates by the
number of colonies on YES plates. All experiments were per-
formed in an S. pombe strain with the genotype ura4–D18
leu1–32 h–. Typically, <0.2% of cells in libraries contained
genomic Hermes insertions, so we expect that most insertion
mutants contain a single insertion.

Generating DNA Libraries for Sequencing
Genomic DNA was extracted from insertion libraries using
phenol/chloroform extraction. All DNA extracted from a li-
brary was processed. DNA was sheared to an average size of
200 bp using a Covaris S2 ultrasonicator (Covaris, Woburn,
Massachusetts). Sheared DNA was end repaired using the
NEBNext End Repair Module (NEB, Hitchin, UK). Linker1-
Random10mer and Linker2 (supplementary table 4,
Supplementary Material online) were ligated using the
NEBNext Quick Ligation Module (NEB, Hitchin, UK). In
Linker1-Random10mer, the random 10-nt sequence acted
as a UMI to distinguish unique chromosomal insertions
from PCR amplifications. DNA was then digested with
KpnI-HF (NEB, Hitchin, UK) to exclude residual Hermes
pHL2577 donor plasmid from PCR amplification (as the plas-
mid contains a unique KpnI site). NEBNext modules were
used according to manufacturer’s instructions. To enrich
for fragments containing the Hermes transposon, DNA was
amplified with BIOTAQ DNA polymerase (Bioline, Essex, UK)
using a primer complementary to the Hermes transposon (1-
Transposon-4NNNN), and to the linker (Linker1-Amp, sup-
plementary table 4, Supplementary Material online).
Ultimately, a second PCR attached the multiplex oligonucleo-
tides for Illumina MiSeq sequencing; the MS-102-2022 MiSeq
reagent kit v2 (300 cycles) (Illumina, Cambridge, UK) was
used to sequence the libraries. To increase the complexity
of the libraries, for each library, ligation and PCR reactions
were performed in multiple reactions (in 96-well plates), using
a maximum of 1mg of DNA per well and then repooled be-
fore sequencing. Detailed protocols are available in the
Figshare project Hermes Transposon Mutagenesis of the
Fission Yeast Genome (will be made publicly available upon
manuscript acceptance). Sequence data are available at
European Nucleotide Archive in study accession number
PRJEB27324. Sample accessions are listed in supplementary
table 5, Supplementary Material online.

Computational Processing of Sequencing Data
Bioinformatic processing filtered the sequence data to retain
only reads derived from Hermes insertions, removed reads
with duplicate UMIs, and filtered for correctly paired

high-confidence read-mapping, and ultimately located the
positions and orientation (strand) of genomic insertions.
Details are as follows. Read 1 architecture was
[random4mer][Hermes][Genome] (with random 4mer
added to increase 50 Read 1 end complexity to allow
Illumina cluster calling). The 4mer was trimmed with fastx_
trimmer (http://hannonlab.cshl.edu/fastx_toolkit/; Accessed
on May 10, 2019). The Reaper tool (Davis et al. 2013) was
used to detect reads with 50 ends matching the expected
Hermes sequence, and excluding those within the pHL2577
donor plasmid. Read 2 architecture was
[10mer][Linker][Genome]. We used a custom Perl script to
exclude duplicate reads with exactly matching 10mers.
Processed Reads 1 and 2 were repaired using Tally (Davis
et al. 2013), and the 10mer and Linker were trimmed with
fastx_trimmer. Paired-end reads were aligned to the reference
genome (Wood et al. 2002) and the donor plasmid using
BWA-MEM (Li et al. 2009). SAMtools (Li et al. 2009) was
used to select correctly paired reads with a mapping score
�30 (flags 83 and 99). Finally, we applied custom scripts to
identify the location and strand of insertions from the filtered
BAM outputs with SAMtools. Insertions found on the same
chromosome but on different strands were considered as
unique events. Command lines for this procedure and scripts
are available in the Figshare project Hermes Transposon
Mutagenesis of the Fission Yeast Genome, as well as all inser-
tion data, and HMM model fitting results.

Nucleosome Density Data
The generation of the nucleosome density data has been
described in Atkinson et al. (2018) and are available at the
European Nucleotide Archive under accession number
PRJEB21376. The median nucleosome density from two
repeats was transformed to a normal distribution. This
normalized nucleosome density showed a stronger correla-
tion with insertion density than the raw nucleosome density
and was used as a predictor in the HMM.

Insertion Motif Similarity Score
In vitro Hermes insertion data (Guo et al. 2013) was used to
identify a sequence motif corresponding to insertion events
in nonnucleosome bound DNA. Strings of 41 nt, centered
upon each in vitro insertion event were taken from the
S. pombe reference sequence. The percentage of each nucle-
otide present at each of the 41 positions was measured and
compared with percentage nucleotide compositions calcu-
lated across the entire genome. A window of 20 positions
was identified for which the composition differed from the
genome-wide composition by at least 1% for at least one of
the four nucleotides. For each position i, we denote the prob-
ability of observing the nucleotide a as

piðaÞ : 1 � i � 20; a 2 fA; G; C; Tg

and denote the genome-wide probability of observing the
nucleotide a as pgw(a).

A genome-wide scan was then conducted of strings of 20
consecutive nt in the genome sequence, calculating a
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likelihood measure of the extent to which each string
matched the insertion motif, as compared with the
genome-wide base composition. Where a string is given by
the nucleotides {a1, a2, . . ., a20} we calculate the insertion
motif similarity score as follows:

IMSS ¼
X20

i¼1

logpi aið Þ � logpgw aið Þ½ �:

Here, a positive score indicates a greater similarity to the
insertion motif than to the genome-wide sequence propen-
sity. This likelihood measure was used as a predictor in the
HMM.

Hidden Markov Model
We developed an HMM using the R package depmixS4
(Visser and Speekenbrink 2010). These models assume that
sequences of observed response variables are dependent on
underlying sequences of discrete hidden states. The sequence
of hidden states is assumed to follow a first-order Markov
process, such that the probability of a state at position t
depends only on the hidden state at the immediately preced-
ing position t�1. The observed responses are assumed con-
ditionally independent given the sequence of hidden states
(i.e., correlations between nearby positions are completely
accounted for by the hidden states). This model used log2-
transformed insertion numbers as the observed state. Sites
with zero insertions were set to observed state ¼ 0. Each
hidden state defined a (zero-inflated) Poisson regression
model, with log2 insertion count as dependent variable, and
the normalized nucleosome density (median of two repli-
cates) and nucleotide preference score as predictors.
Missing data for nucleosome density were set to the median.
The models parameters (initial state probabilities, state-
transition probabilities, and the parameters of the state-
dependent zero-inflated Poisson regressions) were estimated
by maximum likelihood using the Expectation–Maximization
(EM) algorithm. Initial state distributions were all 1/n, where n
is the number of states. Initial transition matrix was 0.95 for
positions remaining in the same state, and 0.05/(n�1) for all
other transitions. Initial parameter values of the Poisson
regressions were obtained by pretraining each state-
dependent model on a subset of the data (see below).
These initial parameters were used to start the EM algorithm,
the final resulting parameter estimates were determined by
maximum likelihood. Neither annotations nor transcriptome
data were supplied as predictors to the HMM. Models were fit
to the insertion data by the EM algorithm, until convergence
of the likelihood (with a tolerance 1�10�8) or with a maxi-
mum of 150 iterations (since log likelihood fit of models im-
proved little after 150 iterations; supplementary fig. 7,
Supplementary Material online).

Choice of Optimal Model
To select an appropriate number of states and state training
data for our HMM, we used ten “test data” subsets of the
genome, each a 100-kb fraction as follows: Chromosome I,
100001–200001, 1100001–1200001, 2100001–2200001,

3100001–3200001, Chromosome II, 100001–200001,
1100001–1200001, 2100001–2200001, 3100001–3200001
and Chromosome III, 100001–200001, 1100001–1200001
(test data sets A to J). These regions avoid the chromosome
ends, which have unusual properties, such as a high frequency
of pseudogenes and native Tf1 transposon insertions (Jeffares
et al. 2015).

We ran each of the following models on all insertion data
from proliferating cells (split into the ten subsets). These
models defined the training data in two ways. Firstly,
“insertion-quantile” models, where training data were defined
solely by the density of unique insertions, calculated over 100-
nt windows. For example, a three-state model split the data
into the lower, mid, and upper third insertion density for
states 1–3. We trialed quantile models from two to ten states.
Secondly, annotation-based models. We trialed 2-, 3-, 4-, and
5-state models where the training data were derived from
current genome annotations. The two-state model included
coding sequences (S1) and other regions (S2). The three-state
model included coding sequences of essential genes (S1),
coding sequences of nonessential genes (S2), introns, unan-
notated regions, and UTRs (S3). The four-state model
included coding sequences of essential genes (S1), coding
sequences of nonessential genes (S2), introns and untrans-
lated regions (S3), and unannotated regions (S4). It differs
from the three-state model in that it differentiates UTRs
and introns from unannotated regions. The five-state model
is as the four-state model, except that it includes a 5th state
that contains sites with the highest 10% of unique insertions/
100 nt. The response for this state was a Poisson distribution
rather than zero-inflated Poisson.

Each of these 13 models was fit (with tolerance 1�10�8) to
the ten fractions of the genome. Fitting involved optimizing
the parameter of states at each position, the transition state
matrix, and the slope, intercept, and zero-fraction of the state
model. A five-state annotation model was chosen as a prag-
matic best fit for running large (million position) data sets.
Comparison of the Bayesian information criterion scores
(BIC) for two to five states indicated that increasing states
improved the fit (supplementary fig. 8, Supplementary
Material online), but higher state models suffered from in-
creased run times and frequent run failure, and/or highly
inconsistent fractions of the subset data assigned to various
states (with some states being absent).

Due to the rounding of log2 insertion counts, sites with one
or zero insertions were set to the same observed state.
Rounded log2 of insertionsþ 1 (where sites with zero inser-
tions have different value from those with 1) resulted in a
worse fit to the model (supplementary fig. 9, Supplementary
Material online).

Fitting of Chromosome-Wide Data
Once the five-state annotation model (model 5 A) was cho-
sen as a pragmatic best model, it was run on all proliferation
libraries, fitting data from five relatively equal portions of the
genome separately, to allow runs in a practical time frame and
memory. These fractions were: chromosome I left half (posi-
tions 1–2789566), chromosome I right half (positions
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2789567–5579133), chromosome II left half (positions
1–2269902), chromosome II right half (positions 2269903–
4539804), and the entirety of chromosome III (fractions are
between 2.26 and 2.79 Mb). The model produced a state
prediction for each position in the genome, and the posterior
probability of each state at each position.

These separate fits to the model resulted in similar distri-
butions of states between chromosome arms for both the
coding regions and introns of essential genes, supporting con-
sistent convergence of the models between these genome
subsets (supplementary fig. 10, Supplementary Material on-
line). To examine whether positions were assigned a consis-
tent state using different subsets of data, and independent fits
of the HMM, we made subsets of proliferation (dense data)
for the central half of chromosome I (positions 1394783–
4184350), which overlaps both the left and right halves
used previously. These data were fit to model 5 A as before.
With dense proliferation data, sites that overlapped the 96.7%
of positions were assigned the same state with either left
versus middle, or right versus middle comparisons. States
1–5 were all consistently assigned (e.g., > 99% of state five
positions were the same within proliferation data, and similar
proportions for all other states). This analysis indicates that
these fractions were sufficiently large to preclude fitting to
very different local optima. HMM code is available in the
Figshare project Hermes Transposon Mutagenesis of the
Fission Yeast Genome.

Filtering Badly Mapped Sites
To ensure accurate placement of reads, our pipeline filtered
reads mapped with mapping quality �30. To avoid the ten-
dency to misinterpret regions that have few insertions due to
the loss of low mapping quality, we analyzed only sites that had
retained�90% of the reads (lost<10%) over 500-nt windows
after mapping quality filtering. This retained 94.6% of the ge-
nome for analysis. After filtering, there was only a weak negative
correlation between the HMM state and the proportion of
reads filtered (Pearson r ¼ �0.049). All data presented in-
cluded only the sites that had retained�90% of the reads after
filtering for Q30 mapping (the “mappable genome”).

Annotation Data
Annotations were from PomBase (ASM294v2, February 11,
2016), including 1,538 annotated ncRNAs.

Transcriptome Analysis
Replicated RNA-Seq data from vegetatively growing, early
stationary, and deep stationary cultures were retrieved from
the European Nucleotide Archive (ENA; http://www.ebi.ac.
uk/ena; Accessed on May 10, 2019) using the following acces-
sion numbers (data set: PRJEB7403; samples: ERS555567,
ERS555607, ERS555570, ERS555612, ERS555571, ERS555613)
(Atkinson et al. 2018). Reads were aligned to the S. pombe
genome as described (Bitton et al. 2014). The resultant aligned
reads were used to compute normalized coverage at the nu-
cleotide level using the genomecov function in the BEDtools
suite (Quinlan and Hall 2010). Customized R scripts were used
to define whether a given region is transcribed.

Comparative Genomics
We used updated genome assemblies of fission yeasts S. octo-
sporus, S. japonicus, and S. cryophilus (Tong et al. 2018). To
improve previous full genome alignments of fission yeast spe-
cies (Rhind et al. 2011), we incorporated these newly assem-
bled genomes into an alignment with the S. pombe genome
using progressive-cactus (Paten et al. 2011) (github version
May 2016), using a guide tree based on Rhind et al. (2011). We
then applied the phyloP algorithm (Siepel et al. 2006) as
implemented in the HAL toolkit (Hickey et al. 2013) to detect
constraints. We trained a neutral model using the 4-fold de-
generate sites from coding regions from the high-quality S.
pombe annotation.

100-Nucleotide Window Analysis
Analysis of 100-nt windows used custom scripts to calculate
mean HMM state, unique insertions/nt, and mean phyloP
signal. Annotation analysis for 100-nt windows used windows
where 100% of the window was covered by the annotation in
question.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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