120 research outputs found

    Comparison of urinary scents of two related mouse species, Mus spicilegus and Mus domesticus.

    No full text
    International audienceWhereas the house mouse (Mus domesticus) has been studied extensively in terms of physiology/behavior and pheromonal attributes, the evolutionarily related mound-building mouse (Mus spicilegus) has received attention only recently due to its divergent behavioral traits related to olfaction. To date, no chemical studies on urinary volatile compounds have been performed on M. spicilegus. The rationale for our investigations was to determine if there are differences in urinary volatiles of intact and castrated M. spicilegus males and to explore further whether this species could utilize the same or structurally similar pheromones as the male house mouse, M. domesticus. The use of capillary gas chromatography/mass spectrometry (GC-MS) together with sorptive stir bar extraction sampling enabled quantitative comparisons between the intact and castrated M. spicilegus urinary profiles. Additionally, through GC-MS and atomic emission (sulfur-selective) detection, we identified qualitative molecular differences between intact M. spicilegus and M. domesticus. A series of volatile and odoriferous lactones and the presence of coumarin were the unique features of M. spicilegus, as was the notable absence of 2-sec-butyl-4,5-dihydrothiazole (a prominent M. domesticus male pheromone) and other sulfur-containing compounds. Castration of M. spicilegus males eliminated several substances, including delta-hexalactone and gamma-octalactone, and substantially decreased additional compounds, suggesting their possible role in chemical communication. Some other M. domesticus pheromone components were also found in M. spicilegus urine. These comparative chemical analyses support the notion of metabolic similarities as well as the uniqueness of some volatiles for M. spicilegus, which may have a distinct physiological function in reproduction and behavior

    Odorants Differentiate Australian Rattus with Increased Complexity in Sympatry

    Get PDF
    Rowe, Kevin C., Soini, Helena A., Rowe, Karen M. C., Adams, Mark, Novotny, Milos V. (2020): Odorants Differentiate Australian Rattus with Increased Complexity in Sympatry. Records of the Australian Museum 72 (5): 271-286, DOI: 10.3853/j.2201-4349.72.2020.1721, URL: http://dx.doi.org/10.3853/j.2201-4349.72.2020.172

    Quantitative Serum Glycomics of Esophageal Adenocarcinoma, and Other Esophageal Disease Onsets

    Get PDF
    Aberrant glycosylation has been implicated in various types of cancers and changes in glycosylation may be associated with signaling pathways during malignant transformation. Glycomic profiling of blood serum, in which cancer cell proteins or their fragments with altered glycosylation patterns are shed, could reveal the altered glycosylation. We performed glycomic profiling of serum from patients with no known disease (N=18), patients with high grade dysplasia (HGD, N=11) and Barrett’s (N=5), and patients with esophageal adenocarcinoma (EAC, N=50) in an attempt to delineate distinct differences in glycosylation between these groups. The relative intensities of 98 features were significantly different among the disease onsets; 26 of these correspond to known glycan structures. The changes in the relative intensities of three of the known glycan structures predicted esophageal adenocarcinoma with 94% sensitivity and better than 60% specificity as determined by receiver operating characteristic (ROC) analysis. We have demonstrated that comparative glycomic profiling of EAC reveals a subset of glycans that can be selected as candidate biomarkers. These markers can differentiate disease-free from HGD, disease-free from EAC, and HGD from EAC. The clinical utility of these glycan biomarkers requires further validation

    Human ABCC1 Interacts and Colocalizes with ATP Synthase α, Revealed by Interactive Proteomics Analysis

    Get PDF
    Human ABCC1 is a member of the ATP-binding cassette (ABC) transporter superfamily, and its overexpression has been shown to cause multidrug resistance by active efflux of a wide variety of anticancer drugs. ABCC1 has been shown to exist and possibly function as a homodimer. However, a possible heterocomplex involving ABCC1 has been indicated. In this study, we performed an interactive proteomics study to examine proteins that bind to and form heterocomplexes with ABCC1 using coimmunoprecipitation and tandem mass spectrometry (MS/MS) analyses. We found that ATP synthase α binds to ABCC1 in plasma membranes with a ratio of 2:1. The ATP synthase α binding site in ABCC1 is located in the linker domain at the carboxyl core of ABCC1, and phosphorylation of the linker domain at the protein kinase A site enhances ATP synthase α binding. The interaction between ABCC1 and ATP synthase α in a heterocomplex may indicate a novel function of ABCC1 in regulating extracellular ATP level and purinergic signaling cascade

    The Application of Nanoparticles of Waste Tires in Remediating Boron from Desalinated Water

    Get PDF
    A waste tire rubber (WTR) collected from the remains discarded tires has exhibited a noteworthy capacity to adsorb Boron. In the current study, the boron adsorption remediation from water at selected pH values, initial boron concentration, contact time, adsorbent dosage and particle size were examined using the WTR, the chemically modified WTR, and nano-WTR. The adsorption isotherms were best fitted to the Freundlich model with a high correlation coefficient (R2 :0.89-0.99), while the adsorption kinetics were satisfactorily described by the pseudo second order kinetic equation with correlation coefficient (R2: 1).The boron remediation using the WTR, the chemically modified-WTR and nano-WTR at low boron concentration (≤ 17.7 mg/L) were comparable with other adsorbents. The highest adsorption capacities for WTR, chemically modified-WTR and nano-WTR at initial concentration of 17.5 mg/L were 16.7 ± 1.3 mg/g, 13.8 ± 1.9 mg/g and 12.7 ± 1.8mg/g, respectively.This publication was made possible by UREP # (19-171-1-031) from the Qatar National Research Fund (a member of Qatar Foundation)

    Effects of short-term experimental manipulation of captive social environment on uropygial gland microbiome and preen oil volatile composition

    Get PDF
    IntroductionAvian preen oil, secreted by the uropygial gland, is an important source of volatile compounds that convey information about the sender’s identity and quality, making preen oil useful for the recognition and assessment of potential mates and rivals. Although intrinsic factors such as hormone levels, genetic background, and diet can affect preen oil volatile compound composition, many of these compounds are not the products of the animal’s own metabolic processes, but rather those of odor-producing symbiotic microbes. Social behavior affects the composition of uropygial microbial communities, as physical contact results in microbe sharing. We experimentally manipulated social interactions in captive dark-eyed juncos (Junco hyemalis) to assess the relative influence of social interactions, subspecies, and sex on uropygial gland microbial composition and the resulting preen oil odor profiles.MethodsWe captured 24 birds at Mountain Lake Biological Station in Virginia, USA, including birds from two seasonally sympatric subspecies – one resident, one migratory. We housed them in an outdoor aviary in three phases of social configurations: first in same-sex, same-subspecies flocks, then in male-female pairs, and finally in the original flocks. Using samples taken every four days of the experiment, we characterized their uropygial gland microbiome through 16S rRNA gene sequencing and their preen oil volatile compounds via GC-MS.ResultsWe predicted that if social environment was the primary driver of uropygial gland microbiome composition, and if microbiome composition in turn affected preen oil volatile profiles, then birds housed together would become more similar over time. Our results did not support this hypothesis, instead showing that sex and subspecies were stronger predictors of microbiome composition. We observed changes in volatile compounds after the birds had been housed in pairs, which disappeared after they were moved back into flocks, suggesting that hormonal changes related to breeding condition were the most important factor in these patterns.DiscussionAlthough early life social environment of nestlings and long-term social relationships have been shown to be important in shaping uropygial gland microbial communities, our study suggests that shorter-term changes in social environment do not have a strong effect on uropygial microbiomes and the resulting preen oil volatile compounds

    Exosome-Mediated Crosstalk between Keratinocytes and Macrophages in Cutaneous Wound Healing

    Get PDF
    Bidirectional cell–cell communication involving exosome-borne cargo such as miRNA has emerged as a critical mechanism for wound healing. Unlike other shedding vesicles, exosomes selectively package miRNA by SUMOylation of heterogeneous nuclear ribonucleoproteinA2B1 (hnRNPA2B1). In this work, we elucidate the significance of exosome in keratinocyte–macrophage crosstalk following injury. Keratinocyte-derived exosomes were genetically labeled with GFP-reporter (Exoκ-GFP) using tissue nanotransfection (TNT), and they were isolated from dorsal murine skin and wound-edge tissue by affinity selection using magnetic beads. Surface N-glycans of Exoκ-GFP were also characterized. Unlike skin exosome, wound-edge Exoκ-GFP demonstrated characteristic N-glycan ions with abundance of low-base-pair RNA and was selectively engulfed by wound macrophages (ωmϕ) in granulation tissue. In vitro addition of wound-edge Exoκ-GFP to proinflammatory ωmϕ resulted in conversion to a proresolution phenotype. To selectively inhibit miRNA packaging within Exoκ-GFPin vivo, pH-responsive keratinocyte-targeted siRNA-hnRNPA2B1 functionalized lipid nanoparticles (TLNPκ) were designed with 94.3% encapsulation efficiency. Application of TLNPκ/si-hnRNPA2B1 to the murine dorsal wound-edge significantly inhibited expression of hnRNPA2B1 by 80% in epidermis compared to the TLNPκ/si-control group. Although no significant difference in wound closure or re-epithelialization was observed, the TLNPκ/si-hnRNPA2B1 treated group showed a significant increase in ωmϕ displaying proinflammatory markers in the granulation tissue at day 10 post-wounding compared to the TLNPκ/si-control group. Furthermore, TLNPκ/si-hnRNPA2B1 treated mice showed impaired barrier function with diminished expression of epithelial junctional proteins, lending credence to the notion that unresolved inflammation results in leaky skin. This work provides insight wherein Exoκ-GFP is recognized as a major contributor that regulates macrophage trafficking and epithelial barrier properties postinjury
    • …
    corecore