320 research outputs found

    Overview study of Space Power Technologies for the advanced energetics program

    Get PDF
    Space power technologies are reviewed to determine the state-of-the-art and to identify advanced or novel concepts which promise large increases in performance. The potential for incresed performance is judged relative to benchmarks based on technologies which have been flight tested. Space power technology concepts selected for their potentially high performance are prioritized in a list of R & D topical recommendations for the NASA program on Advanced Energetics. The technology categories studied are solar collection, nuclear power sources, energy conversion, energy storage, power transmission, and power processing. The emphasis is on electric power generation in space for satellite on board electric power, for electric propulsion, or for beamed power to spacecraft. Generic mission categories such as low Earth orbit missions and geosynchronous orbit missions are used to distinguish general requirements placed on the performance of power conversion technology. Each space power technology is judged on its own merits without reference to specific missions or power systems. Recommendations include 31 space power concepts which span the entire collection of technology categories studied and represent the critical technologies needed for higher power, lighter weight, more efficient power conversion in space

    Plasmas and Controlled Nuclear Fusion

    Get PDF
    Contains reports on three research projects.U. S. Atomic Energy Commission (Contract AT(30-1)-3980

    Chaos in an Exact Relativistic 3-body Self-Gravitating System

    Get PDF
    We consider the problem of three body motion for a relativistic one-dimensional self-gravitating system. After describing the canonical decomposition of the action, we find an exact expression for the 3-body Hamiltonian, implicitly determined in terms of the four coordinate and momentum degrees of freedom in the system. Non-relativistically these degrees of freedom can be rewritten in terms of a single particle moving in a two-dimensional hexagonal well. We find the exact relativistic generalization of this potential, along with its post-Newtonian approximation. We then specialize to the equal mass case and numerically solve the equations of motion that follow from the Hamiltonian. Working in hexagonal-well coordinates, we obtaining orbits in both the hexagonal and 3-body representations of the system, and plot the Poincare sections as a function of the relativistic energy parameter η\eta . We find two broad categories of periodic and quasi-periodic motions that we refer to as the annulus and pretzel patterns, as well as a set of chaotic motions that appear in the region of phase-space between these two types. Despite the high degree of non-linearity in the relativistic system, we find that the the global structure of its phase space remains qualitatively the same as its non-relativisitic counterpart for all values of η\eta that we could study. However the relativistic system has a weaker symmetry and so its Poincare section develops an asymmetric distortion that increases with increasing η\eta . For the post-Newtonian system we find that it experiences a KAM breakdown for η0.26\eta \simeq 0.26: above which the near integrable regions degenerate into chaos.Comment: latex, 65 pages, 36 figures, high-resolution figures available upon reques

    Nuclei, Superheavy Nuclei and Hypermatter in a chiral SU(3)-Modell

    Full text link
    A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.Comment: 19 pages, 11 figure

    Can Implicit Measures Augment Suicide Detection in Youth? The Feasibility and Acceptability of the Death Implicit Association Test Among Pediatric Medical Impatients

    Get PDF
    Background: Medically ill youth are at increased suicide risk, necessitating early detection. This study aimed to assess the feasibility of administering the Death Implicit Association Test (Death IAT) to pediatric medical inpatients. Methods: Participants completed measures including the Ask Suicide-Screening Questions (ASQ) and the Death IAT. Results: Over 90% of participants found the Death IAT to be acceptable and more than 75% of participants were comfortable completing the task. There was a small, but statistically significant, improvement from pre-survey to post-survey reports of mood (t(174) = 3.02, p = 0.003, d = 0.15). Participants who endorsed a past suicide attempt on the ASQ had significantly higher “suicide” trial D-scores than those without a past suicide attempt (Wilcoxon W = 1312; p = 0.048; d = 0.61). Conclusions: Implementing an IAT measure among pediatric medical inpatients was feasible and acceptable. In exploratory analyses, “suicide” trial IAT D-scores were associated with past suicide attempts, suggesting future studies should examine whether implicit measures may be useful in hospital settings to augment detection of youth suicide risk

    Barium yttrium fluoride based upconversion nanoparticles as dual mode image contrast agents

    Get PDF
    Dual labeled contrast agents could provide better complementary information for bioimaging than available solely from a single modality. In this paper we investigate the suitability of Yb3+ and Er3+-doped BaYF5 upconversion nanoparticles (UCNPs) as both optical and X-ray micro computed tomography (μCT) contrast agents. Stable, aqueous UCNP dispersions were synthesised using a hydrothermal method with the addition of polyethyleneimine (PEI). UCNPs were single crystal and had a truncated cuboidal morphology, with average particle size of 47 ± 9 nm from transmission electron microscopy which was further used to characterize the structure and composition in detail. A zeta potential value of +51 mV was measured for the aqueous nanoparticle dispersions which is beneficial for cell permeability. The outer hydrated PEI layer is also advantageous for the attachment of proteins for targeted delivery in biological systems. The prepared UCNPs were proven to be non-toxic to endothelial cells up to a concentration of 3.5 mg/mL, when assessed using an MTT assay. The particles showed intense green upconversion photoluminescence when excited at a wavelength of 976 nm using a diode laser. Quantitative X-ray μCT contrast imaging confirmed the potential of these UCNPs as X-ray contrast agents and confirming their dual modality for bioimaging

    The solution to the Tullock rent-seeking game when R > 2: mixed-strategy equilibria and mean dissipation rates

    Get PDF
    In Tullock's rent-seeking model, the probability a player wins the game depends on expenditures raised to the power R. We show that a symmetric mixed-strategy Nash equilibrium exists when R>2, and that overdissipation of rents does not arise in any Nash equilibrium. We derive a tight lower bound on the level of rent dissipation that arises in a symmetric equilibrium when the strategy space is discrete, and show that full rent dissipation occurs when the strategy space is continuous. Our results are shown to be consistent with recent experimental evidence on the dissipation of rents. An earlier version of this paper circulated under the title, No, Virginia, There is No Overdissipation of Rents. We are grateful to Dave Furth and Frans van Winden for stimulating conversations, and for comments provided by workshop participants from the CORE-ULB-KUL IUAP project, Purdue University, Pennsylvania State University, Rijksuniversiteit Limburg, and Washington State University. We also thank Max van de Sande Bakhuyzen and Ben Heijdra for useful discussions, and Geert Gielens for computational assistance. An earlier version of the paper was presented at the ESEM 1992 in Brussels and the Mid-West Mathematical Economics Conference in Pittsburgh. All three authors would like to thank CentER for its hospitality during the formative stages of the paper. The second author has also benefited from the financial support of the Katholieke Universitieit Leuven and the Jay N. Ross Young Faculty Scholar Award at Purdue University. The third author benefitted from visiting IGIER where part of the paper was written. The third author also benefitted from grant IUAP 26 of the Belgian Government

    Quantum Size Effect transition in percolating nanocomposite films

    Full text link
    We report on unique electronic properties in Fe-SiO2 nanocomposite thin films in the vicinity of the percolation threshold. The electronic transport is dominated by quantum corrections to the metallic conduction of the Infinite Cluster (IC). At low temperature, mesoscopic effects revealed on the conductivity, Hall effect experiments and low frequency electrical noise (random telegraph noise and 1/f noise) strongly support the existence of a temperature-induced Quantum Size Effect (QSE) transition in the metallic conduction path. Below a critical temperature related to the geometrical constriction sizes of the IC, the electronic conductivity is mainly governed by active tunnel conductance across barriers in the metallic network. The high 1/f noise level and the random telegraph noise are consistently explained by random potential modulation of the barriers transmittance due to local Coulomb charges. Our results provide evidence that a lowering of the temperature is somehow equivalent to a decrease of the metal fraction in the vicinity of the percolation limit.Comment: 21 pages, 8 figure
    corecore