We consider the problem of three body motion for a relativistic
one-dimensional self-gravitating system. After describing the canonical
decomposition of the action, we find an exact expression for the 3-body
Hamiltonian, implicitly determined in terms of the four coordinate and momentum
degrees of freedom in the system. Non-relativistically these degrees of freedom
can be rewritten in terms of a single particle moving in a two-dimensional
hexagonal well. We find the exact relativistic generalization of this
potential, along with its post-Newtonian approximation. We then specialize to
the equal mass case and numerically solve the equations of motion that follow
from the Hamiltonian. Working in hexagonal-well coordinates, we obtaining
orbits in both the hexagonal and 3-body representations of the system, and plot
the Poincare sections as a function of the relativistic energy parameter η. We find two broad categories of periodic and quasi-periodic motions that we
refer to as the annulus and pretzel patterns, as well as a set of chaotic
motions that appear in the region of phase-space between these two types.
Despite the high degree of non-linearity in the relativistic system, we find
that the the global structure of its phase space remains qualitatively the same
as its non-relativisitic counterpart for all values of η that we could
study. However the relativistic system has a weaker symmetry and so its
Poincare section develops an asymmetric distortion that increases with
increasing η. For the post-Newtonian system we find that it experiences a
KAM breakdown for η≃0.26: above which the near integrable regions
degenerate into chaos.Comment: latex, 65 pages, 36 figures, high-resolution figures available upon
reques