
Public Choice 81: 363-380, 1994. 
© 1994 Kluwer Academic Publishers. Printed in the Netherlands. 

The solution to the Tullock rent-seeking game when R > 2: 
Mixed-strategy equilibria and mean dissipation rates* 

M I C H A E L  R.  B A Y E  

The Pennsylvania State University, Dept. of  Economics, University Park, P 16802 

D A N  K O V E N O C K  

Purdue University, Dept. of  Economics, West Lafayette, IN  47907 

C A S P E R  G.  D E  V R I E S  

Erasmus Universiteit Rotterdam/Tinbergen lnstituut, Oostmaaslaan 950, 3063 DM Rotterdam 

Accepted 6 December 1993 

Abstract. In Tullock's rent-seeking model, the probability a player wins the game depends on ex- 
penditures raised to the power R. We show that a symmetric mixed-strategy Nash equilibrium, ex- 
ists when R > 2, and that overdissipation of rents does not arise in any Nash equilibrium. We der- 
ive a tight lower bound on the level of rent dissipation that arises in a symmetric equilibrium when 
the strategy space is discrete, and show that full rent dissipation occurs when the strategy space 
is continuous. Our results are shown to be consistent with recent experimental evidence on the dis- 
sipation of rents. 

1. Introduction 

In  T u l l o c k  (1980) t h e  f o l l o w i n g  i n t e r e s t i n g  r e n t - s e e k i n g  g a m e  is de sc r ibed .  

C o n s i d e r  t w o  p laye r s  w h o  b i d  f o r  a po l i t i c a l  f a v o r  c o m m o n l y  k n o w n  to  be  

w o r t h  Q do l l a r s  (Q > 0 a n d  f in i te ) .  T h e i r  b ids  i n f l u e n c e  t h e  p r o b a b i l i t y  o f  
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the Katholieke Universiteit Leuven and the Jay N. Ross Young Faculty Scholar Award at Purdue 
University. The third author benefitted from visiting IGIER where part of the paper was written. 
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receiving the favor. Let x and y denote the bids of  agents 1 and 2 respectively, 
and let n(x,y) denote the probability the first agent is awarded the political 
favor. The payoff  to agent 1 from bidding x when the other agent bids y is 

Ul(xly ) = Tt(x,y)Q - x, (1) 

while that of player two is symmetrically defined: 

U2(YlX ) = [1 - ~(x,y)]Q - y 

Because the politician awarding the prize may have other considerations, or 
because he can only imperfectly discriminate between the bids (if bids are not 
made in the money metric), the high bidder is not guaranteed the prize. This 
is a common assumption in (1) the principal-agent literature (Lazear and Ros- 
en, 1981; Nalebuff and Stiglitz, 1983; Bull, Schotter and Weigelt, 1987), (2)the 
political campaign expenditure literature (Snyder, 1990); and (3) the literature 
on rationing by waiting in line (Holt and Sherman, 1982). Presumably, given 
y, the probability of  winning is an increasing function of  x. Tullock suggested 
the specification 

~(x,y) = J xR 

+ yR 

if x =  y = 0 

otherwise (x _> 0, y > 0), 

(2) 

where R > 0. This specification has become standard in the rent-seeking litera- 
ture and other fields, see, e.g., Snyder (1990). 1 The case where R = 1 is 
studied most (Ellingsen, 1991; Nitzan, 1991a; Paul and Wilhite, 1991), but it 
is of interest to consider other values of  R, as in Applebaum and Katz (1986) 
and Millner and Pratt  (1989). Loosely speaking, the case 0 < R < 1 represents 
decreasing returns, while R > 1 represents increasing returns to aggressive bid- 
ding. While the two agent pure strategy symmetric Nash equilibrium is straight- 
forward to calculate from the first-order conditions when 0 < R _< 2, this is 
not the case when R > 2. Consequently Tullock (1980) devoted a large part 
of his discussion to these latter cases. 

To date, there are only conjectures concerning the existence of a Nash 
equilibrium for R > 2 but finite. Rowley (1991), in his review of  Tullock's 
work, lists this as one of  the three important theoretical problems for a research 
program in the area of rent-seeking. The problem is not so much that the first- 
order condition for a maximum cannot be calculated; the problem is that the 
symmetric (x = y) solution to the two players' first-order conditions does not 
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Tab& 1. Millner and Pratt (1989) hypotheses and experimental results 

H o Experiment H o Experiment 
Exponent R = 1 R = 3 

Mean individual 2 2.24 6 3.34 
Expenditures (2.42) ( - 24.28) 
Mean dissipation 50°7o 56% 150% 84% 
Rates (2.37) ( - 13.37) 
Number of observations 146 100 

necessarily yield a global max imum (if R > 2 the symmetric solution to the 
first-order conditions implies a negative expected payoff ,  which is dominated 
by a zero bid). In such a case the sum of  the solutions to the first-order condi- 
tions exceeds the value of  the prize Q; there is the false appearance o f  an over 

dissipation o f  rents. Tullock (1980, 1984, 1985, 1987, 1989) devoted considera- 
ble attention to the case of  over dissipation because of  the induced excess social 
waste; see Dougan (1991) for a critical comment ,  and Laband and Sophocleus 
(1992) for estimates of  the resource expenditures. In Tullock (1984) it was ac- 

knowledged that over dissipation may be due to a failure of  the second-order 
conditions 2 In the vernacular of  the game theory, over dissipation is not part  

o f  a Nash equilibrium. This notwithstanding, the possibility of  over dissipation 
is a recurrent theme in the rent-seeking literature. 

In particular,  Millner and Prat t  (1989) examined the rent-seeking model ex- 
perimentally for the cases where R = 1 and R = 3. Due to the use of  laboratory 
dollars, the strategy space used in their experiment is discrete. For a prize worth 
8 U.S. dollars they formulate  two hypotheses concerning the mean of the in- 
dividual expenditures and the mean dissipation rates. These hypotheses are 
stated in Table 1, together with their experimental results. 3 Both hypotheses 
are rejected for either value of  R, but at markedly different p-values. The p- 
value for the R = 1 case is at least .015, while the p-value for R = 3 is at the 
most  10 -40. Thus, H 0 is onty rejected marginally for the case R = 1, while H 0 
is strongly rejected for the case R = 3. Shogren and Baik (1991) point out, 
however, that the null hypothesis for the case R = 3 is not the correct one. The 
problem, however, is that the equilibrium to the game is not known when R 
> 2. Our paper  resolves this issue. 

More specifically, for  R = 1, the symmetric Nash equilibrium is known, and 
the associated expenditure and dissipation rates are readily verified to cor- 
respond with the hypothesized values in Table 1. This is further corroborated 
by a recent experiment by Millner and Prat t  (1991) which shows that  risk aver- 
sion can explain the discrepancies between the hypothesized and realized values 
in Table 1 for the case when R = I. A major  benefit o f  the results presented 
below is that we will be able to explain the discrepancy between the hypo- 
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thesized values and experimental results for the case when R = 3. The punch- 
line is that the formula based on the first-order equations (which yields a rent 
dissipation of 150%) is incorrect. In fact, there is not a symmetric pure-strategy 
equilibrium when R = 3. We characterize the "correct" Nash equilibrium, and 
show that the results of the Millner-Pratt experiments are in line with the theo- 
retically correct Nash equilibrium mixed strategies. To this end we mainly fo- 
cus on the two agent case in discrete strategy space. In the last section we con- 
sider a continuous strategy space by taking limits of the finite game. 

Before we embark on this, we briefly review the approaches others have used 
to deal with the R > 2 case. The approach in the existing literature is to modify 
the original game to remove the apparent over dissipation of rents. In his origi- 
nal contribution Tullock (1980) suggested three modifications. The first is to 
let R be infinite, which turns the game into an all-pay auction. Within the rent- 
seeking literature this version has been studied by Hillman and Samet (1987). 
The complete characterization of all equilibrium strategies has been obtained 
by Baye, Kovenock, and de Vries (1990), and the equilibrium level of rent dissi- 
pation is derived in Baye, Kovenock and de Vries (1993). The second type of 
modification is to change the one shot game into a dynamic game. Tullock 
(1980) discusses the case of alternating bids, and this has been formalized re- 
cently by Leininger (1990) and Leininger and Yang (1990). In Corcoran (1984), 
Corcoran and Karels (1985), and Higgins, Shughart, and Tollison (1987) the 
game is changed into a two-stage game. In the first stage the number of par- 
ticipants is selected such that, when the rent-seeking game is played in stage 
two, the number of participants is consistent with (almost) complete rent dissi- 
pation. Similarly, Michaels (1988) devises a setting within which the politician 
has the incentive to adjust the exponent such that the first- and second-order 
conditions are met. The third modification deals with asymmetries between the 
players. This was briefly dealt with in Tullock (1980) and has been further in- 
vestigated by Allard (1988). Finally Nitzan (1991b) introduces coalition be- 
havior on the part of the contestants. None of  these contributions, though, 
offers a solution to the original simultaneous move rent-seeking game when R 
> 2. The next section provides this solution and relates it to the experimental 
and theoretical literatures. 

2. Solving the rent-seeking game 

Consider the two-agent rent-seeking game with conditional payoffs and win- 
ning probabilities as given in equations (1) and (2). The exponent satisfies R 
> 0. Suppose a pure strategy equilibrium exists. Given y > 0, the first- and 
second-order conditions for an unconstrained (local) maximum of Ul(Xly) are 
readily calculated as 
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Q 

and 

RyRxR- 1 

(x R + yR)2 
1 = O, (3)  

RyRx R-2 
Q [ ( R - 1 ) ( x  R + yR) _ 2Rx R] < 0. (4) 

(X R + yR)3 

Assuming a symmetric solution, condition (3) yields x = y = QR/4 ,  for 
which condition (4) is readily seen to hold locally for any R > 0. Substituting 
back into equation (1) yields 

- •  Q (1 - R ) ; i  = 1 ,2 .  (5) Ui(x = y = ) = ~- 

Note that in this case Ui(. ].) is non-negative as long as R _< 2. Moreover,  
for  any x, y > 0 the factor (R - 1)(x R + yR) _ 2R x R in the second-order con- 

dition (4) is unambiguously negative if R _< t ,  while it is positive over some 
interval to right o f  x = 0 if R > I and becomes negative thereafter.  In particu- 

lar, (4) is satisfied when x = y. Thus for R _< 2, the symmetric solution × = 
y = Q R / 4  constitutes a Nash Equilibrium. For R > 2, U(QR/4 [QR/4 )  in (5) 
becomes negative and hence the first-order conditions do not yield a symmetric 
Nash equilibrium point (because one can choose x = 0 given that y = QR/4;  
and earn a higher payoff .  But if x = 0 is chosen, player two has an incentive 
to lower y to small ~ > 0). Generally, the first- and second-order conditions 
(3) and (4) fail to characterize the global maximum when R > 2. 4 

In order to find a solution for the case R > 2, we focus on the game with 
a discrete strategy space. This yields a version of  the game similar to that  used 
in the laboratory experiments by Millner and Prat t  (1989), 1991). 5 Due to the 
use of  laboratory dollars, the bids are necessarily discrete, and thus the game 
is a so-called finite game. 6 Nash 's  (1951) theorem guarantees that every finite 

game has a mixed-strategy equilibrium. 7 It  follows immediately that  the Tu!- 
lock rent-seeking game in discrete strategy space has a Nash equilibrium, possi- 
bly in non-degenerate mixed strategies, for any R > 2. While it is in general 
difficult to characterize the equilibria, we may be more  specific in this case. 

Note that for any strategy pair (x,y), the payof f  to the second agent is the same 
as the payof f  to the first agent if the strategies played by the two agents are in- 
terchanged; the game is symmetric.  Recalling that  an equilibrium is defined to 
be a symmetric equilibrium if all players choose the same strategy, we may  ap- 
ply Dasgupta and Maskin ' s  (1986) Lemma  6; a finite symmetric game has a 
symmetric mixed-strategy equilibrium. 

In summary,  the Tullock rent-seeking game with a discrete strategy space 
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certainly has a symmetric Nash equilibrium, even when R > 2. These results 
immediately raise the following questions: (i) Can we characterize the 
equilibria for  R > 2, even though previous authors have been unable to do so? 
In particular, is it possible to provide an explicit solution for the symmetric 
equilibria that arise for different values of  R? (ii) Can the equilibria of  the finite 
game be used to shed light on infinite game (continuous strategy space) 
equilibria? A derivative question is: (iii) How do the answers to these questions 
relate to the experimental work reported by Millner and Pratt  for the case R 
= 3? 

We answer question (i) by employing a device which was first used by Shilo- 
ny (1985). The payoffs to the game will be written in matrix format.  We then 
show this yields a matrix equation which can be manipulated to yield the sym- 
metric mixed strategy solution. Some numerical examples and a special case of  
this procedure are provided. To answer the derivative question (iii) we manipu- 
late the matrix equation to obtain tight bounds on the equilibrium dissipation 
rate. Question (ii) is answered by letting the mesh of  the strategy space become 
small relative to the value of the prize. 

Recall equation (1) which gives the conditional payoffs for agent 1. To ob- 
tain the unconditional or expected payoffs from playing x, EUI(x ), the condi- 
tional payoffs are premultiplied by the (mixed-strategy) probability py that a 
particular y value is being played by player one's opponent,  and subsequently 
these are summed over y. Thus 

Q 
EUI(X ) = ]~ py n(x,y) Q - x. (6) 

y=0 

Denote the expected payoffs to agents 1 and 2 in an arbitrary Nash equilibrium 
by v I and v 2 respectively. In the case of a symmetric Nash equilibrium note 
that the players' expected payoffs are identical, v I = v 2 = v (however, v need 
not be unique). The manipulations below make repeated use of the following 

general result. 

Theorem 1. In any equilibrium: (i) EUI(x) <-- v 1, (ii) EUI(X) = v 1 when Px > 
0, while (iii) Px = 0 if EUI(x ) < v r Similar results hold for player 2. 

A proof  of  this theorem can be found in Vorob'ev (1977, sec. 3.2.2., 3.4.2. and 
3.4.3.). For a symmetric equilibrium - which we know exists by Lemma 6 in 
Dasgupta and Maskin (1986) - we can use equations (6) and (2) to restate the 

condition EUI(x) _< v as 

Q x R v + x  
]~ Py yR -< - -  (7) 

y : 0  x R + Q 
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Conditions (ii) and (iii) in Theorem 1 imply a complementary  slackness-type 

condition for a symmetric equilibrium of  the form 

Q x R v + x ]  
py = O. V X: Px = ~0 y x R + yR Q 

(7 ' )  

Now note that EUI(X = Q) _< 0, and in fact EU~(x = Q) < 0 if P y = 0  • 1 (and 
R is finite). Thus in a symmetric equilibrium no mass will be placed at Q, i.e. 

Px=q = Py=q = 0. Suppose (without loss of  generality but for ease of  nota- 
tion) that  Q a N, and that  x and y can only take on the integer values, 0, 1 , . . . ,  
Q. Note  that  there are exactly Q conditions (7) for  x = 0, I ,  . . . ,  Q - 1. These 
can be conveniently expressed in matrix format:  

1 
0 0 

1 1 

1 ~ 1 +2 R 

2 R 1 
1 

2R+ 1 

(Q- l )  R (Q-D R 

(Q - 1) R + 1 (Q - 1) R + 2 R 

0 

1 

1 + ( Q  - 1) R 

2 R 

2 R + (Q - 1)R 

1 

P0 

Pl 

P2 

v 

Q 

v + l  

v + 2  
--< Q ..... (8) 

In addition to this Q x Q matrix condition, the following constraints must be 
imposed: 

Q - t  
py ---- 1; py _> O, y = O, 1 . . . . .  Q. (9) 

y=O 

Condition (8), together with the constraints (9) and the complementary  
slackness condition (7 ' )  provide a complete, but implicit characterization of  
the symmetric equilibrium, which we know exists by Dasgupta and Maskin 's  
Lemma  6. These conditions form a linear programming problem which, at 
least in principle, can be solved for (P0 . . . . .  PQ- 1, v). We have thus proved 

Theorem 2. Suppose the strategy space is discrete. Then for  any R > 2, the TuI- 
lock rent-seeking game has a symmetric mixed-strategy Nash equilibrium, de- 
fined implicitly by the solution to conditions (7 ' ) ,  (8) and (9). 



370 

In order to illustrate the practical utility of  Theorem 2, we will investigate 
two special cases: R = oo and R = 3. The latter case is that examined in Millner 
and Pratt 's  experiments, while the former is the discrete strategy space version 
of the all pay auction examined in Baye, Kovenock, and de Vries (1990; 1993). 

We begin with the case when the exponent R = co and assume Q > 1 for 
simplicity. In this case the matrix expression in (8) becomes 

1 
0 0 0 

1 
1 ~ 0 0 

1 
1 1 ~ . . .  0 

P0 

Pl 

1 1 1 

p2 i- 
t 

1 
PQ - 

v 

O 

v + l  

O 

v + 2  

O 

v + Q - 1  
(10) 

O 

It is straightforward to find symmetric equilibria if it is assumed that all 
Pi > 0. In this case the matrix inequality (10) becomes an equality by Theorem 
1. The lower triangular matrix equation can then be solved through recursive 

substitution. This yields P0 = P2 = P4 . . . .  = 2v/Q and Pl = P3 = P5 = 
. . .  = 2(1 - v ) / Q .  In addition to (8), conditions (9) and (7')  have to hold. For 
even values of  Q this restricts v ~ [0, 1], while for odd values of  Q, we necessari- 
ly have v = 1/2 (see Bouckaert,  Degrijse, and de Vries, 1992, for a p roof  of  

this claim). 
Note that we may make the grid in the formulation of  the game (7) finer and 

finer and normalize the value of  the prize to be one by dividing all dollar units 
by Q and letting Q tend to infinity. The equilibrium distributions in this dis- 
crete game with R = oo then converge uniformly to the continuous uniform 
distribution, and the expected payoff  v /Q  converges to zero; there is full rent 
dissipation. Also note that equations (I) and (2) can be expressed as 

Ul(xly) = I1 
Q - x  i f x > y  

Q x i f x = y  

x i f x < y  

(11) 
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which is precisely the definition of  the all-pay auction (cf. Baye, Kovenock,  and 

de Vries, 1993). It  follows that the symmetric equilibria of  the discrete all-pay 

auction converge to the unique (see Baye et al., 1990) equilibrium of  the con- 
tinuous strategy space two player all-pay auction. 

Next, consider the case of  finite exponents. When 0 < R _< 2, the game has 
a symmetric pure strategy equilibrium (x = y = QR/4)  as discussed earlier. 
Because R = 3 is used in Millner and Pra t t ' s  experimental work on the game, 
and as pointed out by Shogren and Baik (1991) the " so lu t ion"  examined by 
Mitlner and Prat t  is not really a Nash equilibrium, we will focus on this case. 8 

For R > 2 and finite, the solutions to the game cannot be given in the same 
compact  fo rm as the solution for R -- ~ ,  although conditions (7 ' ) ,  (8) and (9) 
still provide a complete but implicit description of  the game and its solution. 
For any specific values of  R and Q, it can be solved explicitly through linear 
programming.  We list some examples. 

(i) R =- 3, Q -- 1. There is one pure strategy solution: both  agents bid zero 
and receive v = 1/2. Inter alia, this result holds for  any finite value of  R. 

(ii) R = 3, Q = 2. There exist multiple pure strategy solutions: (1) both  bid 
zero and receive v = 1, (2) one agent bids zero and the other bids one with 
respective payoffs  v 1 = 0 and v 2 = 1, and (3) both  agents bid one and receive 
v = 0. Mixed strategies whereby agents randomize over (some) of  the pure 
strategy solutions exist as well. 

(iii) R = 3, Q = 3. This case is still solvable by hand.  In particular, condition 
(8) becomes 

0 0 

1 1 

8 1 

! P0 

Pl 

P2 

-] ~- -1 
V 

v + 2  

-5-  

(12) 

1 3 3 3 
It  is readily verified that (P0, Pl, P2) = (7 ' 7 ' 7 ) and v = t-4 satisfy con- 

dition (12) and the other conditions of  Theorem 2, and hence constitute an 
equilibrium to the game. 

(iv) R = 3, Q = 4. This case is already too cumbersome to solve by hand, 
so we relied on the analytical computer  program "Der ive"  to solve this game. 
It can be checked that there are two symmetric solutions: (i) (P0, Pl, P2, P3) = 
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5 , 0, ~ ,  0 with v = ~ ,  and (ii) (P0, Pl, P2, P3) = , 0, ~-~ , 0 

3 
with v - 

19 
For R = 3 and Q > 4, one generally finds that all probability mass is loaded 

on the first few probabilities py, with most mass loaded on the higher py'S, and 
0 < v < 1. For Q > 15 the computational burden increases rapidly and exact 
solutions take an excessive amount  of  computer time. This is a bit unfortunate 
because the experiment conducted by Millner and Prat t  (1989) used R = 3 and 
a grid of  Q = 80 (at the end of  the experiment the laboratory dollars were con- 
verted into U.S. dollars at an exchange rate of  10. But subject payments were 
also rounded to the nearest 25 cents, generating a grid of  32 with unequal grid 
sizes). Their hypotheses and tests, however, all concern mean individual expen- 
ditures and mean dissipation rates. The question therefore is whether we have 
something to offer concerning these quantities, without explicitly calculating 
the solutions. 9 

The expected individual expenditures and the expected dissipation rates can 
be calculated from equation (6). Note that premultiplication of  EUI(X) by Px 
and summation over x gives the expected equilibrium payoff  to player 1 in a 
symmetric equilibrium: 

o o ) o  
E U I =  ]~ Px EUI(X)= ]~ Px py n ( x , y ) Q - x  = 

x=0 x=0 y=0 x=0 
px v ~-~ V, 

(13) 

because player one only loads mass on those x's which generate the same 
(highest) expected payoff  equal to v (see Theorem 1 above). 

In order to dispel the claim that over dissipation of  rents is expected when 
R > 2, first note that if agent 1 chooses x = 0 with probability 1, then 

Q t 
EU 1 = ]] pyrC(0,y)Q = P0 ~ Q >- 0. (14) 

y=O 

Hence each player can guarantee a non-negative expected payoff .  Secondly, 
the expected dissipation rate is easily calculated from EU 1 + EU 2. Note that 
in any equilibrium, 

v 1 = EU 1 = Prob[agent  1 wins] Q - ~, 

where ~ = EPxX is the average individual expenditure. Adding up yields 
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v I + v 2 = [Prob[agent  lwins}  + P r o b { a g e n t 2 w i n s } ] Q -  g -  y. 

But since the prize is always awarded, there is always a winning agent and hence 

by (14) 

0_< v 1 + v 2 = Q - ~ -  y, (15) 

so that  ~ + ~- <_ Q. The expected rate of  rent dissipation, D, is defined as D 
= ( g  + y-)/Q. Thus 

D 1 vl + v2 = _< 1. (16) 
O 

We have thus proved: 

Theorem 3. The two player finite rent-seeking game devised by Tullock never 
involves over dissipation in any (possibly mixed-strategy) Nash equilibrium for  
any R > 0. That  is, D _< 1 always. 

The dissipation rate is also bounded f rom below. But in contrast  with the upper 
bound,  the lower bound depends on the value of  the exponent R. Tl-ds can be 
easily seen by investigating the two limiting cases R = 0 and R = co. In the 

former  case there is no dissipation, while in the latter case dissipation can be 
complete. Therefore,  we will investigate specific values of  R. To  explain the 
Millner-Pratt  experimental results for the case R = 3, one requires precise in- 
format ion about  the size of  D, and hence the tighter the lower bound on D the 
better. It  is not too difficult to show for Q > 2, R > 2, that in any equilibrium 
the dissipation rate is at least 50°7o. With more effort ,  for Q > 3 a sharper lower 

bound for  the symmetric equilibria is obtained in Theorem 4. 

Theorem 4. In any symmetric Nash equilibrium of  the two player Tullock rent- 
seeking game with co > R > 2 and oo > Q > 2, the dissipation rate is bounded 

2 
f rom below by 1 - - - .  Q 

Proof. The p roof  comes in two parts.  In Part  1 we assume that P0 > 0, arid 
show that  this implies v _< 1. Hence D ___ 1 - 2 /Q.  In Par t  2 we show that 

P0 = 0 implies v < 1. Some of  the computat ions f rom Part  2 are relegated to 
the Appendix. 

Par t  1. Suppose that Po > 0. Then (by Theorem 1) for x = 0 condition (7) 
necessarily becomes an equality: P0 = 2 v /Q ,  so that v = Qp0/2. Because P0 
is bounded above by 1, v is bounded above by Q/2 .  This implies D __ 0. To 
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improve the upper  bound  on v, i.e., to  lower it f rom Q / 2  to 1, we cont inue the 

presumpt ion  P0 > 0. F r o m  condi t ion (7), for  x = 1 we have 

v + l  1 
P0 + ~t _ < - - ; 0 _ <  ~t < - .  

Q 2 

To  see this note that  all the probabilities n(1 ,y) except the first in the second 
row o f  matr ix  condi t ion  (8) are less than  or  equal to  1/2.  Combine  the 

presumpt ion  P0 = 2 v / Q  with the above  inequali ty to  get 

1 v 
a _ (17) 

Q Q 

Hence 1 - v > ~tQ _> 0. Therefore  1 > v. 

Pa r t  2. We now show that  P0 = 0 implies v < 1. Let x be the first row for  

which Px > 0, x ¢ 0, i.e., Po = . - .  = Px-1 = 0. Then  condi t ion (7) holds 

as an  equali ty for  this row, i.e., 

1 x R x R 

Px + x R -t- ( x + l )  R Px+l + " ' "  + x R + ( Q _ I ) R  P Q - 1  = 

v + x  (18) 
Q ' 

We will show that  v >__ 1 and P0 = 0 are incompatible .  For  x + 1, condi t ion  

(7) reads as follows: 

(X + 1) R 1 

(X+I )R  + xR P× + ~ Px+~ + " ' "  + 

v + l + x  
< _ _  

Q 

(X+ 1) R 

( x + l )  R + ( Q - l )  R PQ-  1 

(19) 

C o m p u t e  Px f r o m  the equality (18), and  substitute this into the weak inequali- 

ty (19). This yields the fol lowing weak inequali ty:  

I 1 2 (x + 1) R x R ] 

2 ( x+  1) R + x R x R + (x+  1) R Px+l + - ' '  + 

( x+  1) g ( x+  1) g . . . .  2 
( x + l )  g + ( Q - l )  R ( x + l )  g + x g 

xR ] 
x R + (Q-1)if" PQ- 
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1 (x+  1) R 
_ < - -  { v + l + x  - 2 ( v + x )  }. (20) 

Q (x+ 1) R + x R 

In the Appendix we manipulate the two sides of  inequality (20) to show that 
if v >__ 1 the left-hand side is non-negative while the right-hand side is strictly 
negative. (Note that the proof  would be particularly simple if R = oo, since 
then (20) reduces to 0 _< Px+l --<- 2 ( 1 - v - x ) / Q . )  This yields a contradiction 
so that the supposition P0 = 0 and v _> 1 are incompatible. QED 

3. Millner and Pratt revisited 

How do the above theoretical results compare with the experimental evidence 
reported by Millner and Pratt  (1989)? Note that for Q large Theorems 3 and 
4 provide tight bounds. In particular, given the values of  R = 3 and Q = 80 
used in the Millner and Prat t  experiments, the symmetric (mixed-strategy) 
equilibrium expected outlays are ~. = ~2 = 3.9 (after conversion to U.S. dollars) 
and the corresponding interval for the expected rent dissipation is D E [97.5%, 
100%] - it is not  the 150 percent dissipation rate used as the null hypothesis 
by Millner and Pratt .  Using the experimental evidence reported by Millner and 
Pratt ,  we find the following t-statistics for the null hypotheses: -5 .11  and 
-2 .7 3  respectively. 1° Compare these to the values reported by Millner and 
Pratt  and reproduced in Table 1 above. (If the rounding to the nearest 25 cents 
in the actual payout is taken into account, the mean dissipation rate is reduced 
to approximately 93.75, which does not differ significantly from the ex- 
perimental result at the 5% level). Note that these t-statistics are of  the same 
order of  magnitude as those for the case R = 1. Also recall the experimental 
work by Millner and Pratt  (1991) which relates the relatively small discrepancy 
for the case R = 1 to the existence of  risk aversion. 11 Our conjecture is that 
the remaining discrepancy for the case R = 3 can be explained in a similar way. 
Importantly,  though, the above shows that when the correct symmetric (mixed- 
strategy) Nash equilibrium is used as the theoretical benchmark to form the 
null hypothesis, Millner and Pratt 's  empirical results for the case R = 3 and 
Q = 80 accord well with state-of-the art rent-seeking theory. Individuals seem 
to behave quite efficiently after all. 

4. Summary and results for the continuous strategy space case 

In this paper we have solved the original rent-seeking game devised by Tullock 
for the case where the rent-seeking exponent (R) exceeds two. A constructive 
method was used to find the explicit solution for the finite game (i.e., the 
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Tullock game in discrete strategy space). Our theoretical results, which estab- 
lish that rents are under dissipated when R > 2, accord welt with the existing 
experimental evidence. We also provide tight bounds on the rate of  dissipation 
as the mesh of  the strategy space decreases. 

Up to this point we have not addressed the solution to the infinite rent- 
seeking game, i.e., when the strategy space is continous and R > 2. It turns 
out the payoff  functions in equation (1) satisfy the conditions of  Theorem 6 
in Dasgupta and Maskin (1986), guaranteeing the existence of  a symmetric 
mixed strategy equilibrium for the rent-seeking game with a continuous strate- 
gy space. The proof  of  their theorem relies on finite approximation of  the game 
and then letting the grid size become finer and finer, as we did in our example 
with an infinite R. Thus the construction of  the equilibrium to the finite game 
in the previous section is driven to the limit. Under sufficient regularity condi- 
tions this method indeed yields a solution to the infinite game. 

The application of  Dasgupta and Maskin's Theorem 6 requires four condi- 
tions, each of  which is satisfied for the Tullock game with a continuous strategy 
space. In particular, this theorem requires: (i) The sum of  the payoffs must be 
upper semi-continous. From equations (1) and (2) we easily see that Ul(xly) + 
U 2 ( x l y  ) = Q - x - y, which is continuous and therefore upper semi- 
continuous as well. (ii) The subset of  discontinuities in the payoffs must be of  
a dimension lower than 2, and one must be able to express the elements of  this 
subset as functions which relate the strategy of  one player to the strategy of  the 
other. For  the Tullock game with R < Qo, this condition is simple to check, 
as x = y = 0 constitutes the only point of  discontinuity. The condition guaran- 
tees that the discontinuities are relatively unimportant  (have measure zero). (iii) 
The payoff  Ul(xly) must be bounded. This holds evidently as - Q  _< Ul(xiy) 
_ Q on [0,Q]. (iv) Finally, Ul(X]y) must be weakly lower semi-continuous. 
The only point where there could arise a problem is at the point of  discontinui- 
ty, but as Ul(xly  = 0) is lower semi-continuous, it is certainly weakly lower 
semi-continuous. This last condition guarantees that, loosely speaking, a play- 
er does not want to put weight on the discontinuity point even if the other play- 
er does, because payoffs may jump down but do not jump up. 

Thus we conclude that a symmetric mixed strategy equilibrium exists for the 
continuous strategy space rent-seeking game for all R > 2 as well. An explicit 
closed form solution remains for  future investigation. For  the special case R 
= co, a full characterization of all the equilibria is available even when there 
are more than two players; see Baye, Kovenock, and de Vries (1990, 1993). 
Other interesting questions include the explicit solution to asymmetric versions 
of  the game, as well as further experimental work along the lines suggested 

above. These remain the focus of  our future research. 
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Notes  

1. While our focus is on the Tnllock specification in (2), several of  our results are valid for other 
functional forms of  n. In particular, so tong as 0 _< n(x,y) _< 1 and n(x,y) + n(y,x) = 1, any 
Nash equilibrium satisfies the properties stated in Theorem 1 below, and our Theorem 3 on 
the impossibility o f  overdissipation carries through. Only the tight lower bound on the dissipa- 
tion rate given in Theorem 4 is dependent on the specific functional form in (2). We thank a 
referee for encouraging us to point  this out. 

2. Briefly considering the n-player variant, n ~ 2, the second order conditions fail if R > 
n / ( n - 2 ) ,  cf. Tullock (1984) (where the reverse condition is reported erroneously). Note that 
for the case n = 2 the second order conditions are always satisfied. But it is easily checked 
that for R > 2 the symmetric solution to the first-order conditions yields UI(. ].) < 0, and 
hence is not a global maximum. Thus the two agent case is the most interesting case to consider, 
because with n > 2 the posited solutions obviously do not make sense if R > n / ( n -  2). 

3. The null hypotheses should be interpreted with caution because the experimental setup of  Mill- 
ner and Pratt  (1989) is not entirely congruent with the simultaneous move requirement (neither 
does it fit the alternating move version studied in Leininger, 1990; Leininger and Yang (1990). 

4. Baye, Tian, and Zhou (1993) show that one cannot generally blame the non-existence of  a pure- 
strategy equilibrium on the failure of  payoff  functions to be quasi-concave or upper semi- 
continuous. 

5. Although Millner and Pratt  claim to be testing the Tullock model, the experiment actually al- 
lows the rent-seekers to expend resources continuously over a small time interval. Hence, the 
experiment does not formally test the original one-shot simultaneous-move Tullock game. This 
problem is corrected in the experiments of  Shogren and Balk (1991), who do not reject the theo- 
retical prediction when R = 1. 

6. The continuous strategy space (infinite game) is dealt with below. 
7. The mixed strategies may be degenerate, i.e., in the case of  a pure strategy equilibrium. 
8. Shogren and Balk (1991) state that the behavioral inconsistency reported in Mitlner and Pratt  

" . . .  is due to the nonexistence of  a Nash equilibrium, tn this case there is no predictable be- 
havioral benchmark to measure the experimental evidence against ."  Our Theorem 2, however, 
provides such a benchmark. Shogren and BaJk are referring to the non-existence of  a symmet- 
ric pure strategy Nash equilibrium. 

9. In future work it may be of  interest to repeat the experiment for R = 3 and Q small such that 
alI the properties of  the symmetric equilibrium can be evaluated, i.e., the values of  the py'S. 

10. Calculations are based on (3.34 - 3.9)/s 1 = -5 .11  and (84 - 97.5)/s z = - 2 . 7 3 ,  where s 1 
and s 2 were calculated from Millner and Prat t  (t989) using (3.34 - 6)/s I = - 24.28 and (84 
- 150)/s 2 = -13 .37 .  

11. See atso Shogren and Balk, who run a related experiment for R = 1 and find that the Nash 
equilibrium dissipation hypothesis cannot be rejected at the 90 percent level. 
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A p p e n d i x  

In this Appendix  we show that,  for v >__ 1, the left-hand side of  inequality (20) is non-negative,  
while the r ight-hand side is strictly negative. 

Manipulate  the r ight-hand side as follows: 

( x +  1) R < 0 
v + l  + x - 2 (v+x)  > 

(x+  I)R + x ~ 

(v + 1 + x)x g < (v - 1 + x)(x + I) R > 

1 + - -  
v + x - t  

< (I + 1_ )R  
x 

Note that  the lef t-hand side of  this last inequality is decreasing in v. Hence, to show that  the right- 

hand  side o f  (20) is negative, it is sufficient to show that  such is the case for v = 1. Assuming  that  
v = 1, we can further manipulate  the last inequality: 

1 + - -  1 + x  X ( 1 + -  x 

1 + b  
1 1 1 ) g - z  

1 + x X (1 + - x ) ( 1  +_x  " 

Evidently, for any x > 0 

1 + - -  
1 1 

< 1 + - .  
l + x  x 

Thus  for any R ~ 2 and x _> 1 the r ight-hand side of (20) is strictly negative for any v >_ I. 
To obtain the left-hand side result we need to show that  for any t such that  
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Q -  1 > _ t _ x  + t ,  

( x +  1) R ( x +  1)R x R 
_>2 

( x + l )  R + t R ( x + l ) R  + x R x R + t R 

Manipula t ion  yields 

[ ( x + l )  R + xRI[x R + tRl < 2xR[(x+I)R + t R] 

XR(X+I) R + tR(x+ 1) R + X zR + XRt R < 2X R (X+ 1) R + 2xRt R 

< 0 .  [ (X+I)R -- xRI[t R -- X R] > 

Because t _. x + 1 > x, the left-hand side o f  this last inequality is unequivocally positive, and hence 

the lef t-hand side o f  (20) is non-negative.  




